forked from chapel-lang/llvm-pgas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
llvmUtil.cpp
566 lines (487 loc) · 18.6 KB
/
llvmUtil.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
* Copyright 2004-2015 Cray Inc.
* Other additional copyright holders may be indicated within.
*
* The entirety of this work is licensed under the Apache License,
* Version 2.0 (the "License"); you may not use this file except
* in compliance with the License.
*
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "llvmUtil.h"
#include <cstdio>
#include <cassert>
#ifdef HAVE_LLVM
static
bool isArrayVecOrStruct(llvm::Type* t)
{
return t->isArrayTy() || t->isVectorTy() || t->isStructTy();
}
// Returns n elements in a vector/array or -1
static
int64_t arrayVecN(llvm::Type *t)
{
if( t->isArrayTy() ) {
llvm::ArrayType *at = llvm::dyn_cast<llvm::ArrayType>(t);
unsigned n = at->getNumElements();
return n;
} else if( t->isVectorTy() ) {
llvm::VectorType *vt = llvm::dyn_cast<llvm::VectorType>(t);
unsigned n = vt->getNumElements();
return n;
} else {
return -1;
}
}
static
llvm::Type* arrayVecEltType(llvm::Type *t)
{
if( t->isArrayTy() ) {
llvm::ArrayType *at = llvm::dyn_cast<llvm::ArrayType>(t);
return at->getElementType();
} else if( t->isVectorTy() ) {
llvm::VectorType *vt = llvm::dyn_cast<llvm::VectorType>(t);
return vt->getElementType();
} else {
return NULL;
}
}
llvm::Constant* codegenSizeofLLVM(llvm::Type* type)
{
return llvm::ConstantExpr::getSizeOf(type);
}
static
bool isTypeEquivalent(LLVM_TARGET_DATA * targetData, llvm::Type* a, llvm::Type* b, bool force)
{
int64_t aN = arrayVecN(a);
int64_t bN = arrayVecN(a);
int alignA, alignB;
int64_t sizeA, sizeB;
if( a == b ) {
return true;
} else if( a->isStructTy() && b->isStructTy() ) {
llvm::StructType *aTy = llvm::dyn_cast<llvm::StructType>(a);
llvm::StructType *bTy = llvm::dyn_cast<llvm::StructType>(b);
if( aTy->isLayoutIdentical(bTy) ) return true;
// handle case like
// {float, float, float, float} <=> { <2xfloat>, <2xfloat> }
// fall through...
} else if( aN >= 0 && aN == bN &&
arrayVecEltType(a) && arrayVecEltType(a) == arrayVecEltType(b) ) {
return true;
}
alignA = targetData->getPrefTypeAlignment(a);
alignB = targetData->getPrefTypeAlignment(b);
sizeA = targetData->getTypeStoreSize(a);
sizeB = targetData->getTypeStoreSize(b);
// Are they the same size?
if( sizeA == sizeB ) return true;
if( !force ) return false;
// Are they the same size, within alignment?
if( sizeA < sizeB ) {
// Try making size A bigger...
if( sizeA + alignA > sizeB ) return true;
} else {
// A >= B
// Try making size B bigger...
if( sizeB + alignB > sizeA ) return true;
}
return false;
}
llvm::AllocaInst* makeAlloca(llvm::Type* type,
const char* name,
llvm::Instruction* insertBefore,
unsigned n, unsigned align)
{
// It's important to alloca at the front of the function in order
// to avoid having an alloca in a loop which is a good way to achieve
// stack overflow.
llvm::Function *func = insertBefore->getParent()->getParent();
llvm::BasicBlock* entryBlock = & func->getEntryBlock();
if( insertBefore->getParent() == entryBlock ) {
// Add before specific instruction in entry block.
} else if(llvm::Instruction *i = func->getEntryBlock().getTerminator()) {
// Add before terminator in entry block.
insertBefore = i;
} else {
// Add at the end of entry block.
insertBefore = NULL;
}
llvm::AllocaInst *tempVar;
llvm::Value* size =
llvm::ConstantInt::get(llvm::Type::getInt32Ty(type->getContext()), n);
if( insertBefore ) {
tempVar = new llvm::AllocaInst(type, size, align, name, insertBefore);
} else {
tempVar = new llvm::AllocaInst(type, size, align, name, entryBlock);
}
return tempVar;
}
llvm::Value* createTempVarLLVM(llvm::IRBuilder<>* builder, llvm::Type* type, const char* name)
{
// It's important to alloca at the front of the function in order
// to avoid having an alloca in a loop which is a good way to achieve
// stack overflow.
