-
Notifications
You must be signed in to change notification settings - Fork 3
/
publications.html
705 lines (665 loc) · 54.5 KB
/
publications.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-127118448-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-127118448-1');
</script>
<meta name="generator" content="jemdoc, see http://jemdoc.jaboc.net/" />
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<link rel="stylesheet" href="jemdoc.css" type="text/css" />
<link rel="shortcut icon" type="image/x-icon" href="favicon.ico" />
<title>Publications </title>
</head>
<body>
<table summary="Table for page layout." id="tlayout">
<tr valign="top">
<td id="layout-menu">
<div class="menu-category">Home</div>
<div class="menu-item"><a href="index.html" >About me</a></div>
<div class="menu-item"><a href="research_interests.html">Research Interests</a></div>
<div class="menu-item"><a href="Professional Activities.html">Professional Activities</a></div>
<div class="menu-category">Research</div>
<div class="menu-item"><a href="publications.html" class="current">Publications</a></div>
<div class="menu-item"><a href="patents.html">Patents</a></div>
<div class="menu-item"><a href="RES Project&Founding.html">Projects&Funding</a></div>
<div class="menu-category">My Lab</div>
<div class="menu-item"><a href="graphme.github.io">GraphME</a></div>
</td>
<td id="layout-content">
<div id="toptitle">
<h1>Publications </h1>
</div>
<ul>
<p><font size="5" color="#FF4500">Representative Papers on GNNs</font></p>
<hr style="border: 3 double #987cb9" size="4" >
<li><p><b>Are graph convolutional networks with random weights feasible?</b> ★[<a href="https://ieeexplore.ieee.org/abstract/document/9796468"
target="_blank">link</a>]<font color=red><b>ESI Highly Cited Paper</b> </font>🏆<br>
C. Huang, <b>M. Li*</b>, F. Cao, H. Fujita, Z. Li, X. Wu<br>
<b>IEEE Transactions on Pattern Analysis and Machine Intelligence</b>, vol. 45, no. 3, pp. 2751-2768, 2023.
</p></li>
<br />
<li><p><b>Multi-view graph convolutional networks with attention mechanism</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0004370222000480">link</a>][<a href="https://sxu-yaokx.github.io/MAGCN/">code</a>]<br>
K. Yao, J. Liang, J. Liang, <b>M. Li</b>, F. Cao<br>
<b>Artificial Intelligence</b>, vol. 307, 103708, 2022.
</p></li>
<br />
<li><p><b> AEGK: Aligned Entropic Graph Kernels through continuous-time quantum walks</b> [<a href="https://arxiv.org/abs/2303.03396">link</a>] <br>
L. Bai, L. Cui, <b>M. Li</b>, P. Ren, Y. Wang, Y. Philip, L. Zhang, E. R. Hancock<br>
<b>IEEE Transactions on Knowledge and Data Engineering</b>, 2025, DOI: 10.1109/TKDE.2024.3512181.
</p></li><br />
<li><p><b> HAQJSK: Hierarchical-aligned quantum Jensen-Shannon kernels for graph classification</b> ★ [<a href="https://arxiv.org/abs/2211.02904">arxiv</a>] [<a href="https://ieeexplore.ieee.org/document/10502132">link</a>]<br>
L. Bai, L. Cui, Y. Wang, <b>M. Li*</b>, J. Li, P. Yu, E. R. Hancock<br>
<b>IEEE Transactions on Knowledge and Data Engineering</b>, vol. 36, no. 11, pp. 6370-6384, 2024.
</p></li><br />
<li><p><b> Collaborative knowledge graph fusion by exploiting the open corpus</b> ★ [<a href="https://ieeexplore.ieee.org/document/10164253">link</a>]<br>
Y. Wang, Y. Wan, L. Bai, L. Cui, Z. Xu, <b>M. Li</b>, P. Yu, E. Hancock<br>
<b>IEEE Transactions on Knowledge and Data Engineering</b>, vol. 36, no. 2, pp. 475-489, 2024.
</p></li><br />
<li><p><b><font color=blue>Guest Editorial</font>: Deep Neural Networks for Graphs: Theory, Models, Algorithms and Applications</b> ★ [<a href="https://ieeexplore.ieee.org/document/10492652">link</a>]<br>
<b>M. Li</b>, A. Micheli, Y. G. Wang, S. Pan, P. Lio, G. Gnecco, M. Sanguineti<br>
<b>IEEE Transactions on Neural Networks and Learning Systems</b>, vol. 35, no. 4, pp. 4367-4372, 2024.
</p></li><br />
<li><p><b> Permutaion equivariant graph framelets for
heterophilous graph learning</b> ★ [<a href="https://ieeexplore.ieee.org/document/10466590">link</a>] [<a href="https://github.com/zrgcityu/PEGFAN">code</a>]<br>
J. Li, R. Zheng, H. Feng, <b>M. Li*</b>, X. Zhuang*<br>
<b>IEEE Transactions on Neural Networks and Learning Systems</b>, vol. 35, no. 9, pp. 11634-11648, 2024.
</p></li><br />
<li><p><b> Flow2GNN: Flexible two-way flow message passing for enhancing GNNs beyond homophily</b> ★ [<a href="https://ieeexplore.ieee.org/document/10592053">link</a>] <br>
C. Huang, Y. Wang, Y. Jiang, <b>M. Li</b>, X. Huang, S. Wang, S. Pan, C. Zhou <br>
<b>IEEE Transactions on Cybernetics</b>, vol. 54, no. 11, pp. 6607-6618, 2024.
</p></li><br />
<li><p><b>Multimodal graph learning based on 3D Haar semi-tight framelet for student engagement prediction</b> ★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S1566253524000022">link</a>]<font color=red><br> <b>ESI Highly Cited Paper</b> </font>🏆<br>
<b>M. Li</b>, X. Zhuang, L. Bai, W. Ding<br>
<b>Information Fusion</b>, vol. 105, 102224, 2024.
</p></li><br />
<li><p><b>EduCross: Dual adversarial bipartite hypergraph learning for cross-modal retrieval in multimodal educational slides</b> ★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S1566253524002069">link</a>]<br>
<b>M. Li</b>, S. Zhou, Y. Chen, C. Huang, Y. Jiang<br>
<b>Information Fusion</b>, vol. 109, 102428, 2024.
</p></li><br />
<li><p><b> EduGraph: Learning path-based hypergraph neural networks for MOOC course recommendation</b> ★ [<a href="https://ieeexplore.ieee.org/document/10663938">link</a>]<br>
<b>M. Li</b>, Z. Li*, C. Huang*, Y. Jiang, X. Wu<br>
<b>IEEE Transactions on Big Data</b>, vol. 10, no. 6, pp. 706-719, 2024.
</p></li><br />
<li><p><b> A simple yet effective framelet-based graph neural network for directed graphs</b>★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S1566253524000022">link</a>] [<a href="https://github.com/andyjm3/SVD-GCN">code</a>]<br>
C. Zou, A. Han, L. Lin, <b>M. Li</b>, J. Gao<br>
<b>IEEE Transactions on Artificial Intelligence</b>, vol. 5, no. 4, pp. 1647-1657, 2024.
</p></li><br />
<li><p><b> GoLoG: Global-to-local decoupling graph network with joint optimization for hyperspectral image classification</b> ★ [<a href="https://ieeexplore.ieee.org/document/10288272">link</a>]<br>
B. Yang, H. Ye, <b>M. Li</b>*, F. Cao, S. Pan<br>
<b>IEEE Transactions on Geoscience and Remote Sensing</b>, vol. 61, 5528014, 2023.
