-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Quaternion.cs
790 lines (665 loc) · 27.8 KB
/
Quaternion.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
namespace System.Numerics
{
/// <summary>
/// A structure encapsulating a four-dimensional vector (x,y,z,w),
/// which is used to efficiently rotate an object about the (x,y,z) vector by the angle theta, where w = cos(theta/2).
/// </summary>
public struct Quaternion
{
/// <summary>
/// Specifies the X-value of the vector component of the Quaternion.
/// </summary>
public double X;
/// <summary>
/// Specifies the Y-value of the vector component of the Quaternion.
/// </summary>
public double Y;
/// <summary>
/// Specifies the Z-value of the vector component of the Quaternion.
/// </summary>
public double Z;
/// <summary>
/// Specifies the rotation component of the Quaternion.
/// </summary>
public double W;
/// <summary>
/// Returns a Quaternion representing no rotation.
/// </summary>
public static Quaternion Identity
{
get { return new Quaternion(0, 0, 0, 1); }
}
/// <summary>
/// Returns whether the Quaternion is the identity Quaternion.
/// </summary>
public bool IsIdentity
{
get { return X == 0 && Y == 0 && Z == 0 && W == 1f; }
}
/// <summary>
/// Constructs a Quaternion from the given components.
/// </summary>
/// <param name="x">The X component of the Quaternion.</param>
/// <param name="y">The Y component of the Quaternion.</param>
/// <param name="z">The Z component of the Quaternion.</param>
/// <param name="w">The W component of the Quaternion.</param>
public Quaternion(double x, double y, double z, double w)
{
this.X = x;
this.Y = y;
this.Z = z;
this.W = w;
}
/// <summary>
/// Constructs a Quaternion from the given vector and rotation parts.
/// </summary>
/// <param name="vectorPart">The vector part of the Quaternion.</param>
/// <param name="scalarPart">The rotation part of the Quaternion.</param>
public Quaternion(Vector3 vectorPart, double scalarPart)
{
X = vectorPart.X;
Y = vectorPart.Y;
Z = vectorPart.Z;
W = scalarPart;
}
/// <summary>
/// Calculates the length of the Quaternion.
/// </summary>
/// <returns>The computed length of the Quaternion.</returns>
public double Length()
{
double ls = X * X + Y * Y + Z * Z + W * W;
return (double)Math.Sqrt((double)ls);
}
/// <summary>
/// Calculates the length squared of the Quaternion. This operation is cheaper than Length().
/// </summary>
/// <returns>The length squared of the Quaternion.</returns>
public double LengthSquared()
{
return X * X + Y * Y + Z * Z + W * W;
}
/// <summary>
/// Divides each component of the Quaternion by the length of the Quaternion.
/// </summary>
/// <param name="value">The source Quaternion.</param>
/// <returns>The normalized Quaternion.</returns>
public static Quaternion Normalize(Quaternion value)
{
Quaternion ans;
double ls = value.X * value.X + value.Y * value.Y + value.Z * value.Z + value.W * value.W;
double invNorm = 1.0 / (double)Math.Sqrt((double)ls);
ans.X = value.X * invNorm;
ans.Y = value.Y * invNorm;
ans.Z = value.Z * invNorm;
ans.W = value.W * invNorm;
return ans;
}
/// <summary>
/// Creates the conjugate of a specified Quaternion.
/// </summary>
/// <param name="value">The Quaternion of which to return the conjugate.</param>
/// <returns>A new Quaternion that is the conjugate of the specified one.</returns>
public static Quaternion Conjugate(Quaternion value)
{
Quaternion ans;
ans.X = -value.X;
ans.Y = -value.Y;
ans.Z = -value.Z;
ans.W = value.W;
return ans;
}
/// <summary>
/// Returns the inverse of a Quaternion.
/// </summary>
/// <param name="value">The source Quaternion.</param>
/// <returns>The inverted Quaternion.</returns>
public static Quaternion Inverse(Quaternion value)
{
// -1 ( a -v )
// q = ( ------------- ------------- )
// ( a^2 + |v|^2 , a^2 + |v|^2 )
Quaternion ans;
double ls = value.X * value.X + value.Y * value.Y + value.Z * value.Z + value.W * value.W;
double invNorm = 1.0 / ls;
ans.X = -value.X * invNorm;
ans.Y = -value.Y * invNorm;
ans.Z = -value.Z * invNorm;
ans.W = value.W * invNorm;
return ans;
}
/// <summary>
/// Creates a Quaternion from a vector and an angle to rotate about the vector.
/// </summary>
/// <param name="axis">The vector to rotate around.</param>
/// <param name="angle">The angle, in radians, to rotate around the vector.</param>
/// <returns>The created Quaternion.</returns>
public static Quaternion CreateFromAxisAngle(Vector3 axis, double angle)
{
Quaternion ans;
double halfAngle = angle * 0.5f;
double s = (double)Math.Sin(halfAngle);
double c = (double)Math.Cos(halfAngle);
ans.X = axis.X * s;
ans.Y = axis.Y * s;
ans.Z = axis.Z * s;
ans.W = c;
return ans;
}
/// <summary>
/// Creates a new Quaternion from the given yaw, pitch, and roll, in radians.