llvm::Function *func = builder->GetInsertBlock()->getParent();
if(llvm::Instruction *i = func->getEntryBlock().getTerminator()) {
builder->SetInsertPoint(i);
} else {
builder->SetInsertPoint(&func->getEntryBlock());
}
llvm::AllocaInst *tempVar = builder->CreateAlloca(type, 0, name);
builder->SetInsertPoint(&func->back());
return tempVar;
}
llvm::Value *convertValueToType(
llvm::IRBuilder<> *builder,
LLVM_TARGET_DATA * targetData,
llvm::Value *value,
llvm::Type *newType,
bool isSigned,
bool force) {
llvm::Type *curType = value->getType();
if(curType == newType) {
return value;
}
//Integer values
if(newType->isIntegerTy() && curType->isIntegerTy()) {
if(newType->getPrimitiveSizeInBits() > curType->getPrimitiveSizeInBits()) {
// Sign extend if isSigned, but never sign extend single bits.
if(isSigned && ! curType->isIntegerTy(1)) {
return builder->CreateSExtOrBitCast(value, newType);
}
else {
return builder->CreateZExtOrBitCast(value, newType);
}
}
else {
return builder->CreateTruncOrBitCast(value, newType);
}
}
//Floating point values
if(newType->isFloatingPointTy() && curType->isFloatingPointTy()) {
if(newType->getPrimitiveSizeInBits() > curType->getPrimitiveSizeInBits()) {
return builder->CreateFPExt(value, newType);
}
else {
return builder->CreateFPTrunc(value, newType);
}
}
//Integer value to floating point value
if(newType->isFloatingPointTy() && curType->isIntegerTy()) {
if(isSigned) {
return builder->CreateSIToFP(value, newType);
}
else {
return builder->CreateUIToFP(value, newType);
}
}
//Floating point value to integer value
if(newType->isIntegerTy() && curType->isFloatingPointTy()) {
return builder->CreateFPToSI(value, newType);
}
//Integer to pointer
if(newType->isPointerTy() && curType->isIntegerTy()) {
return builder->CreateIntToPtr(value, newType);
}
//Pointers
if(newType->isPointerTy() && curType->isPointerTy()) {
if( newType->getPointerAddressSpace() !=
curType->getPointerAddressSpace() ) {
assert( 0 && "Can't convert pointer to different address space");
}
return builder->CreatePointerCast(value, newType);
}
// Structure types.
// This is important in order to handle clang structure expansion
// (e.g. calling a function that returns {int64,int64})
if( isArrayVecOrStruct(curType) || isArrayVecOrStruct(newType) ) {
if( isTypeEquivalent(targetData, curType, newType, force) ) {
// We turn it into a store/load to convert the type
// since LLVM does not allow bit casts on structure types.
llvm::Value* tmp_alloc;
if( targetData->getTypeStoreSize(newType) >=
targetData->getTypeStoreSize(curType) )
tmp_alloc = createTempVarLLVM(builder, newType, "");
else {
tmp_alloc = createTempVarLLVM(builder, curType, "");
}
// Now cast the allocation to both fromType and toType.
llvm::Type* curPtrType = curType->getPointerTo();
llvm::Type* newPtrType = newType->getPointerTo();
// Now get cast pointers
llvm::Value* tmp_cur = builder->CreatePointerCast(tmp_alloc, curPtrType);
llvm::Value* tmp_new = builder->CreatePointerCast(tmp_alloc, newPtrType);
builder->CreateStore(value, tmp_cur);
return builder->CreateLoad(tmp_new);
}
}
return NULL;
}
// Following the C "usual arithmetic conversions" rules
// see http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf p 52
/*
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
First, if the corresponding real type of either operand is long double, the
other operand is converted, without change of type domain, to a type whose
corresponding real type is long double.
Otherwise, if the corresponding real type of either operand is double, the other
operand is converted, without change of type domain, to a type whose
corresponding real type is double.
Otherwise, if the corresponding real type of either operand is float, the other
operand is converted, without change of type domain, to a type whose
corresponding real type is float.
Otherwise, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:
If both operands have the same type, then no further conversion is needed.
Otherwise, if both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.
Otherwise, if the operand that has unsigned integer type has rank greater or
equal to the rank of the type of the other operand, then the operand with
signed integer type is converted to the type of the operand with unsigned
integer type.