</p></li><br />
<li><p><b>HC-GAE: The hierarchical cluster-based graph auto-encoder for graph representation learning</b> ★ [<a href="https://arxiv.org/abs/2405.14742">link</a>] [<a href="https://github.com/JonathanGXu/HC-GAE">code</a>]<br>
Z. Xu, L. Bai, L. Cui, <b>M. Li</b>, Y. Wang, E. R. Hancock<br>
<b>NeurIPS</b>, 2024.
</p></li><br />
<li><p><b>Long-range brain graph transformer</b> ★ [<a href="xxx">link</a>] [<a href="https://github.com/yushuowiki/ALTER">code</a>]<br>
S. Yu, S. Jin, <b>M. Li</b>, T. Sarwar, F. Xia<br>
<b>NeurIPS</b>, 2024.
</p></li><br />
<li><p><b> Path integral based convolution and pooling for graph neural networks</b> ★ [<a href="https://arxiv.org/abs/2006.16811">link</a>][<a href="https://github.com/YuGuangWang/PAN">code</a>][<a href="https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/pan_conv.html">PyG Implementation</a>]<br>
Z. Ma, J. Xuan, Y. G. Wang, <b>M. Li</b>, P. Lio<br>
<b>NeurIPS</b>, 2020, pp. 16421-16433.
</p></li>
<br />
<li><p><b> How universal polynomial bases enhance spectral graph neural networks: Heterophily, over-smoothing, and over-squashing</b> ★ [<a href="https://proceedings.mlr.press/v235/huang24z.html">link</a>] [<a href="https://github.com/kkhuang81/UniFilter">code</a>] [<a href="https://icml.cc/media/icml-2024/Slides/33747.pdf">poster</a>] [<a href="https://www.youtube.com/watch?v=MGKGR-ULM88">video</a>]<br>
K. Huang*, Y. G. Wang, <b>M. Li</b>*, P. Lio<br>
<b>ICML</b>, 2024, pp. 20310-20330.
</p></li><br />
<li><p><b> QBMK: Quantum-based matching kernels for un-attributed graphs</b> ★ [<a href="">link</a>]<br>
L. Bai, L. Cui, <b>M. Li</b>, Y. Wang, E. Hancock<br>
<b>ICML</b>, 2024, pp. 2364-2374. (Spotlight Paper: 3.5% acceptance rate)
</p></li><br />
<li><p><b> How powerful are shallow neural networks with bandlimited random weights?</b> ★ [<a href="https://proceedings.mlr.press/v202/li23aa/li23aa.pdf">link</a>]<br>
<b>M. Li</b>, S. Sonoda, F. Cao, Y. G. Wang, J. Liang<br>
<b>ICML</b>, 2023, pp. 19960-19981.
</p></li><br />
<li><p><b> Haar graph pooling</b> ★ [<a href="http://proceedings.mlr.press/v119/wang20m/wang20m.pdf">link</a>][<a href="https://github.com/YuGuangWang/HaarPool">code</a>]<br>
Y. G. Wang, <b>M. Li</b>*, Z. Ma, G. Montufar, X. Zhuang, Y. Fan<br>
<b>ICML</b>, 2020, pp. 9952-9962.
</p></li>
<br />
<li><p><b> How framelets enhance graph neural networks</b> ★[<a href="http://proceedings.mlr.press/v139/zheng21c/zheng21c-supp.pdf">link</a>] [<a href="https://github.com/YuGuangWang/UFG">code</a>]<br>
X. Zheng, B. Zhou, J. Gao, Y. G. Wang, P. Lio, <b>M. Li</b>, G. Montufar<br>
<b>ICML</b>, 2021, pp. 12761-12771. (Spotlight Paper)
</p></li><br />
<li><p><b>When hypergraph meets heterophily: New benchmark datasets and baseline</b> ★ [<a href="https://kellysylvia77.github.io/HHL">repository link</a>] [<a href="https://mingli-ai.github.io/HHL.pdf">appendix</a>]<br>
<b>M. Li</b>, Y. Gu, Y. Wang, Y. Fang, Lu Bai, X. Zhuang, P. Lio<br>
<b>AAAI</b>, 2025.
</p></li>
<br />
<li><p><b>Deep hypergraph neural networks with tight framelets</b> ★ [<a href="">link</a>] [<a href="https://mingli-ai.github.io/FrameHGNN.pdf">appendix</a>]<br>
<b>M. Li</b>, Y. Fang, Y. Wang, H. Feng, Y. Gu, L. Bai, P. Lio<br>
<b>AAAI</b>, 2025.
</p></li>
<br />
<li><p><b>DHAKR: Learning deep hierarchical attention-based kernelized representations for graph classification</b> ★<br>
F. Qian, L. Bai, L. Cui, <b>M. Li</b>*, Z. Lyu, H. Du, E. Hancock<br>
<b>AAAI</b>, 2025.
</p></li>
<br />
<li><p><b>ML-GOOD: Towards multi-label graph out-of-distribution detection</b> ★ [<a href="">link</a>] [<a href="https://github.com/ca1man-2022/ML-GOOD">code</a>] [<a href="https://github.com/ca1man-2022/ML-GOOD/blob/main/Appendix_ML_GOOD.pdf">appendix</a>]<br>
T. Cai, Y. Jiang, <b>M. Li</b>, C. Huang, Y. Wang, Q. Huang<br>
<b>AAAI</b>, 2025.
</p></li>
<br />
<li><p><b>Stability and generalization of ℓp-regularized stochastic learning for GCN</b> ★ [<a href="https://www.ijcai.org/proceedings/2023/631">link</a>]<br>
S. Liu, L. Wei, S. Lv, <b>M. Li</b><br>
<b>IJCAI</b>, 2023, pp. 5685-5693.
</p></li><br />
<li><p><b> BLoG: Bootstrapped graph representation learning with local and global regularization for recommendation</b> ★[<a href="https://www.sciencedirect.com/science/article/abs/pii/S0031320323005721">link</a>]<br>
<b>M. Li</b>, L. Zhang, L. Cui, L. Bai, Z. Li, X. Wu<br>
<b>Pattern Recognition</b>, vol. 144, 109874, 2023.
</p></li><br />
<li><p><b> QBER: Quantum-based entropic representations for un-attributed graphs</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0031320323005757">link</a>] <br>
L. Cui, <b>M. Li</b>, L. Bai, Y. Wang, J. Li, Y. Wang, Z. Li, Y. Chen, E. Hancock<br>
<b>Pattern Recognition</b>, vol. 145, 109877, 2024.
</p></li><br />
<li><p><b> AG-Meta: Adaptive graph meta learning via representation consistency over local subgraphs</b> ★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0031320324001389">link</a>] <br>
Y. Wang, C. Huang, <b>M. Li</b>, Q. Huang, X. Wu, J. Wu<br>
<b>Pattern Recognition</b>, vol. 151, 110387, 2024.
</p></li><br />
<li><p><b> Fast Haar transforms for graph neural networks</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0893608020301568?via%3Dihub">link</a>]<br>
<b>M. Li</b>, Z. Ma, Y. G. Wang, X. Zhuang<br>
<b>Neural Networks</b>, vol. 128, pp. 188-198, 2020.
