-
Notifications
You must be signed in to change notification settings - Fork 16
/
deconv_cv.py
169 lines (132 loc) · 4.94 KB
/
deconv_cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python
'''
Wiener deconvolution.
Sample shows how DFT can be used to perform Weiner deconvolution [1]
of an image with user-defined point spread function (PSF)
Usage:
deconv_cv.py [--circle]
[--angle <degrees>]
[--d <diameter>]
[--snr <signal/noise ratio in db>]
[<input image>]
Use sliders to adjust PSF paramitiers.
Keys:
SPACE - switch btw linear/cirular PSF
ESC - exit
Examples:
deconv_cv.py --angle 135 --d 22 ../data/licenseplate_motion.jpg
(image source: http://www.topazlabs.com/infocus/_images/licenseplate_compare.jpg)
deconv_cv.py --angle 86 --d 31 ../data/text_motion.jpg
deconv_cv.py --circle --d 19 ../data/text_defocus.jpg
(image source: compact digital photo camera, no artificial distortion)
[1] http://en.wikipedia.org/wiki/Wiener_deconvolution
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
# local module
# from common import nothing
def blur_edge(img, d=31):
h, w = img.shape[:2]
img_pad = cv2.copyMakeBorder(img, d, d, d, d, cv2.BORDER_WRAP)
img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d]
y, x = np.indices((h, w))
dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1)
w = np.minimum(np.float32(dist)/d, 1.0)
return img*w + img_blur*(1-w)
def motion_kernel(angle, d, sz=65):
kern = np.ones((1, d), np.float32)
c, s = np.cos(angle), np.sin(angle)
A = np.float32([[c, -s, 0], [s, c, 0]])
sz2 = sz // 2
A[:,2] = (sz2, sz2) - np.dot(A[:,:2], ((d-1)*0.5, 0))
kern = cv2.warpAffine(kern, A, (sz, sz), flags=cv2.INTER_CUBIC)
return kern
def defocus_kernel(d, sz=65):
kern = np.zeros((sz, sz), np.uint8)
cv2.circle(kern, (sz, sz), d, 255, -1, cv2.CV_AA, shift=1)
kern = np.float32(kern) / 255.0
return kern
if __name__ == '__main__':
print(__doc__)
import sys, getopt
opts, args = getopt.getopt(sys.argv[1:], '', ['circle', 'angle=', 'd=', 'snr='])
opts = dict(opts)
try:
fn = args[0]
except:
fn = './sample.png'
win = 'deconvolution'
img_bw = cv2.imread(fn, 0)
img_rgb = cv2.imread(fn, 1)
if img_bw is None and img_rgb is None:
print('Failed to load image:', fn)
sys.exit(1)
img_r = np.zeros_like(img_bw)
img_g = np.zeros_like(img_bw)
img_b = np.zeros_like(img_bw)
img_r = img_rgb[..., 0]
img_g = img_rgb[..., 1]
img_b = img_rgb[..., 2]
img_rgb = np.float32(img_rgb)/255.0
img_bw = np.float32(img_bw)/255.0
img_r = np.float32(img_r)/255.0
img_g = np.float32(img_g)/255.0
img_b = np.float32(img_b)/255.0
cv2.imshow('input', img_rgb)
# img_bw = blur_edge(img_bw)
img_r = blur_edge(img_r)
img_g = blur_edge(img_g)
img_b = blur_edge(img_b)
# IMG_BW = cv2.dft(img_bw, flags=cv2.DFT_COMPLEX_OUTPUT)
IMG_R = cv2.dft(img_r, flags=cv2.DFT_COMPLEX_OUTPUT)
IMG_G = cv2.dft(img_g, flags=cv2.DFT_COMPLEX_OUTPUT)
IMG_B = cv2.dft(img_b, flags=cv2.DFT_COMPLEX_OUTPUT)
defocus = '--circle' in opts
def update(_):
ang = np.deg2rad( cv2.getTrackbarPos('angle', win) )
d = cv2.getTrackbarPos('d', win)
noise = 10**(-0.1*cv2.getTrackbarPos('SNR (db)', win))
if defocus:
psf = defocus_kernel(d)
else:
psf = motion_kernel(ang, d)
cv2.imshow('psf', psf)
psf /= psf.sum()
psf_pad = np.zeros_like(img_bw)
kh, kw = psf.shape
psf_pad[:kh, :kw] = psf
PSF = cv2.dft(psf_pad, flags=cv2.DFT_COMPLEX_OUTPUT, nonzeroRows = kh)
PSF2 = (PSF**2).sum(-1)
iPSF = PSF / (PSF2 + noise)[...,np.newaxis]
# RES_BW = cv2.mulSpectrums(IMG_BW, iPSF, 0)
RES_R = cv2.mulSpectrums(IMG_R, iPSF, 0)
RES_G = cv2.mulSpectrums(IMG_G, iPSF, 0)
RES_B = cv2.mulSpectrums(IMG_B, iPSF, 0)
# res_bw = cv2.idft(RES_BW, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
res_r = cv2.idft(RES_R, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
res_g = cv2.idft(RES_G, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
res_b = cv2.idft(RES_B, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
res_rgb = np.zeros_like(img_rgb)
res_rgb[..., 0] = res_r
res_rgb[..., 1] = res_g
res_rgb[..., 2] = res_b
# res_bw = np.roll(res_bw, -kh//2, 0)
# res_bw = np.roll(res_bw, -kw//2, 1)
res_rgb = np.roll(res_rgb, -kh//2, 0)
res_rgb = np.roll(res_rgb, -kw//2, 1)
cv2.imshow(win, res_rgb)
cv2.namedWindow(win)
cv2.namedWindow('psf', 0)
cv2.createTrackbar('angle', win, int(opts.get('--angle', 135)), 180, update)
cv2.createTrackbar('d', win, int(opts.get('--d', 22)), 50, update)
cv2.createTrackbar('SNR (db)', win, int(opts.get('--snr', 25)), 50, update)
update(None)
while True:
ch = cv2.waitKey() & 0xFF
if ch == 27:
break
if ch == ord(' '):
defocus = not defocus
update(None)