-
Notifications
You must be signed in to change notification settings - Fork 0
/
motion_detector.py
88 lines (71 loc) · 2.84 KB
/
motion_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
import datetime
import imutils
import time
import cv2
# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the video file")
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
args = vars(ap.parse_args())
# If video argument is None, then we are reading from a webcam
# Else we are reading from a video file
if args.get("video", None) is None:
camera = cv2.VideoCapture(0)
time.sleep(0.25)
else:
camera = cv2.VideoCapture(args["video"])
# Variable to store the first frame of video stream
# Will be used to distinguish background from foreground
firstFrame = None
# Loop over the frames of the video input
while True:
# Get the current frame and initialize the occupied/unoccupied text
(grabbed, frame) = camera.read()
text = "Unoccupied"
# If there is no frame to get, the end of video has been reached
if not grabbed:
break
# Resize the frame, convert it to grayscale, and blur it
frame = imutils.resize(frame, width=500)
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
grey = cv2.GaussianBlur(grey, (21,21), 0)
# If the first frame has yet to be initialized
if firstFrame is None:
firstFrame = grey
continue
# Compute the absolute difference between current frame and first frame
frameDelta = cv2.absdiff(firstFrame, grey)
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# Dilate the thresholded image to fill holes, then find contours on image
thresh = cv2.dilate(thresh, None, iterations=2)
(cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, \
cv2.CHAIN_APPROX_SIMPLE)
# Loop over the contours
for c in cntrs:
# If contour is too small, ignore it
if cv2.contourArea(c) < args["min_area"]:
continue
# Compute the bounding box for the contour
(x, y, w, h) = cv2.boundingRect(c)
# Draw the bounding box on the frame and update the text
cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 255, 0), 2)
text = "Occupied"
# Draw the text and timestamp on the frame
cv2.putText(frame, "Room Status: {}".format(text), (10,20), \
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
cv2.putText(frame, \
datetime.datetime.now().strftime("%A %d %B %Y %I:%M:%S%p"), \
(10, frame.shape[0] - 10), \
cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)
# Show the frame and record if the user presses a key
cv2.imshow("Security Feed", frame)
cv2.imshow("Thresh", thresh)
cv2.imshow("Frame Delta", frameDelta)
key = cv2.waitKey(1) & 0xFF
# If 'q' is pressed, break from the loop
if key == ord("q"):
break
# Cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()