</p></li><br />
<hr style="border: 3 double #987cb9" size="4">
<br />
<p>The full paper list can be retrieved from my <a href="https://scholar.google.com/citations?hl=zh-CN&user=Z7yEoOQAAAAJ&authuser=1" target="_blank" style="target-new: tab;">Google Scholar Profile</a>
and <a href="https://www.researchgate.net/profile/Ming_Li272" target="_blank" style="target-new: tab;">ResearchGate Archieves</a></p>
<font size="3">★: <span style="font-weight: bold">Featured Papers on <span style="font-weight: bold">Graph Neural Networks and Graph Representation Learning</span></span></font><br/>
<font size="3">* : <span style="font-weight: bold">corresponding author</span></font><br/>
<br />
<br />
<font size="5" color="#FF4500">2025-Published Papers</font>
<hr>
<li><p><b>When hypergraph meets heterophily: New benchmark datasets and baseline</b> ★<br>
<b>M. Li</b>, Y. Gu, Y. Wang, Y. Fang, Lu Bai, X. Zhuang, P. Lio<br>
<b>AAAI</b>, 2025.
</p></li>
<br />
<li><p><b>Deep hypergraph neural networks with tight framelets</b> ★ <br>
<b>M. Li</b>, Y. Fang, Y. Wang, H. Feng, Y. Gu, L. Bai, P. Lio<br>
<b>AAAI</b>, 2025.
</p></li>
<br />
<li><p><b>DHAKR: Learning deep hierarchical attention-based kernelized representations for graph classification</b> ★<br>
F. Qian, L. Bai, L. Cui, <b>M. Li</b>*, Z. Lyu, H. Du, E. Hancock<br>
<b>AAAI</b>, 2025.
</p></li>
<br />
<li><p><b>ML-GOOD: Towards multi-label graph out-of-distribution detection</b> ★ [<a href="xxx">link</a>] [<a href="https://github.com/ca1man-2022/ML-GOOD">code</a>]<br>
T. Cai, Y. Jiang, <b>M. Li</b>, C. Huang, Y. Wang, Q. Huang<br>
<b>AAAI</b>, 2025.
</p></li>
<br />
<font size="5" color="#FF4500">2024-Submitted Papers</font>
<hr>
<li><p><b>Deeper insights into deep graph convolutional networks: Stability and generalization</b> [<a href="https://arxiv.org/abs/2410.08473">link</a>]<br>
G. Yang, <b>M. Li</b>, H. Feng, X. Zhuang<br>
submitted to <b>IEEE Transactions on Pattern Analysis and Machine Intelligence</b>, 2024.
</p></li><br />
<li><p><b>Bridging smoothness and approximation: Theoretical
insights into over-smoothing in graph neural networks</b> [<a href="https://arxiv.org/abs/2407.01281">link</a>]<br>
G. Yang, J. Li, <b>M. Li</b>, H. Feng, D. X. Zhou<br>
submitted to <b>Journal of Machine Learning Research</b>, 2024.
</p></li><br />
<li><p><b>ENADPool: The Edge-Node Attention-based Differentiable Pooling for graph neural networks</b> ★ [<a href="https://arxiv.org/abs/2405.10218">link</a>]<br>
Z. Zhao, L. Bai, L. Cui, <b>M. Li</b>, Y. Wang, L. Xu, E. Hancock<br>
submitted to <b>WWW</b>, 2024.
</p></li><br />
<li><p><b>AKBR: Learning Adaptive Kernel-based Representations for Graph Classification</b> ★ [<a href="https://arxiv.org/abs/2403.16130">link</a>]<br>
F. Qian, L. Cui, <b>M. Li</b>, Y. Wang, H. Du, L. Xu, L. Bai, P. Yu, E. Hancock<br>
submitted to <b>WWW</b>, 2024.
</p></li><br />
<li><p><b>SSHPool: The Separated Subgraph-based Hierarchical Pooling</b> ★ [<a href="https://arxiv.org/pdf/2403.16133">link</a>]<br>
Z. Xu, L. Cui, <b>M. Li</b>, Y. Wang, Z. Lyu, H. Du, L. Bai, P. Yu, E. Hancock<br>
submitted to <b>WWW</b>, 2024.
</p></li><br />
<li><p><b>Consistency-aware hypergraph fusion network for multimodal emotion recognition in conversations</b> <br>
J. Shi, <b>M. Li</b>*, L. Bai, W. Ding<br>
submitted to <b>Knowledge-Based Systems</b>, 2024.
</p></li><br />
<li><p><b>FrameERC: Framelet transform based multimodal graph neural networks for emotion recognition in conversation</b><br>
<b>M. Li</b>, J. Shi, L. Bai, C. Huang, Y. Jiang, K. Lv, S. Wang, E. Hancock<br>
submitted to <b>Pattern Recognition</b>, 2024.
</p></li><br />
<li><p><b>GloRA: Global item relational awareness based graph representation learning for sequential recommendation</b><br>
<b>M. Li</b>, Z. Zhu, L. Cui, L. Bai, Q. Hu, S. Zhou<br>
submitted to <b>Pattern Recognition</b>, 2024.
</p></li><br />
<li><p><b>Layer-wise feature metric of semantic-pixel matching for few-shot learning</b><br>
H. Tang, J. Lu, G. Huang, <b>M. Li</b>, X. Chen, G. Zhong, C. Pun, Z. Tan, <br>
submitted to <b>Pattern Recognition</b>, 2024.
</p></li><br />
<li><p><b>BMPM-Net: Few-shot medical image segmentation via bias-corrected multiple prototypes mining</b><br>
R. Zhou, G. Huang, <b>M. Li</b>, X. Zhang, Y. Li, X. Yuan, L. Cheng, C. Pun<br>
submitted to <b>Neural Networks</b>, 2024.
</p></li><br />
<li><p><b>ConsistencyDet: Robust object detector with denoising paradigm of consistency models</b> [<a href="https://arxiv.org/abs/2404.07773">link</a>] [<a href="https://github.com/Tankowa/ConsistencyDet">code</a>] <br>
L. Jiang, Z. Wang, C. Wang, X. Guang, <b>M. Li</b>, J. Leng, X. Wu<br>
submitted to <b>CVPR</b>, 2025.
</p></li><br />
<li><p><b> OML-M3IL: Overcoming modality laziness in multi-modal multi-instance learning for immune repertoire classification</b> <br>
Y. Zhang, Z. Zhou, H. Luo, W. Liu, <b>M. Li</b><br>
submitted to <b>CVPR</b>, 2025.
</p></li><br />
<li><p><b> Correlation information enhanced graph anomaly detection via hypergraph transformation</b> <br>
C. Huang, C. Gao, <b>M. Li</b>, X. Wang, Y. Jiang, X. Huang<br>
submitted to <b>IEEE Transactions on Cybernetics</b>, 2024.
</p></li><br />
<li><p><b> Explaining vulnerabilities in deep multi-instance learning: Insights from key instance attacks
and out-of-distribution detection</b> <br>
Y. Zhang, Z. Zhou, <b>M. Li</b>, X. Wu, P. Lio<br>
submitted to <b>IEEE Transactions on Knowledge and Data Engineering</b>, 2024.
</p></li><br />
<li><p><b> On learning label noise robust networks via regularization: A topological view</b> <br>
C. Zhou, H. Meng, <b>M. Li</b>, Z. Zhou<br>
revision submitted to <b>IEEE Transactions on Neural Networks and Learning Systems</b>, 2024.
</p></li><br />
<li><p><b> Fuzzy clustering with microcluster recombination based on local convex structures</b> <br>
W. Gao, Z. Zhou, <b>M. Li</b>, H. Meng,<br>
submitted to <b>IEEE Transactions on Fuzzy Systems</b>, 2024.
</p></li><br />
<li><p><b> Examining the Fourier spectrum of speech signal from a time-frequency perspective for automatic depression level prediction</b> <br>
M. Niu, J. Tao, Y. He, S. Zhang, <b>M. Li</b><br>
submitted to <b>IEEE Transactions on Affective Computing</b>, 2024.