Otherwise, if the type of the operand with signed integer type can represent
all of the values of the type of the operand with unsigned integer type, then
the operand with unsigned integer type is converted to the type of the
operand with signed integer type.
Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.
*/
PromotedPair convertValuesToLarger(
llvm::IRBuilder<> *builder,
llvm::Value *value1,
llvm::Value *value2,
bool isSigned1,
bool isSigned2) {
llvm::Type *type1 = value1->getType();
llvm::Type *type2 = value2->getType();
if(type1 == type2 && isSigned1 == isSigned2) {
return PromotedPair(value1, value2, isSigned1);
}
//Floating point values
if(type1->isFloatingPointTy() && type2->isFloatingPointTy()) {
if(type1->getPrimitiveSizeInBits() > type2->getPrimitiveSizeInBits()) {
return PromotedPair(value1,
builder->CreateFPExt(value2, type1), true);
} else {
return PromotedPair(builder->CreateFPTrunc(value1, type2),
value2, true);
}
}
//Floating point / Integer values
if(type1->isFloatingPointTy() && type2->isIntegerTy()) {
if(isSigned2) {
return PromotedPair(value1,
builder->CreateSIToFP(value2, type1), true);
} else {
return PromotedPair(value1,
builder->CreateUIToFP(value2, type1), true);
}
}
//Integer / Floating point values
if(type2->isFloatingPointTy() && type1->isIntegerTy()) {
if(isSigned1) {
return PromotedPair(builder->CreateSIToFP(value1, type2),
value2, true);
} else {
return PromotedPair(builder->CreateUIToFP(value1, type2),
value2, true);
}
}
//Integer values
if(type1->isIntegerTy() && type2->isIntegerTy()) {
if(isSigned1 == isSigned2) {
// both are signed or both are unsigned.
if(type1->getPrimitiveSizeInBits() > type2->getPrimitiveSizeInBits()) {
if(isSigned2) {
return PromotedPair(value1,
builder->CreateSExtOrBitCast(value2, type1),
true);
} else {
return PromotedPair(
value1,
builder->CreateZExtOrBitCast(value2, type1),
false);
}
} else {
if(isSigned1) {
return PromotedPair(
builder->CreateSExtOrBitCast(value1, type2),
value2, true);
} else {
return PromotedPair(
builder->CreateZExtOrBitCast(value1, type2),
value2, false);
}
}
} else {
// signed/unsigned. Does unsigned integer type have > rank?
// if so, convert to unsigned.
if( !isSigned1 &&
type1->getPrimitiveSizeInBits() >=
type2->getPrimitiveSizeInBits()) {
// value1 is unsigned and >= bits; value2 is signed
return PromotedPair(value1,
builder->CreateSExtOrBitCast(value2, type1),
false);
} else if( !isSigned2 &&
type1->getPrimitiveSizeInBits() <=
type2->getPrimitiveSizeInBits() ) {
// value2 is unsigned and >= bits; value1 is signed
return PromotedPair(builder->CreateSExtOrBitCast(value1, type2),
value2, false);
} else {
// Otherwise, if the type of the operand with signed integer
// type can represent all of the values of the type of the operand
// with unsigned integer type, then the operand with unsigned
// integer type is converted to the type of the operand with
// signed integer type.
if( isSigned1 &&
type1->getPrimitiveSizeInBits()-1 >=
type2->getPrimitiveSizeInBits()) {
// value1 is signed, value2 is not
return PromotedPair(value1,
builder->CreateZExtOrBitCast(value2, type1),
true);
} else if( isSigned2 &&
type1->getPrimitiveSizeInBits() <=
type2->getPrimitiveSizeInBits() - 1) {
return PromotedPair(
builder->CreateZExtOrBitCast(value1, type2),
value2, true);
} else {
// otherwise, both operands are converted to the unsigned
// integer type corresponding to the type of the operand
// with signed integer type.
