-
Notifications
You must be signed in to change notification settings - Fork 285
/
main.py
343 lines (281 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from __future__ import print_function
import os, os.path as osp
import math
import argparse
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data.distributed
from torchvision import datasets, transforms
import horovod.torch as hvd
import tensorboardX
from tqdm import tqdm
import net224x224 as models
from utils.bags_of_tricks import cross_encropy_with_label_smoothing
import subprocess
subprocess.call("ulimit -n 65536", shell=True)
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
# Training settings
parser = argparse.ArgumentParser(description='PyTorch ImageNet Example',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('--num-classes', type=int, default=1000,
help='The number of classes in the dataset.')
parser.add_argument('--train-dir', default=os.path.expanduser('/ssd/dataset/imagenet/train'),
help='path to training data')
parser.add_argument('--val-dir', default=os.path.expanduser('/ssd/dataset/imagenet/val'),
help='path to validation data')
parser.add_argument('--log-dir', default='./logs',
help='tensorboard log directory')
parser.add_argument('--format', default='./checkpoint-{epoch}.pth.tar',
help='checkpoint file format')
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
help='use fp16 compression during allreduce')
# Default settings from https://arxiv.org/abs/1706.02677.
parser.add_argument('--batch-size', type=int, default=64,
help='input batch size for training')
parser.add_argument('--val-batch-size', type=int, default=64,
help='input batch size for validation')
parser.add_argument('--epochs', type=int, default=150,
help='number of epochs to train')
parser.add_argument('--base-lr', type=float, default=0.0125,
help='learning rate for a single GPU')
parser.add_argument('--warmup-epochs', type=float, default=5,
help='number of warmup epochs')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum')
parser.add_argument('--wd', type=float, default=0.00005,
help='weight decay')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42,
help='random seed')
# tricks to boost accuracy
parser.add_argument('--lr-scheduler', type=str, default="cosine", choices=["linear", "cosine"],
help='how to schedule learning rate')
parser.add_argument("--color-jitter", action='store_true', default=False,
help="To apply color augmentation or not.")
parser.add_argument("--label-smoothing", action='store_true', default=False,
help="To use label smoothing or not.")
parser.add_argument("--no-wd-bn", action='store_true', default=False,
help="Whether to remove the weight decay on BN")
args = parser.parse_args()
name_componenets = [args.arch, str(args.epochs), args.lr_scheduler]
if args.color_jitter:
name_componenets.append("color_jitter")
if args.label_smoothing:
name_componenets.append("label_smoothing")
args.log_dir = osp.join(args.log_dir, "-".join(name_componenets))
args.checkpoint_format = osp.join(args.log_dir, args.format)
# linearly scale the learning rate.
args.base_lr = args.base_lr * (args.batch_size / 64)
args.cuda = not args.no_cuda and torch.cuda.is_available()
hvd.init()
torch.manual_seed(args.seed)
if args.cuda:
# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
# If set > 0, will resume training from a given checkpoint.
resume_from_epoch = 0
for try_epoch in range(args.epochs, 0, -1):
if os.path.exists(args.checkpoint_format.format(epoch=try_epoch)):
resume_from_epoch = try_epoch
break
# Horovod: broadcast resume_from_epoch from rank 0 (which will have
# checkpoints) to other ranks.
resume_from_epoch = hvd.broadcast(torch.tensor(resume_from_epoch), root_rank=0,
name='resume_from_epoch').item()
# Horovod: print logs on the first worker.
verbose = 1 if hvd.rank() == 0 else 0
# Horovod: write TensorBoard logs on first worker.
log_writer = tensorboardX.SummaryWriter(args.log_dir) if hvd.rank() == 0 else None
best_val_acc = 0.0
kwargs = {'num_workers': 5, 'pin_memory': True} if args.cuda else {}
# Training transform
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
pre_process = [
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
]
if args.color_jitter:
pre_process += [transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)]
pre_process += [
transforms.ToTensor(),
normalize
]
train_dataset = datasets.ImageFolder(args.train_dir,
transform=transforms.Compose(pre_process))
# Horovod: use DistributedSampler to partition data among workers. Manually specify
# `num_replicas=hvd.size()` and `rank=hvd.rank()`.
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
val_dataset = datasets.ImageFolder(args.val_dir,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize
]))
val_sampler = torch.utils.data.distributed.DistributedSampler(
val_dataset, num_replicas=hvd.size(), rank=hvd.rank())
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.val_batch_size,
sampler=val_sampler, **kwargs)
# Set up standard ResNet-50 model.
# model = models.resnet50()
model = models.__dict__[args.arch](num_classes=args.num_classes)
if args.cuda:
# Move model to GPU.
model.cuda()
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.base_lr * hvd.size(),
momentum=args.momentum, weight_decay=args.wd)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
named_parameters=model.named_parameters(),
compression=compression)