</p></li><br />
<li><p><b> Opinion dynamics informed neural networks for few-labeled graphs</b> <br>
W. Ye, J. Yang, X. Wei, R. Fan, <b>M. Li</b>, A. Singh<br>
submitted to <b>IEEE Transactions on Network Science and Engineering</b>, 2024.
</p></li><br />
<li><p><b> A unified framework for exploratory learning-aided community detection under topological uncertainty</b> ★ [<a href="https://arxiv.org/abs/2304.04497">link</a>] <br>
Y. Hou, C. Tran, <b>M. Li</b>, W. Y. Shin<br>
revision submitted to <b>IEEE Transactions on Network Science and Engineering</b>, 2024.
</p></li><br />
<li><p><b> AutoSGRL: Automated framework construction for self-supervised graph representation learning</b> <br>
Y. Xie, Y. Chang, M. Gong, <b>M. Li</b>, A. K. Qin, X. Zhang<br>
submitted to <b>IEEE Transactions on Artificial Intelligence</b>, 2024.
</p></li><br />
<li><p><b> Inconsistency-aware graph convolutional networks for multi-view classification</b> <br>
Q. Teng, K. Liu, X. Yang, <b>M. Li</b><br>
submitted to <b>IEEE Transactions on Emerging Topics in Computational Intelligence</b>, 2024.
</p></li><br />
<li><p><b> Affinity maximization learning for unsupervised deep graph matching</b> <br>
Y. Xie, Z. Li, W. Wang, A. K. Qin, <b>M. Li</b>, M. Gong<br>
submitted to <b>IEEE Transactions on Emerging Topics in Computational Intelligence</b>, 2024.
</p></li><br />
<li><p><b> Propensity scoring on multi-instance partial-label learning</b> <br>
H. Luo, Y. Zhang, Z. Zhou, W. Liu, <b>M. Li</b>, P. Lio<br>
submitted to <b>IEEE Transactions on Emerging Topics in Computational Intelligence</b>, 2024.
</p></li><br />
<li><p><b> QIIS: Quaternion inter- and intra-Task interaction strategy for multi-task dense prediction</b> <br>
K. Huang, G. Huang, Y. Li, <b>M. Li</b>, X. Yuan, C. Pun, L. Cheng<br>
submitted to <b>IEEE Transactions on Emerging Topics in Computational Intelligence</b>, 2024.
</p></li><br />
<li><p><b> Uni-Attack: A unified framework for black-box adversarial attacks against large vision-language models in autonomous driving</b> <br>
H. Chen, R. Zhang, Y. Zhang, C. Wang, A. Elazab, <b>M. Li</b><br>
submitted to <b>IEEE Transactions on Intelligent Transportation Systems</b>, 2024.
</p></li><br />
<li><p><b> Multi-topology contrastive graph representation learning</b> <br>
Y. Xie, J. Jia, C. Wen, D. Li, <b>M. Li</b>*<br>
submitted to <b>SCIENCE CHINA Information Sciences</b>, 2024.
</p></li><br />
<li><p><b> eBASE: Real-time battery swap recommendation system for eBike users</b> <br>
S. Zhou, Y. Gu, Z. Li, Y. Li, C. Zhu, X. Liu, J. Huang, <b>M. Li</b>*, X. Zhang, M. Li<br>
submitted to <b>The 30th International Conference on Database Systems for Advanced Applications (DASFAA)-Demo Track</b>, 2024.
</p></li><br />
<li><p><b> A feature reuse framework with texture-adaptive aggregation for reference-based super-resolution</b> [<a href="https://arxiv.org/abs/2306.01500">link</a>] <br>
X. Mei, Y. Yang, <b>M. Li</b>*, C. Huang, K. Zhang, F. Zhang<br>
submitted to <b>Knowledge-Based Systems</b>, 2023.
</p></li><br />
<li><p><b> Fast tensor needlet transforms for tangent vector fields on the sphere</b> ✠[<a href="https://arxiv.org/pdf/1907.13339.pdf">link</a>]<br>
<b>M. Li</b>, J. Chen, P. Broadbridge, A. Olenko, Y. G. Wang<br>
submitted to <b>Applied and Computational Harmonic Analysis</b>, 2023.
</p></li><br />
<font size="5" color="#FF4500">Before 2025-Published Papers</font>
<hr>
<li><p><b><font color=blue>Guest Editorial</font>: Deep Neural Networks for Graphs: Theory, Models, Algorithms and Applications</b> ★ [<a href="https://ieeexplore.ieee.org/document/10492652">link</a>]<br>
<b>M. Li</b>, A. Micheli, Y. G. Wang, S. Pan, P. Lio, G. Gnecco, M. Sanguineti<br>
<b>IEEE Transactions on Neural Networks and Learning Systems</b>, vol. 35, no. 4, pp. 4367-4372, 2024.
</p></li><br />
<li><p><b>EduCross: Dual adversarial bipartite hypergraph learning for cross-modal retrieval in multimodal educational slides</b> ★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S1566253524002069">link</a>] <br>
<b>M. Li</b>, S. Zhou, Y. Chen, C. Huang, Y. Jiang<br>
<b>Information Fusion</b>, vol. 109, 102428, 2024.
</p></li><br />
<li><p><b>Multimodal graph learning based on 3D Haar semi-tight framelet for student engagement prediction</b> ★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S1566253524000022">link</a>]<br> <font color=red><b>ESI Highly Cited Paper</b> </font>🏆<br>
<b>M. Li</b>, X. Zhuang, L. Bai, W. Ding<br>
<b>Information Fusion</b>, vol. 105, 102224, 2024.
</p></li><br />
<li><p><b> AEGK: Aligned Entropic Graph Kernels through continuous-time quantum walks</b> [<a href="https://arxiv.org/abs/2303.03396">link</a>] <br>
L. Bai, L. Cui, <b>M. Li</b>, P. Ren, Y. Wang, Y. Philip, L. Zhang, E. R. Hancock<br>
<b>IEEE Transactions on Knowledge and Data Engineering</b>, 2025, DOI: 10.1109/TKDE.2024.3512181.
</p></li><br />
<li><p><b> HAQJSK: Hierarchical-aligned quantum Jensen-Shannon kernels for graph classification</b> ★ [<a href="https://arxiv.org/abs/2211.02904">arxiv</a>] [<a href="https://ieeexplore.ieee.org/document/10502132">link</a>]<br>
L. Bai, L. Cui, Y. Wang, <b>M. Li*</b>, J. Li, P. Yu, E. R. Hancock<br>
<b>IEEE Transactions on Knowledge and Data Engineering</b>, vol. 36, no. 11, pp. 6370-6384, 2024.
</p></li><br />
<li><p><b> Collaborative knowledge graph fusion by exploiting the open corpus</b> ★ [<a href="https://ieeexplore.ieee.org/document/10164253">link</a>]<br>
Y. Wang, Y. Wan, L. Bai, L. Cui, Z. Xu, <b>M. Li</b>, P. Yu, E. Hancock<br>
<b>IEEE Transactions on Knowledge and Data Engineering</b>, vol. 36, no. 2, pp. 475-489, 2024.
</p></li><br />
<li><p><b> XKT: Towards explainable knowledge tracing with multiple knowledge concept annotations</b> [<a href="https://ieeexplore.ieee.org/document/10569045">link</a>] <br>
C. Huang, Q. Huang, X. Huang, H. Wang, <b>M. Li</b>, K. Lin, Y. Chang <br>
<b>IEEE Transactions on Knowledge and Data Engineering</b>, vol. 36, no. 11, pp. 7308-7325, 2024.
