Skip to content

The data2gRaph project is a web-based data visualization tool that can also be used off-line.

License

Notifications You must be signed in to change notification settings

muhendis/data2gRaph

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

data2gRaph

Visualization is of great importance for data science and machine learning. Because it allows you to become aware of unnoticed details.

The data2gRaph project is a web-based data visualization tool that can also be used off-line. It consists of 3 parts:

> The first section visualizes statistical information.

> The second section visualizes using machine learning information.

> The third section visualizes create a mix plot using different plots.

Content of the the application

About
Input Data
Statistical Plots
       Measures of Central Tendency
           
       Measures of Dispersion
           
       Covariance Matrix
           
       Correlation Analyses
Unsupervised ML Plots
        Principal Component Analysis 
           
        K-means Clustering
           
        Hierarchical Clustering
Mix Plots
        Scatter+Rug+Hist
           
        Density+Densigram 
           
        Hexagonal+Boxplot
           
        Complex Heatmap

Installation steps

  1. Download this pogram where you want to run it, click to download

  2. Run the file named Packages_to_be_installed.R once for the required packages.

../data2gRaph/Packages_to_be_installed.R	

Running step

Run the file named app.R.

../data2gRaph/app.R	

Information about R, OS and attached or installed packages

> sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so

locale:
 [1] LC_CTYPE=tr_TR.UTF-8       LC_NUMERIC=C               LC_TIME=tr_TR.UTF-8        LC_COLLATE=tr_TR.UTF-8     LC_MONETARY=tr_TR.UTF-8   
 [6] LC_MESSAGES=tr_TR.UTF-8    LC_PAPER=tr_TR.UTF-8       LC_NAME=C                  LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=tr_TR.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] hexbin_1.28.0         ComplexHeatmap_2.2.0  ggExtra_0.9           ggpubr_0.2.4          magrittr_1.5          ggfortify_0.4.8      
 [7] viridis_0.5.1         viridisLite_0.3.0     reshape2_1.4.3        ggthemes_4.2.0        ggplot2_3.2.1         RColorBrewer_1.1-2   
[13] corrplot_0.84         shinycssloaders_0.2.0 DT_0.10               shinydashboard_0.7.1  shiny_1.4.0          

loaded via a namespace (and not attached):
 [1] shape_1.4.4         circlize_0.4.8      GetoptLong_0.1.7    tidyselect_0.2.5    purrr_0.3.3         lattice_0.20-38    
 [7] colorspace_1.4-1    vctrs_0.2.0         miniUI_0.1.1.1      htmltools_0.4.0     rlang_0.4.1         later_1.0.0        
[13] pillar_1.4.2        glue_1.3.1          withr_2.1.2         lifecycle_0.1.0     plyr_1.8.4          stringr_1.4.0      
[19] munsell_0.5.0       ggsignif_0.6.0      gtable_0.3.0        htmlwidgets_1.5.1   GlobalOptions_0.1.1 fastmap_1.0.1      
[25] httpuv_1.5.2        parallel_3.6.1      Rcpp_1.0.3          xtable_1.8-4        promises_1.1.0      scales_1.1.0       
[31] backports_1.1.5     mime_0.7            gridExtra_2.3       rjson_0.2.20        png_0.1-7           digest_0.6.23      
[37] stringi_1.4.3       dplyr_0.8.3         clue_0.3-57         tools_3.6.1         lazyeval_0.2.2      tibble_2.1.3       
[43] cluster_2.1.0       crayon_1.3.4        tidyr_1.0.0         pkgconfig_2.0.3     zeallot_0.1.0       assertthat_0.2.1   
[49] rstudioapi_0.10     R6_2.4.1            compiler_3.6.1 

Several screenshots of the application