-
Notifications
You must be signed in to change notification settings - Fork 6
/
main.py
55 lines (43 loc) · 1.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import numpy as np
import tensorflow as tf
import argparse
import svm
import utils
np.random.seed(10)
tf.random.set_seed(10)
ap = argparse.ArgumentParser()
ap.add_argument('--method', default='SRL-SOA', help =
"SRL-SOA, PCA, SpaBS, EGCSR_R, ISSC, None (for no band selection).")
ap.add_argument('--dataset', default='Indian_pines_corrected', help = "Indian_pines_corrected, SalinasA_corrected.")
ap.add_argument('--q', default = 3, help = "Order of the OSEN.")
ap.add_argument('--weights', default = True, help="Evaluate the model.")
ap.add_argument('--epochs', default = 50, help="Number of epochs.")
ap.add_argument('--batchSize', default = 5, help="Batch size.")
ap.add_argument('--bands', default = 1, help="Compression rate.")
args = vars(ap.parse_args())
param = {}
param['modelType'] = args['method']
param['weights'] = args['weights'] # True or False.
param['q'] = int(args['q']) # The order of the OSEN.
param['dataset'] = args['dataset'] # Dataset.
param['epochs'] = int(args['epochs'])
param['batchSize'] = int(args['batchSize'])
param['s_bands'] = int(args['bands']) # Number of bands.
parameterSearch = True # Parameter search for the classifier.
classData, Data = utils.loadData(param['dataset'])
y_predict = []
# Band selection ...
for i in range(0, 10): # 10 runs ...
if param['modelType'] != 'None':
classData[i], Data[i] = utils.reduce_bands(param, classData[i], Data[i], i)
print('Classification...')
if parameterSearch:
# If hyper-parameter search is selected.
best_parameters, class_model = svm.svm_train_search(classData[i]['x_train'], classData[i]['y_train'])
print('\nBest paramters:' + str(best_parameters))
else:
class_model = svm.svm_train(classData[i]['x_train'], classData[i]['y_train'])
y_predict.append(class_model.predict(classData[i]['x_test']))
utils.evalPerformance(classData, y_predict)