</p></li><br />
<li><p><b> Flow2GNN: Flexible two-way flow message passing for enhancing GNNs beyond homophily</b> ★ [<a href="https://ieeexplore.ieee.org/document/10592053">link</a>]<br>
C. Huang, Y. Wang, Y. Jiang, <b>M. Li</b>, X. Huang, S. Wang, S. Pan, C. Zhou <br>
<b>IEEE Transactions on Cybernetics</b>, vol. 54, no. 11, pp. 6607-6618, 2024.
</p></li><br />
<li><p><b>HC-GAE: The hierarchical cluster-based graph auto-encoder for graph representation learning</b> ★ [<a href="https://arxiv.org/abs/2405.14742">link</a>] [<a href="https://github.com/JonathanGXu/HC-GAE">code</a>]<br>
Z. Xu, L. Bai, L. Cui, <b>M. Li</b>, Y. Wang, E. R. Hancock<br>
<b>NeurIPS</b>, 2024.
</p></li><br />
<li><p><b>Long-range brain graph transformer</b> ★ [<a href="https://github.com/yushuowiki/ALTER">code</a>]<br>
S. Yu, S. Jin, <b>M. Li</b>, T. Sarwar, F. Xia<br>
<b>NeurIPS</b>, 2024.
</p></li><br />
<li><p><b> How universal polynomial bases enhance spectral graph neural networks: Heterophily, over-smoothing, and over-squashing</b> ★ [<a href="https://proceedings.mlr.press/v235/huang24z.html">link</a>] [<a href="https://github.com/kkhuang81/UniFilter">code</a>] [<a href="https://icml.cc/media/icml-2024/Slides/33747.pdf">poster</a>] [<a href="https://www.youtube.com/watch?v=MGKGR-ULM88">video</a>]<br>
K. Huang*, Y. G. Wang, <b>M. Li</b>*, P. Lio<br>
<b>ICML</b>, 2024, pp. 20310-20330.
</p></li><br />
<li><p><b> QBMK: Quantum-based matching kernels for un-attributed graphs</b> ★ [<a href="">link</a>]<br>
L. Bai, L. Cui, <b>M. Li</b>, Y. Wang, E. Hancock<br>
<b>ICML</b>, 2024, pp. 2364-2374. (Spotlight Paper: 3.5% acceptance rate)
</p></li><br />
<li><p><b> Permutaion equivariant graph framelets for
heterophilous graph learning</b> ★ [<a href="https://ieeexplore.ieee.org/document/10466590">link</a>] [<a href="https://github.com/zrgcityu/PEGFAN">code</a>]<br>
J. Li, R. Zheng, H. Feng, <b>M. Li*</b>, X. Zhuang*<br>
<b>IEEE Transactions on Neural Networks and Learning Systems</b>, vol. 35, no. 9, pp. 11634-11648, 2024.
</p></li><br />
<li><p><b>Towards graph self-supervised learning with contrastive adjusted zooming</b> ★ [<a href="https://ieeexplore.ieee.org/document/9945993">link</a>]<br>
Y. Zheng, M. Jin, S. Pan, Y. F. Li, H. Peng, <b>M. Li</b>, Z. Li<br>
<b>IEEE Transactions on Neural Networks and Learning Systems</b>, vol. 35, no. 7, pp. 8882-8896, 2024.
</p></li>
<br />
<li><p><b> EduGraph: Learning path-based hypergraph neural networks for MOOC course recommendation</b> ★ [<a href="https://ieeexplore.ieee.org/document/10663938">link</a>]<br>
<b>M. Li</b>, Z. Li*, C. Huang*, Y. Jiang, X. Wu<br>
<b>IEEE Transactions on Big Data</b>, vol. 10, no. 6, pp. 706-719, 2024.
</p></li><br />
<li><p><b> A simple yet effective framelet-based graph neural network for directed graphs</b>★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S1566253524000022">link</a>] [<a href="https://github.com/andyjm3/SVD-GCN">code</a>]<br>
C. Zou, A. Han, L. Lin, <b>M. Li</b>, J. Gao<br>
<b>IEEE Transactions on Artificial Intelligence</b>, vol. 5, no. 4, pp. 1647-1657, 2024.
</p></li><br />
<li><p><b> MM-tracker: Visual tracking with a multi-task model integrating detection and differentiating feature extraction</b> [<a href="https://ieeexplore.ieee.org/document/10637320">link</a>] <br>
Z. Wang, M. Li, Z. Li, X. Zhang, <b>M. Li*</b>, Z. Li, W. Ding, X. Wu<br>
<b>IEEE Transactions on Emerging Topics in Computational Intelligence</b>, 2024, DOI: 10.1109/TETCI.2024.3436842.
</p></li><br />
<li><p><b> SODSR: A three-stage small object detection via super-resolution using optimizing combination</b> [<a href="https://ieeexplore.ieee.org/document/10684780">link</a>] <br>
X. Mei, K. Zhang, C. Huang, X. Chen, <b>M. Li</b>, Z. Li, W. Ding, X. Wu<br>
<b>IEEE Transactions on Emerging Topics in Computational Intelligence</b>, 2024, DOI: 10.1109/TETCI.2024.3452749.
</p></li><br />
<li><p><b> Framelet based dual hypergraph neural networks for student engagement prediction</b> ★ [<a href="Poster_AI4ED-AAAI_Paper.pdf">poster</a>] [<a href="AI4Ed-AAAI-Award.pdf">Best Short Paper Award</a>] <br>
<b>M. Li</b>*, J. Shi<br>
<b>AI4ED-AAAI</b>, 2024. Best Short Paper Award 🏆
</p></li><br />
<li><p><b> QBER: Quantum-based entropic representations for un-attributed graphs</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0031320323005757">link</a>] <br>
L. Cui, <b>M. Li</b>, L. Bai, Y. Wang, J. Li, Y. Wang, Z. Li, Y. Chen, E. Hancock<br>
<b>Pattern Recognition</b>, vol. 145, 109877, 2024.
</p></li><br />
<li><p><b>Collaborative graph neural networks for augmented graphs: A local-to-global perspective</b>★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0031320324007714">link</a>]<br>
Q. Guo, X. Yang, <b>M. Li</b>, Y. Qian<br>
<b>Pattern Recognition</b>, vol. 158, 111020, 2025.
</p></li><br />
<li><p><b> AG-Meta: Adaptive graph meta learning via representation consistency over local subgraphs</b> ★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0031320324001389">link</a>] <br>
Y. Wang, C. Huang, <b>M. Li</b>, Q. Huang, X. Wu, J. Wu<br>
<b>Pattern Reocognition</b>, vol. 151, 110387, 2024.
</p></li><br />
<li><p><b> PointTransform networks for matic depression level prediction via facial keypoints</b> [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0950705124005859">link</a>]<br>
M. Niu, <b>M. Li</b>*, C. Fu<br>
<b>Knowledge-Based Systems</b>, vol. 297, 111951, 2024.
</p></li><br />
<li><p><b> Multimodal graph learning with framelet-based stochastic configuration networks for emotion recognition in conversation</b> [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0020025524013070">link</a>] <br>
J. Shi, <b>M. Li</b>*, Y. Chen, L. Cui, L. Bai<br>
<b>Information Sciences</b>, vol. 686, 121393, 2025.
</p></li><br />
<li><p><b> Incorporation of peer-feedback into the pedagogical use of spherical video-based virtual reality in writing education</b> [<a href="https://bera-journals.onlinelibrary.wiley.com/doi/10.1111/bjet.13376">link</a>]<br>
Y. Chen, <b>M. Li</b>*, M. Cukurova, M. Jong<br>
<b>British Journal of Educational Technology</b>, vol. 55, no.2, pp. 519-540, 2024.