# Restore from a previous checkpoint, if initial_epoch is specified.
# Horovod: restore on the first worker which will broadcast weights to other workers.
if resume_from_epoch > 0 and hvd.rank() == 0:
filepath = args.checkpoint_format.format(epoch=resume_from_epoch)
checkpoint = torch.load(filepath)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
if args.label_smoothing:
criterion = cross_encropy_with_label_smoothing
else:
criterion = nn.CrossEntropyLoss()
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
def train(epoch):
model.train()
train_sampler.set_epoch(epoch)
train_loss = Metric('train_loss')
train_accuracy = Metric('train_accuracy')
with tqdm(total=len(train_loader),
desc='Train Epoch #{}'.format(epoch + 1),
disable=not verbose) as t:
for batch_idx, (data, target) in enumerate(train_loader):
lr_cur = adjust_learning_rate(epoch, batch_idx, type=args.lr_scheduler)
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss.update(loss)
train_accuracy.update(accuracy(output, target))
t.set_postfix({'loss': train_loss.avg.item(),
'accuracy': 100. * train_accuracy.avg.item(),
'lr': lr_cur})
t.update(1)
if log_writer:
log_writer.add_scalar('train/loss', train_loss.avg, epoch)
log_writer.add_scalar('train/accuracy', train_accuracy.avg, epoch)
def validate(epoch, ):
global best_val_acc
model.eval()
val_loss = Metric('val_loss')
val_accuracy = Metric('val_accuracy')
with tqdm(total=len(val_loader),
desc='Validate Epoch #{}'.format(epoch + 1),
disable=not verbose) as t:
with torch.no_grad():
for data, target in val_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
val_loss.update(criterion(output, target))
val_accuracy.update(accuracy(output, target))
t.set_postfix({'loss': val_loss.avg.item(),
'accuracy': 100. * val_accuracy.avg.item()})
t.update(1)
if log_writer:
log_writer.add_scalar('val/loss', val_loss.avg, epoch)
log_writer.add_scalar('val/accuracy', val_accuracy.avg, epoch)
best_val_acc = max(best_val_acc, val_accuracy.avg)
log_writer.add_scalar('val/best_acc', best_val_acc, epoch)
return val_accuracy.avg
import torch.optim.lr_scheduler as lr_scheduler
# Horovod: using `lr = base_lr * hvd.size()` from the very beginning leads to worse final
# accuracy. Scale the learning rate `lr = base_lr` ---> `lr = base_lr * hvd.size()` during
# the first five epochs. See https://arxiv.org/abs/1706.02677 for details.
# After the warmup reduce learning rate by 10 on the 30th, 60th and 80th epochs.
def adjust_learning_rate(epoch, batch_idx, type="cosine"):
if epoch < args.warmup_epochs:
epoch += float(batch_idx + 1) / len(train_loader)
lr_adj = 1. / hvd.size() * (epoch * (hvd.size() - 1) / args.warmup_epochs + 1)
elif type == "linear":
if epoch < 30:
lr_adj = 1.
elif epoch < 60:
lr_adj = 1e-1
elif epoch < 90:
lr_adj = 1e-2
else:
lr_adj = 1e-3
elif type == "cosine":
# self.init_lr * 0.5 * (1 + math.cos(math.pi * T_cur / T_total))
run_epochs = epoch - args.warmup_epochs
total_epochs = args.epochs - args.warmup_epochs
T_cur = float(run_epochs * len(train_loader)) + batch_idx
T_total = float(total_epochs * len(train_loader))
lr_adj = 0.5 * (1 + math.cos(math.pi * T_cur / T_total))
for param_group in optimizer.param_groups:
param_group['lr'] = args.base_lr * hvd.size() * lr_adj
return args.base_lr * hvd.size() * lr_adj
def accuracy(output, target):
# get the index of the max log-probability
pred = output.max(1, keepdim=True)[1]
return pred.eq(target.view_as(pred)).cpu().float().mean()
def save_checkpoint(epoch):
if hvd.rank() == 0:
os.remove(args.checkpoint_format.format(epoch=epoch))
filepath = args.checkpoint_format.format(epoch=epoch + 1)
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(state, filepath)
# Horovod: average metrics from distributed training.
class Metric(object):
def __init__(self, name):
self.name = name
self.sum = torch.tensor(0.)
self.n = torch.tensor(0.)
def update(self, val):
self.sum += hvd.allreduce(val.detach().cpu(), name=self.name)
self.n += 1
@property
def avg(self):
return self.sum / self.n
best_acc = 0.0
last_saved_epoch = None
for epoch in range(resume_from_epoch, args.epochs):
train(epoch)
val_acc = validate(epoch)
# save checkpoint for the master
if hvd.rank() == 0:
if last_saved_epoch is not None:
os.remove(args.checkpoint_format.format(epoch=last_saved_epoch))
filepath = args.checkpoint_format.format(epoch=epoch)
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(state, filepath)
last_saved_epoch = epoch