diff --git a/404.html b/404.html index 437a44e..180dca6 100644 --- a/404.html +++ b/404.html @@ -24,7 +24,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 diff --git a/articles/a_using_cellxgenedp.html b/articles/a_using_cellxgenedp.html index f14d89d..e163072 100644 --- a/articles/a_using_cellxgenedp.html +++ b/articles/a_using_cellxgenedp.html @@ -26,7 +26,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 @@ -748,7 +748,7 @@ Session info## [8] base ## ## other attached packages: -## [1] cellxgenedp_1.7.1.9101 dplyr_1.1.4 +## [1] cellxgenedp_1.7.2 dplyr_1.1.4 ## [3] SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0 ## [5] Biobase_2.62.0 GenomicRanges_1.54.1 ## [7] GenomeInfoDb_1.38.5 IRanges_2.36.0 diff --git a/articles/b_case_studies.html b/articles/b_case_studies.html index a6b055b..0975829 100644 --- a/articles/b_case_studies.html +++ b/articles/b_case_studies.html @@ -26,7 +26,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 @@ -580,7 +580,7 @@ Session information#> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: -#> [1] cellxgenedp_1.7.1.9101 dplyr_1.1.4 BiocStyle_2.30.0 +#> [1] cellxgenedp_1.7.2 dplyr_1.1.4 BiocStyle_2.30.0 #> #> loaded via a namespace (and not attached): #> [1] tidyr_1.3.0 sass_0.4.8 utf8_1.2.4 diff --git a/articles/index.html b/articles/index.html index 4ca5bef..b12151e 100644 --- a/articles/index.html +++ b/articles/index.html @@ -10,7 +10,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 diff --git a/authors.html b/authors.html index 527ee95..62d8778 100644 --- a/authors.html +++ b/authors.html @@ -10,7 +10,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 @@ -69,13 +69,13 @@ Citation Morgan M, Interdonato K (2024). cellxgenedp: Discover and Access Single Cell Data Sets in the CELLxGENE Data Portal. -R package version 1.7.1.9101, https://github.com/mtmorgan/cellxgenedp, https://mtmorgan.github.io/cellxgenedp/. +R package version 1.7.2, https://github.com/mtmorgan/cellxgenedp, https://mtmorgan.github.io/cellxgenedp/. @Manual{, title = {cellxgenedp: Discover and Access Single Cell Data Sets in the CELLxGENE Data Portal}, author = {Martin Morgan and Kayla Interdonato}, year = {2024}, - note = {R package version 1.7.1.9101, https://github.com/mtmorgan/cellxgenedp}, + note = {R package version 1.7.2, https://github.com/mtmorgan/cellxgenedp}, url = {https://mtmorgan.github.io/cellxgenedp/}, } diff --git a/index.html b/index.html index 50580ce..20dfad7 100644 --- a/index.html +++ b/index.html @@ -36,7 +36,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 diff --git a/news/index.html b/news/index.html index dbd4ffb..eee2ffe 100644 --- a/news/index.html +++ b/news/index.html @@ -10,7 +10,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 diff --git a/pkgdown.yml b/pkgdown.yml index 3cccf6f..373f246 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -4,7 +4,7 @@ pkgdown_sha: ~ articles: a_using_cellxgenedp: a_using_cellxgenedp.html b_case_studies: b_case_studies.html -last_built: 2024-01-18T20:05Z +last_built: 2024-01-18T20:19Z urls: reference: https://mtmorgan.github.io/cellxgenedp/reference article: https://mtmorgan.github.io/cellxgenedp/articles diff --git a/reference/cxg.html b/reference/cxg.html index 7e33e04..7cf31ab 100644 --- a/reference/cxg.html +++ b/reference/cxg.html @@ -14,7 +14,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 diff --git a/reference/db.html b/reference/db.html index d62d1e9..e5ac5a3 100644 --- a/reference/db.html +++ b/reference/db.html @@ -10,7 +10,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 diff --git a/reference/facets.html b/reference/facets.html index 697902f..49d496b 100644 --- a/reference/facets.html +++ b/reference/facets.html @@ -20,7 +20,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 diff --git a/reference/index.html b/reference/index.html index 3c87b61..28459de 100644 --- a/reference/index.html +++ b/reference/index.html @@ -10,7 +10,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 diff --git a/reference/query.html b/reference/query.html index 3102896..4da0289 100644 --- a/reference/query.html +++ b/reference/query.html @@ -18,7 +18,7 @@ cellxgenedp - 1.7.1.9101 + 1.7.2 diff --git a/search.json b/search.json index 9a61644..dad2cfe 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":"https://mtmorgan.github.io/cellxgenedp/articles/a_using_cellxgenedp.html","id":"installation-and-use","dir":"Articles","previous_headings":"","what":"Installation and use","title":"Discovery and retrieval","text":"package available Bioconductor version 3.15 later. following code installs cellxgenedp Bioconductor Alternatively, install ‘development’ version GitHub (see GitHub.io current documentation) also install additional packages required vignette, use Load package current R session. make extensive use dplyr packages, end vignette use SingleCellExperiment zellkonverter, load well.","code":"if (!\"BiocManager\" %in% rownames(installed.packages())) install.packages(\"BiocManager\", repos = \"https://CRAN.R-project.org\") BiocManager::install(\"cellxgenedp\") if (!\"remotes\" %in% rownames(installed.packages())) install.packages(\"remotes\", repos = \"https://CRAN.R-project.org\") remotes::install_github(\"mtmorgan/cellxgenedp\") pkgs <- c(\"tidyr\", \"zellkonverter\", \"SingleCellExperiment\", \"HDF5Array\") required_pkgs <- pkgs[!pkgs %in% rownames(installed.packages())] BiocManager::install(required_pkgs) library(zellkonverter) library(SingleCellExperiment) # load early to avoid masking dplyr::count() library(dplyr) library(cellxgenedp)"},{"path":"https://mtmorgan.github.io/cellxgenedp/articles/a_using_cellxgenedp.html","id":"cxg-provides-a-shiny-interface","dir":"Articles","previous_headings":"","what":"cxg() Provides a ‘shiny’ interface","title":"Discovery and retrieval","text":"following sections outline use cellxgenedp package R script; functionality also available cxg() shiny application, providing easy way identify, download, visualize one several datasets. Start app choose project first tab, dataset visualization, one datasets download!","code":"cxg()"},{"path":"https://mtmorgan.github.io/cellxgenedp/articles/a_using_cellxgenedp.html","id":"collections-datasets-and-files","dir":"Articles","previous_headings":"","what":"Collections, datasets and files","title":"Discovery and retrieval","text":"Retrieve metadata resources available cellxgene data portal using db(): Printing db object provides brief overview available data, well hints, form functions like collections(), exploration. portal organizes data hierarchically, ‘collections’ (research studies, approximately), ‘datasets’, ‘files’. Discover data using corresponding functions. resources unique primary identifier (e.g., file_id) well identifier describing relationship resource components database (e.g., dataset_id). identifiers can used ‘join’ information across tables.","code":"db <- db() db ## cellxgene_db ## number of collections(): 183 ## number of datasets(): 1179 ## number of files(): 2338 collections(db) ## # A tibble: 183 × 18 ## collection_id collection_version_id collection_url consortia contact_email ## ## 1 ceb895f4-ff9f-4… ee098b5a-4f33-473b-b… https://cellx… panagiotis.r… ## 2 af893e86-8e9f-4… 768170a6-c590-4900-a… https://cellx… ruichen@bcm.… ## 3 1d1c7275-476a-4… 609becde-c797-41bb-8… https://cellx… wey334@g.har… ## 4 1b014f39-f202-4… 1d88cb46-6e84-4b5b-b… https://cellx… kimberly.ald… ## 5 48d354f5-a5ca-4… 2862daa3-c933-43c8-9… https://cellx… Nathan.Salom… ## 6 43d4bb39-21af-4… 78360f02-1acc-415c-a… https://cellx… raymond.cho@… ## 7 f7cecffa-00b4-4… 43224f82-db2a-443c-9… https://cellx… st9@sanger.a… ## 8 f17b9205-f61f-4… 21ff4724-95e2-491b-8… https://cellx… genevieve.ko… ## 9 64b24fda-6591-4… e414854b-2666-4977-9… https://cellx… magness@med.