</p></li><br />
<li><p><b> Unleashing imagination: An effective pedagogical approach to integrate into spherical video-based virtual reality to improve students' creative writing</b> [<a href="https://link.springer.com/article/10.1007/s10639-023-12115-7">link</a>]<br>
Y. Chen, <b>M. Li</b>*, M. Cukurova*<br>
<b>Education and Information Technologies</b>, vol. 29, pp. 6499-6523, 2024.
</p></li><br />
<li><p><b> Understanding the dynamics of motivation and learning behaviors in augmented reality-based writing courses</b> [<a href="https://link.springer.com/article/10.1007/s10639-024-13093-0">link</a>]<br>
Y. Chen, X. Wang, <b>M. Li</b>*, M. Cukurova, M. Jong<br>
<b>Education and Information Technologies</b>, 2024, DOI: 10.1007/s10639-024-13093-0.
</p></li><br />
<li><p><b> A systematic review of research on immersive technology-enhanced writing education: The current state and a research agenda</b> [<a href="https://ieeexplore.ieee.org/document/10354407">link</a>] <br>
Y. Chen, <b>M. Li</b>*, C. Huang, M. Cukurova, Q. Ma<br>
<b>IEEE Transactions on Learning Technologies</b>, vol. 17, pp. 919-938, 2024.
</p></li><br />
<li><p><b> Framelet-based dual hypergraph neural networks for student performance prediction </b> [<a href="https://link.springer.com/article/10.1007/s13042-024-02124-4">link</a>]<br>
Y. Yang, J. Shi, <b>M. Li</b>*, H. Fujita<br>
<b>International Journal of Machine Learning and Cybernetics</b>, vol. 15, pp. 3863–3877, 2024.
</p></li><br />
<li><p><b> Robust graph neural networks with Dirichlet regularization and residual connection </b> [<a href="https://link.springer.com/article/10.1007/s13042-024-02117-3">link</a>][<a href="https://github.com/sxu-yaokx/DRGNN">code</a>]<br>
K. Yao, Z. Du, <b>M. Li</b>, F. Cao, J. Liang<br>
<b>International Journal of Machine Learning and Cybernetics</b>, vol. 15, pp. 3733–3743, 2024.
</p></li><br />
<li><p><b> A joint parcellation and boundary network with multi-rate-shared dilated graph attention for cortical surface parcellation</b> [<a href="https://link.springer.com/article/10.1007/s11517-023-02942-8">link</a>]<br>
S. Liu, H. Ye, B. Yang, <b>M. Li</b>, F. Cao<br>
<b>Medical & Biological Engineering & Computing</b>, vol. 62, pp. 537-549, 2024.
</p></li><br />
<li><p><b> A scale-unified spatial learning network with boundary contrastive loss for cortical
surface parcellation</b> [<a href="https://link.springer.com/article/10.1007/s11517-024-03242-5">link</a>]<br>
H. Ye, S. Liu, <b>M. Li</b>, H. Zhu, F. Cao<br>
<b>Medical & Biological Engineering & Computing</b>, 2024, DOI: 10.1007/s11517-024-03242-5
</p></li><br />
<li><p><b> Real-time E-bike route planning with battery range prediction</b> [<a href="https://dl.acm.org/doi/abs/10.1145/3616855.3635696">Link</a>] [<a href="https://files.atypon.com/acm/65b5ba0c111a9e558da41ebac9d29df7">Demo Video</a>]<br>
Z. Li, G. Ren, Y. Gu, S. Zhou, X. Liu, J. Huang, <b>M. Li</b>*<br>
<b>ACM International Conference on Web Search and Data Mining (WSDM)</b>, 2024, pp. 1070–1073.
</p></li><br />
<li><p><b> GM2RC: Graph-based multitask modality refinement and complement for multimodal sentiment analysis</b> [<a href="https://ieeexplore.ieee.org/abstract/document/10552555">Link</a>] <br>
J. Shi, Y. Chen, S. Zhou, <b>M. Li</b>*<br>
<b> The 7th International Symposium on Autonomous Systems (ISAS)</b>, 2024.
</p></li><br />
<li><p><b>Are graph convolutional networks with random weights feasible?</b> ★[<a href="https://ieeexplore.ieee.org/abstract/document/9796468" target="_blank">link</a>]<font color=red><b>ESI Highly Cited Paper</b> </font>🏆<br>
C. Huang, <b>M. Li*</b>, F. Cao, H. Fujita, Z. Li, X. Wu<br>
<b>IEEE Transactions on Pattern Analysis and Machine Intelligence</b>, vol. 45, no. 3, pp. 2751-2768, 2023.
</p></li>
<br />
<li><p><b>From motivational experience to creative writing:
A motivational AR-based learning approach to promoting Chinese writing performance and
positive writing behaviours</b> [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0360131523001215" target="_blank">link</a>]<br>
<b>M. Li</b>, Y. Chen, C. Huang, G. Hwang, M. Cukurova<br>
<b>Computers and Education</b>, vol. 202, 104844, 2023.
</p></li>
<br />
<li><p><b> How powerful are shallow neural networks with bandlimited random weights?</b> ★ [<a href="https://proceedings.mlr.press/v202/li23aa/li23aa.pdf">link</a>]<br>
<b>M. Li</b>, S. Sonoda, F. Cao, Y. G. Wang, J. Liang<br>
<b>ICML</b>, 2023, pp. 19960-19981.
</p></li><br />
<li><p><b>Multiple pedestrian tracking with graph attention map on urban road scene</b> ★[<a href="https://ieeexplore.ieee.org/document/9847123" target="_blank">link</a>] <br>
Z. Wang, Z. Li, J. Leng, <b>M. Li</b>*, L. Bai<br>
<b>IEEE Transactions on Intelligent Transportation Systems</b>, vol. 24, no. 8, pp. 8567-8579, 2023.</p></li>
<br />
<li><p><b> GoLoG: Global-to-local decoupling graph network with joint optimization for hyperspectral image classification</b> ★ [<a href="https://ieeexplore.ieee.org/document/10288272">link</a>]<br>
B. Yang, H. Ye, <b>M. Li</b>*, F. Cao, S. Pan<br>
<b>IEEE Transactions on Geoscience and Remote Sensing</b>, vol. 61, 5528014, 2023.
</p></li><br />
<li><p><b>Stability and generalization of ℓp-regularized stochastic learning for GCN</b> ★ [<a href="https://www.ijcai.org/proceedings/2023/631">link</a>]<br>
S. Lv, S. Liu, L. Wei, <b>M. Li</b><br>
<b>IJCAI</b>, 2023, pp. 5685-5693.
</p></li><br />
<li><p><b> BLoG: Bootstrapped graph representation learning with local and global regularization for recommendation</b> ★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0031320323005721">link</a>]<br>
<b>M. Li</b>, L. Zhang, L. Cui, L. Bai, Z. Li, X. Wu<br>
<b>Pattern Recognition</b>, vol. 144, 109874, 2023.
</p></li><br />
<li><p><b> QBER: Quantum-based entropic representations for un-attributed graphs</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0031320323005757">link</a>] <br>
L. Cui, <b>M. Li</b>, L. Bai, Y. Wang, J. Li, Y. Wang, Z. Li, Y. Chen, E. Hancock<br>
<b>Pattern Recognition</b>, vol. 145, 109877, 2024.