if( isSigned1 ) {
// convert both to unsigned type1
return PromotedPair(value1,
builder->CreateZExtOrBitCast(value2, type1),
false);
} else {
// convert both to unsigned type2
return PromotedPair(
builder->CreateZExtOrBitCast(value1, type2),
value2, false);
}
}
}
}
}
//Pointers
if(type1->isPointerTy() && type2->isPointerTy()) {
llvm::Type *castTy;
llvm::Type* int8_type = llvm::Type::getInt8Ty(value1->getContext());
bool t1isVoidStar = (type1->getPointerElementType() == int8_type);
bool t2isVoidStar = (type2->getPointerElementType() == int8_type);
assert(type1->getPointerAddressSpace() == type2->getPointerAddressSpace());
// if type2 a non-void pointer type, then set castTy to type2
// otherwise just use type1
if ((t1isVoidStar) && (!t2isVoidStar)) {
castTy = type2;
} else {
castTy = type1;
}
return PromotedPair(builder->CreatePointerCast(value1, castTy),
builder->CreatePointerCast(value2, castTy),
false);
}
return PromotedPair(NULL, NULL, false);
}
int64_t getTypeSizeInBytes(LLVM_TARGET_DATA * layout, llvm::Type* ty)
{
if( ! ty->isSized() ) return -1; // who knows how big it is!
int64_t sz = layout->getTypeSizeInBits(ty);
sz = (sz + 7)/8; // now in bytes.
return sz;
}
bool isTypeSizeSmallerThan(LLVM_TARGET_DATA * layout, llvm::Type* ty, uint64_t max_size_bytes)
{
if( ! ty->isSized() ) return false; // who knows how big it is!
uint64_t sz = getTypeSizeInBytes(layout, ty);
if( sz < max_size_bytes ) return true;
return false;
}
/* This function gets the next byte offset to a structure in memory with
type ty that represents a different value field. Padding is skipped.
offset is the offset we are starting with
parent_this_offset is the start offset of ty according to the parent type
parent_next is the end offset of ty according to the parent type
(so that it includes padding)
*/
static
uint64_t doGetTypeFieldNext(LLVM_TARGET_DATA * layout, llvm::Type* ty, uint64_t offset, uint64_t parent_this_offset, uint64_t parent_next_offset)
{
llvm::SequentialType* stype = NULL;
llvm::StructType* struct_type = NULL;
const llvm::StructLayout* struct_layout = NULL;
llvm::Type* eltType = NULL;
unsigned i, n;
uint64_t local_offset, next_offset_here, offset_here;
//ty->dump();
//printf("offset %i parent %i,%i\n", (int) offset, (int) parent_this_offset, (int) parent_next_offset);
assert(parent_this_offset <= offset && offset <= parent_next_offset);
if( ! isArrayVecOrStruct(ty) ) {
return parent_next_offset;
}
local_offset = offset - parent_this_offset;
if( ty->isArrayTy() || ty->isVectorTy() ) {
stype = llvm::cast<llvm::SequentialType>(ty);
eltType = stype->getElementType();
// Not using getTypeSizeInBytes so that:
// 1) we get an assertion error if the type is not sized
// 2) we use uint64s for the type instead of int64s
uint64_t sz = layout->getTypeSizeInBits(eltType);
sz = (sz + 7)/8; // now in bytes.
uint64_t this_offset = local_offset / sz;
this_offset = parent_this_offset + this_offset*sz;
// All types the same.. so we can pretend we're working with the first one.
return doGetTypeFieldNext(layout, eltType,
offset, this_offset, this_offset+sz);
}
// structure type.
struct_type = llvm::cast<llvm::StructType>(ty);
n = struct_type->getNumElements();
struct_layout = layout->getStructLayout(struct_type);
// Scroll forward in the structure until we find the last element
// starting at offset.
for( i=0; i<n; i++ ) {
next_offset_here = struct_layout->getElementOffset(i);
//printf("struct offset(%i) is %i\n", (int) i, (int) next_offset_here);
if( next_offset_here > local_offset ) break;
}
if( i != n ) {
// it's before the last element, so we can use the next element
// as the next start position.
parent_next_offset = parent_this_offset + next_offset_here;
}
i--;
// now i is the element n-1 or
// the last element with element offset <= offset
offset_here = struct_layout->getElementOffset(i);
parent_this_offset = parent_this_offset + offset_here;
//printf("offset_here is %i\n", (int) offset_here);
eltType = struct_type->getElementType(i);
return doGetTypeFieldNext(layout, eltType, offset, parent_this_offset, parent_next_offset);
}
uint64_t getTypeFieldNext(LLVM_TARGET_DATA * layout, llvm::Type* ty, uint64_t offset)
{
uint64_t sz;
// Not using getTypeSizeInBytes so that:
// 1) we get an assertion error if the type is not sized
// 2) we use uint64s for the type instead of int64s
assert(ty->isSized());
sz = layout->getTypeSizeInBits(ty);
sz = (sz + 7)/8; // now in bytes.
return doGetTypeFieldNext(layout, ty, offset, 0, sz);
}
#endif