/// </summary>
/// <param name="yaw">The yaw angle, in radians, around the Y-axis.</param>
/// <param name="pitch">The pitch angle, in radians, around the X-axis.</param>
/// <param name="roll">The roll angle, in radians, around the Z-axis.</param>
/// <returns></returns>
public static Quaternion CreateFromYawPitchRoll(double yaw, double pitch, double roll)
{
// Roll first, about axis the object is facing, then
// pitch upward, then yaw to face into the new heading
double sr, cr, sp, cp, sy, cy;
double halfRoll = roll * 0.5f;
sr = (double)Math.Sin(halfRoll);
cr = (double)Math.Cos(halfRoll);
double halfPitch = pitch * 0.5f;
sp = (double)Math.Sin(halfPitch);
cp = (double)Math.Cos(halfPitch);
double halfYaw = yaw * 0.5f;
sy = (double)Math.Sin(halfYaw);
cy = (double)Math.Cos(halfYaw);
Quaternion result;
result.X = cy * sp * cr + sy * cp * sr;
result.Y = sy * cp * cr - cy * sp * sr;
result.Z = cy * cp * sr - sy * sp * cr;
result.W = cy * cp * cr + sy * sp * sr;
return result;
}
/*
/// <summary>
/// Creates a Quaternion from the given rotation matrix.
/// </summary>
/// <param name="matrix">The rotation matrix.</param>
/// <returns>The created Quaternion.</returns>
public static Quaternion CreateFromRotationMatrix(Matrix4x4 matrix)
{
double trace = matrix.M11 + matrix.M22 + matrix.M33;
Quaternion q = new Quaternion();
if (trace > 0.0)
{
double s = (double)Math.Sqrt(trace + 1.0);
q.W = s * 0.5f;
s = 0.5f / s;
q.X = (matrix.M23 - matrix.M32) * s;
q.Y = (matrix.M31 - matrix.M13) * s;
q.Z = (matrix.M12 - matrix.M21) * s;
}
else
{
if (matrix.M11 >= matrix.M22 && matrix.M11 >= matrix.M33)
{
double s = (double)Math.Sqrt(1.0 + matrix.M11 - matrix.M22 - matrix.M33);
double invS = 0.5f / s;
q.X = 0.5f * s;
q.Y = (matrix.M12 + matrix.M21) * invS;
q.Z = (matrix.M13 + matrix.M31) * invS;
q.W = (matrix.M23 - matrix.M32) * invS;
}
else if (matrix.M22 > matrix.M33)
{
double s = (double)Math.Sqrt(1.0 + matrix.M22 - matrix.M11 - matrix.M33);
double invS = 0.5f / s;
q.X = (matrix.M21 + matrix.M12) * invS;
q.Y = 0.5f * s;
q.Z = (matrix.M32 + matrix.M23) * invS;
q.W = (matrix.M31 - matrix.M13) * invS;
}
else
{
double s = (double)Math.Sqrt(1.0 + matrix.M33 - matrix.M11 - matrix.M22);
double invS = 0.5f / s;
q.X = (matrix.M31 + matrix.M13) * invS;
q.Y = (matrix.M32 + matrix.M23) * invS;
q.Z = 0.5f * s;
q.W = (matrix.M12 - matrix.M21) * invS;
}
}
return q;
}
*/
/// <summary>
/// Calculates the dot product of two Quaternions.
/// </summary>
/// <param name="quaternion1">The first source Quaternion.</param>
/// <param name="quaternion2">The second source Quaternion.</param>
/// <returns>The dot product of the Quaternions.</returns>
public static double Dot(Quaternion quaternion1, Quaternion quaternion2)
{
return quaternion1.X * quaternion2.X +
quaternion1.Y * quaternion2.Y +
quaternion1.Z * quaternion2.Z +
quaternion1.W * quaternion2.W;
}
/// <summary>
/// Interpolates between two quaternions, using spherical linear interpolation.