</p></li><br />
<li><p><b>Revisiting graph neural networks from hybrid regularized graph signal reconstruction</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0893608022004439">link</a>]<br>
J. Miao, F. Cao, H. Ye, <b>M. Li</b>, B. Yang<br>
<b>Neural Networks</b>, vol. 157, pp. 444-459, 2023.
</p></li><br />
<li><p><b> Triplet teaching graph contrastive networks with self-evolving adaptive augmentation</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0031320323003850">link</a>][<a href="https://github.com/PaperMiao/T-GCSA">code</a>]<br>
J. Miao, F. Cao, <b>M. Li</b>, B. Yang, H. Ye<br>
<b>Pattern Recognition</b>, vol. 142, 109687, 2023.
</p></li><br />
<li><p><b> A new deep graph attention approach with influence and preference relationship reconstruction for rate prediction recommendation</b> ★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0306457323001760">link</a>] <br>
H. Ye, Y. Song, <b>M. Li</b>, F. Cao<br>
<b>Information Processing and Management</b>, vol. 60, no. 5, 103439, 2023.
</p></li><br />
<li><p><b> MATHNET: Haar-Like wavelet multiresolution analysis for graph representation and learning</b> ★ [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0950705123003593">link</a>]<br>
X. Zheng, B. Zhou, <b>M. Li*</b>, Y. G. Wang*, and J. Gao<br>
<b>Knowledge-Based Systems</b>, vol. 273, 110609, 2023.
</p></li><br />
<li><p><b> A disentangled linguistic graph model for explainable aspect-based sentiment analysis</b> ★[<a href="https://www.sciencedirect.com/science/article/abs/pii/S0950705122012461">link</a>]<br>
X. Mei, Y. Zhou, C. Zhu, M. Wu, <b>M. Li</b>*, S. Pan<br>
<b>Knowledge-Based Systems</b>, vol. 260, 110150, 2023.
</p></li><br />
<li><p><b> TeFNA: Text-centered fusion network with crossmodal attention for multimodal sentiment analysis</b> [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0950705123002526">link</a>]<br>
C. Huang, J. Zhang, X. Wu, Y. Wang, <b>M. Li</b>*, X. Huang<br>
<b>Knowledge-Based Systems</b>, vol. 269, 110502, 2023.
</p></li><br />
<li><p><b> Entangled Quantum Neural Network</b> [<a href="https://link.springer.com/chapter/10.1007/978-981-19-9530-9_14">link</a>]<br>
Q Meng, J Zhang, Z Li, <b>M. Li*</b>, L Cui<br>
In: <b>Pandey, R., Srivastava, N., Singh, N.K., Tyagi, K. (eds) Quantum Computing: A Shift from Bits to Qubits. Studies in Computational Intelligence</b>, 245-262, 2023.
</p></li><br />
<li><p><b>Multi-view graph convolutional networks with attention mechanism</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0004370222000480">link</a>][<a href="https://sxu-yaokx.github.io/MAGCN/">code</a>]<br>
K. Yao, J. Liang, J. Liang, <b>M. Li</b>, F. Cao<br>
<b>Artificial Intelligence</b>, vol. 307, 103708, 2022.
</p></li>
<br />
<li><p><b>Embedding graphs on Grassmann manifold</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0893608022001733">link</a>][<a href="https://github.com/YuGuangWang/Egg">code</a>]<br>
B. Zhou, X. Zheng, Y. G. Wang, <b>M. Li</b>, J. Gao<br>
<b>Neural Networks</b>, vol. 152, pp. 322-331, 2022.
</p></li>
<br />
<li><p><b> Deep multi-graph neural networks with attention fusion for recommendation</b> ★[<a href="https://www.sciencedirect.com/science/article/abs/pii/S0957417421015505">link</a>]<br>
Y. Song, H. Ye, <b>M. Li</b>, F. Cao<br>
<b>Expert Systems with Applications</b>, vol. 191, 116240, 2022.
</p></li><br />
<li><p><b> Cell graph neural networks enable the digital staging of tumor microenvironment and precise prediction of patient survival in gastric cancer</b> ★ [<a href="https://www.nature.com/articles/s41698-022-00285-5#citeas">link</a>] [<a href="https://github.com/Docurdt/Cell-Graph_Signature">code</a>]<br>
Y. Wang, Y. G. Wang, C. Hu, <b>M. Li</b>, Y. Fan, N. Otter, et al.<br>
<b>npj Precison Oncology</b>, vol. 6, 45, 2022.
</p></li><br />
<li><p><b> Empowering IoT predictive maintenance solutions with AI: A distributed system for manufacturing plant-wide monitoring</b> [<a href="https://ieeexplore.ieee.org/document/9463585/">link</a>]<br>
Y. Liu, W. Yu, T. Dillon, W. Rahayu, <b>M. Li</b>*<br>
<b>IEEE Transactions on Industrial Informatics</b>, vol. 18, no. 2, pp. 1345-1354, 2022.
</p></li><br />
<li><p><b>Promoting deep writing with immersive technologies: An SVVR‐supported Chinese composition writing approach for primary schools</b>
[<a href="https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.13247">link</a>]<br>
Y. Chen, <b>M. Li*</b>, C. Huang, Z. Han, G. Hwang, G. Yang<br>
<b>British Journal of Educational Technology</b>, vol. 53, no. 6, pp. 2071-2091, 2022.
</p></li>
<br />
<li><p><b> Deeper insights into neural nets with random weights</b> [<a href="https://link.springer.com/chapter/10.1007/978-3-030-97546-3_11">link</a>]<br>
<b>M. Li</b>, G. Gnecco and M. Sanguineti<br>
in: Proceedings of the Australasian Joint Conference on Artificial Intelligence (<b>AJCAI</b>), 2022, pp. 129-140.
</p></li><br />
<li><p><b> Feedforward neural network reconstructed from high-order quantum systems</b><br>
J. Zhang, Z. Li, X. Wang, H. Peng, <b>M. Li</b><br>
in: Proceedings of the International Joint Conference on Neural Networks (<b>IJCNN</b>), 2022.
</p></li><br />
<li><p><b> Neural network model reconstructed from entangled quantum states</b><br>
J. Zhang, Z. Li, J. X, <b>M. Li</b><br>
in: Proceedings of the International Joint Conference on Neural Networks (<b>IJCNN</b>), 2022.
</p></li><br>
<li><p><b> How framelets enhance graph neural networks</b> ★[<a href="http://proceedings.mlr.press/v139/zheng21c/zheng21c-supp.pdf">link</a>] [<a href="https://github.com/YuGuangWang/UFG">code</a>]<br>
X. Zheng, B. Zhou, J. Gao, Y. G. Wang, P. Lio, <b>M. Li</b>, G. Montufar<br>
<b>ICML</b>, 2021, pp. 12761-12771. (Spotlight Paper)
</p></li><br />
<li><p><b> Effective multiple pedestrian tracking system in video surveillance with monocular stationary camera</b> [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0957417421004334">link</a>]<br>
Z. Wang, <b>M. Li</b>*, Y. Lu, Y. Bao, Z. Li, J. Zhao<br>
<b>Expert Systems with Applications</b>, vol. 178, 114992, 2021.
</p></li><br />
<li><p><b> Grassmann graph embedding</b> ★ [<a href="https://openreview.net/forum?id=ELsrI4NgvS-">link</a>][<a href="https://github.com/YuGuangWang/Egg">code</a>]<br>
B. Zhou, X. Zheng, Y. G. Wang, <b>M. Li</b>, J. Gao<br>
ICLR Workshop on Geometrical and Topological Representation Learning (<b>GTRL</b>), 2021.
