From 99fc912117aa0d7dd92dbbe1e40edeb8a97ec833 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Mirko=20M=C3=A4licke?= Date: Tue, 8 Aug 2017 10:14:01 +0200 Subject: [PATCH] README and setup.py update --- .gitignore | 3 +++ README.rst | 62 +++++++++++++++++++++++++++++++++++++++++++++++++++++- VERSION | 2 +- setup.py | 1 + 4 files changed, 66 insertions(+), 2 deletions(-) diff --git a/.gitignore b/.gitignore index 7bbc71c..7616e48 100644 --- a/.gitignore +++ b/.gitignore @@ -99,3 +99,6 @@ ENV/ # mypy .mypy_cache/ + +# PyCharm +.idea diff --git a/README.rst b/README.rst index 5ffc3bf..d01271b 100644 --- a/README.rst +++ b/README.rst @@ -1,7 +1,34 @@ Scikit-Gstat ============ -description +This module offers at the current state a scipy-styled `Variogram` class for performing geostatistical analysis. +This class is can be used to derive variograms. Key benefits are a number of semivariance estimators and theoretical +variogram functions. The module is planned to be hold in the manner of scikit modules and be based upon `numpy` and +`scipy` whenever possible. There is also a distance matrix extension available, with a function for calculating +n.dimensional distance matrices for the variogram. +The estimators include: + +- matheron +- cressie +- dowd +- genton (still buggy) +- entropy (not tested) + +The models include: + +- sperical +- exponential +- gaussian +- cubic +- stable +- matérn + +with all of them in a nugget and no-nugget variation. All the estimator functions are written `numba` compatible, +therefore you can just download it and include the `@jit` decorator. This can speed up the calculation for bigger +data sets up to 100x. Nevertheless, this is not included in this sckit-gstat version as these functions might be +re-implemented using Cython. This is still under evaluation. + +At the current stage, the package does not inlcude any kriging. This is planned for a future release. Installation @@ -9,10 +36,43 @@ Installation You can either install scikit-gstat using pip or you download the latest version from github. +PyPI: + .. code-block:: bash pip install scikit-gstat +GIT: + +.. code-block:: bash + + git clone https://github.com/mmaelicke/scikit-gstat.git + cd scikit-gstat + pip install -r requirements.txt + pip install -e . + Usage ~~~~~ +The `Variogram` class needs at least a list of coordiantes and values. All other attributes are set by default. +You can easily set up an example by generating some random data: + +.. code-block:: python + + import numpy as np + import skgstat as skg + + coordinates = np.random.gamma(0.7, 2, (30,2)) + values = np.random.gamma(2, 2, 30) + + V = skg.Variogram(coordinates=coordinates, values=values) + print(V) + +.. code-block:: bash + + spherical Variogram + ------------------- + Estimator: matheron + Range: 1.64 + Sill: 5.35 + Nugget: 0.00 \ No newline at end of file diff --git a/VERSION b/VERSION index ceab6e1..6da28dd 100644 --- a/VERSION +++ b/VERSION @@ -1 +1 @@ -0.1 \ No newline at end of file +0.1.1 \ No newline at end of file diff --git a/setup.py b/setup.py index 7b95455..4a15e14 100644 --- a/setup.py +++ b/setup.py @@ -23,6 +23,7 @@ def classifiers(): setup(name='scikit-gstat', license=license(), + version=version(), author='Mirko Maelicke', author_email='mirko.maelicke@kit.edu', description='Geostatistical expansion in the scipy style',