… ## 10 48259aa8-f168-4… 44601b80-bd11-49d8-a… https://cellx… wtk22@cam.ac… ## # ℹ 173 more rows ## # ℹ 13 more variables: contact_name , curator_name , ## # description , doi , links , name , ## # publisher_metadata , revising_in , revision_of , ## # visibility , created_at , published_at , revised_at datasets(db) ## # A tibble: 1,179 × 31 ## dataset_id dataset_version_id collection_id donor_id assay batch_condition ## ## 1 53ce2631-36… 2f17c183-388a-4c0… ceb895f4-ff9… ## 2 1d4128f6-c2… 94762ee1-9f9f-49e… ceb895f4-ff9… ## 3 ed419b4e-db… 758b30a8-5fb0-46c… af893e86-8e9… ## 4 aad97cb5-f3… d6966985-89f9-485… af893e86-8e9… ## 5 8f10185b-e0… 63d7a3a3-9691-41d… af893e86-8e9… ## 6 359f7af4-87… 0f461193-282f-443… af893e86-8e9… ## 7 11ef37ee-21… 74253a67-927c-4cd… af893e86-8e9… ## 8 0129dbd9-a7… a970179d-2e9e-4d2… af893e86-8e9… ## 9 00e5dedd-b9… 94c0e74c-b269-4ce… af893e86-8e9… ## 10 d319af7f-be… 3c80a5bb-8c89-433… 1d1c7275-476… ## # ℹ 1,169 more rows ## # ℹ 25 more variables: cell_count , cell_type , citation , ## # development_stage , disease , embeddings , ## # explorer_url , feature_biotype , feature_count , ## # feature_reference , is_primary_data , ## # mean_genes_per_cell , organism , primary_cell_count , ## # raw_data_location , schema_version , … files(db) ## # A tibble: 2,338 × 4 ## dataset_id filesize filetype url ## ## 1 53ce2631-3646-4172-bbd9-38b0a44d8214 406108808 H5AD https://datasets.ce… ## 2 53ce2631-3646-4172-bbd9-38b0a44d8214 399752425 RDS https://datasets.ce… ## 3 1d4128f6-c27b-40c4-af77-b1c7e2b694e7 906795740 H5AD https://datasets.ce… ## 4 1d4128f6-c27b-40c4-af77-b1c7e2b694e7 1060800682 RDS https://datasets.ce… ## 5 ed419b4e-db9b-40f1-8593-68fdf8dfb076 1071401902 H5AD https://datasets.ce… ## 6 ed419b4e-db9b-40f1-8593-68fdf8dfb076 1419579253 RDS https://datasets.ce… ## 7 aad97cb5-f375-45ef-ae9d-178e7f5d5180 785137201 H5AD https://datasets.ce… ## 8 aad97cb5-f375-45ef-ae9d-178e7f5d5180 1025253758 RDS https://datasets.ce… ## 9 8f10185b-e0b3-46a5-8706-7f1799225d79 3077438912 H5AD https://datasets.ce… ## 10 8f10185b-e0b3-46a5-8706-7f1799225d79 4090930879 RDS https://datasets.ce… ## # ℹ 2,328 more rows"},{"path":"https://mtmorgan.github.io/cellxgenedp/articles/a_using_cellxgenedp.html","id":"using-dplyr-to-navigate-data","dir":"Articles","previous_headings":"Collections, datasets and files","what":"Using dplyr to navigate data","title":"Discovery and retrieval","text":"collection may several datasets, datasets may several files. instance, collection datasets can find collection joining collections() table. can take similar strategy identify datasets belonging collection","code":"collection_with_most_datasets <- datasets(db) |> count(collection_id, sort = TRUE) |> slice(1) left_join( collection_with_most_datasets |> select(collection_id), collections(db), by = \"collection_id\" ) |> glimpse() ## Rows: 1 ## Columns: 18 ## $ collection_id \"283d65eb-dd53-496d-adb7-7570c7caa443\" ## $ collection_version_id \"4c16c611-00a9-42f9-a8c4-7b42daa226fe\" ## $ collection_url \"https://cellxgene.cziscience.com/collections/28… ## $ consortia [\"BRAIN Initiative\", \"CZI Single-Cell Biology\"] ## $ contact_email \"kimberly.siletti@ki.se\" ## $ contact_name \"Kimberly Siletti\" ## $ curator_name \"James Chaffer\" ## $ description \"First draft atlas of human brain transcriptomic… ## $ doi \"10.1126/science.add7046\" ## $ links [[\"\", \"RAW_DATA\", \"http://data.nemoarchive.org/b… ## $ name \"Human Brain Cell Atlas v1.0\" ## $ publisher_metadata [[[\"Siletti\", \"Kimberly\"], [\"Hodge\", \"Rebecca\"]… ## $ revising_in NA ## $ revision_of NA ## $ visibility \"PUBLIC\" ## $ created_at 2023-12-12 ## $ published_at 2022-12-09 ## $ revised_at 2023-12-13 left_join( collection_with_most_datasets |> select(collection_id), datasets(db), by = \"collection_id\" ) ## # A tibble: 138 × 31 ## collection_id dataset_id dataset_version_id donor_id assay batch_condition ## ## 1 