</p></li><br />
<li><p><b> Stochastic configuration network ensembles with selective base models</b> [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0893608021000198">link</a>]<br>
C. Huang, <b>M. Li</b>*, D. Wang<br>
<b>Neural Networks</b>, vol. 137, pp. 106-118, 2021.
</p></li><br />
<li><p><b> Algorithm 1018: FaVeST–fast vector spherical harmonic transforms</b> [<a href="https://dl.acm.org/doi/10.1145/3458470">link</a>][<a href="https://github.com/mingli-ai/FaVeST">code</a>]<br>
Q. T. Le Gia, <b>M. Li</b>*, Y. G. Wang<br>
<b>ACM Transactions on Mathematical Softwares</b>, vol. 47, no. 4, pp. 1-24, 2021.
</p></li><br />
<li><p><b> 2-D stochastic configuration networks for image data analytics</b> [<a href="https://ieeexplore.ieee.org/document/8767029">link</a>]<br>
<b>M. Li</b>, D. Wang<br>
<b>IEEE Transactions on Cybernetics</b>, vol. 51, no. 1, pp. 359-372, 2021.
</p></li>
<br />
<li><p><b> Path integral based convolution and pooling for graph neural networks</b> ★ [<a href="https://arxiv.org/abs/2006.16811">link</a>][<a href="https://github.com/YuGuangWang/PAN">code</a>][<a href="https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/pan_conv.html">PyG Implementation</a>]<br>
Z. Ma, J. Xuan, Y. G. Wang, <b>M. Li</b>, P. Lio<br>
<b>NeurIPS</b>, 2020, pp. 16421-16433.
</p></li><br />
<li><p><b> Exercise recommendation based on knowledge concept prediction</b> [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0950705120306109">link</a>]<br>
Z. Wu, <b>M. Li</b>, Y. Tang, Q. Liang<br>
<b>Knowledge-Based Systems</b>, vol. 210, 106481, 2020.
</p></li><br />
<li><p><b> rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data</b> [<a href="https://journal.r-project.org/archive/2020/RJ-2020-012/index.html">link</a>][<a href="https://cran.r-project.org/web/packages/rcosmo/index.html">package</a>]<br>
D. Fryer, <b>M. Li</b>, A. Olenko<br>
<b>The R Journal</b>, vol. 12, no. 1, 206-225, 2020.
</p></li><br />
<li><p><b> Haar graph pooling</b> ★ [<a href="http://proceedings.mlr.press/v119/wang20m/wang20m.pdf">link</a>][<a href="https://github.com/YuGuangWang/HaarPool">code</a>]<br>
Y. G. Wang, <b>M. Li</b>*, Z. Ma, G. Montufar, X. Zhuang, Y. Fan<br>
<b>ICML</b>, 2020, pp.9952-9962.
</p></li><br />
<li><p><b> Fast Haar transforms for graph neural networks</b> ★ [<a href="https://www.sciencedirect.com/science/article/pii/S0893608020301568?via%3Dihub">link</a>]<br>
<b>M. Li</b>, Z. Ma, Y. G. Wang, X. Zhuang<br>
<b>Neural Networks</b>, vol. 128, pp. 188-198, 2020.
</p></li>
<br />
<li><p><b> PAN: Path integral based convolution for deep graph neural networks</b> ★ [<a href="https://icml.cc/Conferences/2019/Schedule?showEvent=3519">link</a>]<br>
Z. Ma, <b>M. Li</b>, Y. G. Wang<br>
<b>ICML Workshop on Learning and Reasoning with Graph-Structured Representation</b>, 2019.
</p></li><br />
<li><p><b> Improved randomized learning algorithms for imbalanced and noisy educational data classification</b> [<a href="https://link.springer.com/article/10.1007/s00607-018-00698-w">link</a>]<br>
<b>M. Li</b>, C. Huang, Q. Hu, J. Zhu, Y. Tang<br>
<b>Computing</b>, pp. 1-15, 2019.
</p></li><br />
<li><p><b> Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression</b> [<a href="https://www.sciencedirect.com/science/article/pii/S0020025518307278">link</a>]<br>
<b>M. Li</b>, C. Huang, and D. Wang<br>
<b>Information Sciences</b>, vol. 473, 73-86, 2019.
</p></li><br />
<li><p><b> Deep stochastic configuration networks with universal approximation property</b> [<a href="https://ieeexplore.ieee.org/document/8489695">link</a>]<br>
D. Wang, <b>M. Li</b><br>
Proceedings of the International Joint Conference on Neural Networks (<b>IJCNN</b>), pp. 1-8, IEEE, 2018.
</p></li><br />
<li><p><b> Stochastic configuration networks: Fundamentals and algorithms</b> [<a href="https://ieeexplore.ieee.org/abstract/document/8013920">link</a>][<a href="https://deepscn.com/software.html">codek</a>][<a href="http://www.deepscn.com/software.php">code</a>]<font color=red><b>ESI Highly Cited Paper</b> </font>🏆<br>
D. Wang, <b>M. Li</b><br>
<b>IEEE Transactions on Cybernetics</b>, vol. 47, no.10, pp. 3466-3479, 2017.
</p></li><br />
<li><p><b> Insights into randomized algorithms for neural networks: Practical issues and common pitfalls</b> [<a href="https://www.sciencedirect.com/science/article/pii/S002002551631917X">link</a>]<br>
<b>M. Li</b>, D. Wang<br>
<b>Information Sciences</b>, vol. 382-383, pp. 170-178, 2017.
</p></li><br />
<li><p><b> Robust stochastic configuration networks with kernel density estimation for uncertain data regression</b> [<a href="https://www.sciencedirect.com/science/article/pii/S0020025517307636">link</a>]<br>
D. Wang, <b>M. Li</b><br>
<b>Information Sciences</b>, vol. 412-413, pp. 210-222, 2017.
</p></li><br />
<li><p><b> Spherical data fitting by multiscale moving least squares</b> [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0307904X14006428">link</a>]<br>
F. Cao, <b>M. Li</b><br>
<b>Applied Mathematical Modelling</b>, vol. 39, no. 12, pp. 3448-3458, 2015.
</p></li><br />
<li><p><b> Scattered data quasi-interpolation on spheres</b> [<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/mma.3239">link</a>]<br>
Z. Chen, F. Cao, <b>M. Li</b><br>
<b>Mathematical Methods in the Applied Sciences</b>, vol. 38, no. 12, pp. 2527-2536, 2015.
</p></li><br />
<li><p><b> Multiscale interpolation on the sphere: Convergence rate and inverse theorem</b> [<a href="https://www.sciencedirect.com/science/article/abs/pii/S0096300315004907">link</a>]<br>
<b>M. Li</b>, F. Cao<br>
<b>Applied Mathematics and Computation</b>, vol. 263, pp. 134-150, 2015.
</p></li><br />
<li><p><b> Approximation by diffuse functional of generalized moving least squares on the sphere</b> [<a href="https://actamath.cjoe.ac.cn/Jwk_sxxb_cn/EN/10.12386/A2014sxxb0057">link</a>]<br>
F. Cao, Y. Zhang, <b>M. Li</b><br>
<b> Acta Mathematica Sinica</b>, vol. 57, no. 3, pp. 607-614, 2014.
</p></li><br />
<li><p><b> Local uniform error estimates for spherical basis functions interpolation</b> [<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.2898">link</a>]<br>
<b>M. Li</b>, F. Cao<br>
<b>Mathematical Methods in the Applied Sciences</b>, vol. 37, no. 9, pp. 1364-1376, 2014.
</p></li><br />
</ul>
</td>
</tr>
</table>
</body>
</html>