283d65eb-dd53-… ff7d15fa-… 51e05270-1f00-452… ## 2 283d65eb-dd53-… fe1a73ab-… 4e124ecc-7885-465… ## 3 283d65eb-dd53-… fbf173f9-… 5a52f557-aeaf-4fc… ## 4 283d65eb-dd53-… fa554686-… 6606e9aa-e4c4-452… ## 5 283d65eb-dd53-… f9034091-… 8f5b1977-8317-447… ## 6 283d65eb-dd53-… f8dda921-… 1ad58833-956c-454… ## 7 283d65eb-dd53-… f7d003d4-… 4d002ac1-4671-490… ## 8 283d65eb-dd53-… f6d9f2ad-… 2102f4b8-c1fe-4ee… ## 9 283d65eb-dd53-… f5a04dff-… b92375fd-dafe-44c… ## 10 283d65eb-dd53-… f502c312-… b750310e-1abb-4c7… ## # ℹ 128 more rows ## # ℹ 25 more variables: cell_count , cell_type , citation , ## # development_stage , disease , embeddings , ## # explorer_url , feature_biotype , feature_count , ## # feature_reference , is_primary_data , ## # mean_genes_per_cell , organism , primary_cell_count , ## # raw_data_location , schema_version , …"},{"path":"https://mtmorgan.github.io/cellxgenedp/articles/a_using_cellxgenedp.html","id":"facets-provides-information-on-levels-present-in-specific-columns","dir":"Articles","previous_headings":"Collections, datasets and files","what":"facets() provides information on ‘levels’ present in specific columns","title":"Discovery and retrieval","text":"Notice columns ‘lists’ rather atomic vectors like ‘character’ ‘integer’. indicates least datasets one type assay, cell_type, etc. facets() function provides convenient way discovering possible levels column, e.g., assay, organism, self_reported_ethnicity, sex, number datasets label.","code":"datasets(db) |> select(where(is.list)) ## # A tibble: 1,179 × 15 ## donor_id assay batch_condition cell_type development_stage disease ## ## 1 ## 2 ## 3 ## 4 ## 5 ## 6 ## 7 ## 8 ## 9 ## 10 ## # ℹ 1,169 more rows ## # ℹ 9 more variables: embeddings , feature_biotype , ## # feature_reference , is_primary_data , organism , ## # self_reported_ethnicity , sex , suspension_type , ## # tissue facets(db, \"assay\") ## # A tibble: 38 × 4 ## facet label ontology_term_id n ## ## 1 assay 10x 3' v3 EFO:0009922 575 ## 2 assay 10x 3' v2 EFO:0009899 254 ## 3 assay Slide-seqV2 EFO:0030062 223 ## 4 assay Visium Spatial Gene Expression EFO:0010961 108 ## 5 assay 10x 5' v1 EFO:0011025 81 ## 6 assay Smart-seq2 EFO:0008931 63 ## 7 assay 10x multiome EFO:0030059 61 ## 8 assay 10x 5' v2 EFO:0009900 23 ## 9 assay Drop-seq EFO:0008722 18 ## 10 assay sci-RNA-seq3 EFO:0030028 15 ## # ℹ 28 more rows facets(db, \"self_reported_ethnicity\") ## # A tibble: 32 × 4 ## facet label ontology_term_id n ## ## 1 self_reported_ethnicity European HANCESTRO:0005 505 ## 2 self_reported_ethnicity unknown unknown 411 ## 3 self_reported_ethnicity na na 320 ## 4 self_reported_ethnicity Asian HANCESTRO:0008 141 ## 5 self_reported_ethnicity African American HANCESTRO:0568 61 ## 6 self_reported_ethnicity Hispanic or Latin American HANCESTRO:0014 54 ## 7 self_reported_ethnicity Native American,Hispanic or L… HANCESTRO:0013,… 50 ## 8 self_reported_ethnicity African American or Afro-Cari… HANCESTRO:0016 32 ## 9 self_reported_ethnicity Greater Middle Eastern (Midd… HANCESTRO:0015 22 ## 10 self_reported_ethnicity South Asian HANCESTRO:0006 11 ## # ℹ 22 more rows facets(db, \"sex\") ## # A tibble: 3 × 4 ## facet label ontology_term_id n ##
Morgan M, Interdonato K (2024). cellxgenedp: Discover and Access Single Cell Data Sets in the CELLxGENE Data Portal. -R package version 1.7.1.9101, https://github.com/mtmorgan/cellxgenedp, https://mtmorgan.github.io/cellxgenedp/. +R package version 1.7.2, https://github.com/mtmorgan/cellxgenedp, https://mtmorgan.github.io/cellxgenedp/.
@Manual{, title = {cellxgenedp: Discover and Access Single Cell Data Sets in the CELLxGENE Data Portal}, author = {Martin Morgan and Kayla Interdonato}, year = {2024}, - note = {R package version 1.7.1.9101, https://github.com/mtmorgan/cellxgenedp}, + note = {R package version 1.7.2, https://github.com/mtmorgan/cellxgenedp}, url = {https://mtmorgan.github.io/cellxgenedp/}, }