/// </summary>
/// <param name="quaternion1">The first source Quaternion.</param>
/// <param name="quaternion2">The second source Quaternion.</param>
/// <param name="amount">The relative weight of the second source Quaternion in the interpolation.</param>
/// <returns>The interpolated Quaternion.</returns>
public static Quaternion Slerp(Quaternion quaternion1, Quaternion quaternion2, double amount)
{
const double epsilon = 1e-6f;
double t = amount;
double cosOmega = quaternion1.X * quaternion2.X + quaternion1.Y * quaternion2.Y +
quaternion1.Z * quaternion2.Z + quaternion1.W * quaternion2.W;
bool flip = false;
if (cosOmega < 0.0)
{
flip = true;
cosOmega = -cosOmega;
}
double s1, s2;
if (cosOmega > (1.0 - epsilon))
{
// Too close, do straight linear interpolation.
s1 = 1.0 - t;
s2 = (flip) ? -t : t;
}
else
{
double omega = (double)Math.Acos(cosOmega);
double invSinOmega = (double)(1 / Math.Sin(omega));
s1 = (double)Math.Sin((1.0 - t) * omega) * invSinOmega;
s2 = (flip)
? (double)-Math.Sin(t * omega) * invSinOmega
: (double)Math.Sin(t * omega) * invSinOmega;
}
Quaternion ans;
ans.X = s1 * quaternion1.X + s2 * quaternion2.X;
ans.Y = s1 * quaternion1.Y + s2 * quaternion2.Y;
ans.Z = s1 * quaternion1.Z + s2 * quaternion2.Z;
ans.W = s1 * quaternion1.W + s2 * quaternion2.W;
return ans;
}
/// <summary>
/// Linearly interpolates between two quaternions.
/// </summary>
/// <param name="quaternion1">The first source Quaternion.</param>
/// <param name="quaternion2">The second source Quaternion.</param>
/// <param name="amount">The relative weight of the second source Quaternion in the interpolation.</param>
/// <returns>The interpolated Quaternion.</returns>
public static Quaternion Lerp(Quaternion quaternion1, Quaternion quaternion2, double amount)
{
double t = amount;
double t1 = 1.0 - t;
Quaternion r = new Quaternion();
double dot = quaternion1.X * quaternion2.X + quaternion1.Y * quaternion2.Y +
quaternion1.Z * quaternion2.Z + quaternion1.W * quaternion2.W;
if (dot >= 0.0)
{
r.X = t1 * quaternion1.X + t * quaternion2.X;
r.Y = t1 * quaternion1.Y + t * quaternion2.Y;
r.Z = t1 * quaternion1.Z + t * quaternion2.Z;
r.W = t1 * quaternion1.W + t * quaternion2.W;
}
else
{
r.X = t1 * quaternion1.X - t * quaternion2.X;
r.Y = t1 * quaternion1.Y - t * quaternion2.Y;
r.Z = t1 * quaternion1.Z - t * quaternion2.Z;
r.W = t1 * quaternion1.W - t * quaternion2.W;
}
// Normalize it.
double ls = r.X * r.X + r.Y * r.Y + r.Z * r.Z + r.W * r.W;
double invNorm = 1.0 / (double)Math.Sqrt((double)ls);
r.X *= invNorm;
r.Y *= invNorm;
r.Z *= invNorm;
r.W *= invNorm;
return r;
}
/// <summary>
/// Concatenates two Quaternions; the result represents the value1 rotation followed by the value2 rotation.
/// </summary>
/// <param name="value1">The first Quaternion rotation in the series.</param>
/// <param name="value2">The second Quaternion rotation in the series.</param>
/// <returns>A new Quaternion representing the concatenation of the value1 rotation followed by the value2 rotation.</returns>
public static Quaternion Concatenate(Quaternion value1, Quaternion value2)
{
Quaternion ans;
// Concatenate rotation is actually q2 * q1 instead of q1 * q2.
// So that's why value2 goes q1 and value1 goes q2.
double q1x = value2.X;
double q1y = value2.Y;
double q1z = value2.Z;
double q1w = value2.W;
double q2x = value1.X;
double q2y = value1.Y;
double q2z = value1.Z;
double q2w = value1.W;
// cross(av, bv)
double cx = q1y * q2z - q1z * q2y;
double cy = q1z * q2x - q1x * q2z;
double cz = q1x * q2y - q1y * q2x;
double dot = q1x * q2x + q1y * q2y + q1z * q2z;
ans.X = q1x * q2w + q2x * q1w + cx;
ans.Y = q1y * q2w + q2y * q1w + cy;
ans.Z = q1z * q2w + q2z * q1w + cz;
ans.W = q1w * q2w - dot;
return ans;
}
/// <summary>
/// Flips the sign of each component of the quaternion.
/// </summary>
/// <param name="value">The source Quaternion.</param>
/// <returns>The negated Quaternion.</returns>
public static Quaternion Negate(Quaternion value)
{
Quaternion ans;
ans.X = -value.X;
ans.Y = -value.Y;
ans.Z = -value.Z;
ans.W = -value.W;
return ans;
}
/// <summary>
/// Adds two Quaternions element-by-element.
/// </summary>
/// <param name="value1">The first source Quaternion.</param>
/// <param name="value2">The second source Quaternion.</param>
/// <returns>The result of adding the Quaternions.</returns>
public static Quaternion Add(Quaternion value1, Quaternion value2)
{
Quaternion ans;
ans.X = value1.X + value2.X;
ans.Y = value1.Y + value2.Y;
ans.Z = value1.Z + value2.Z;
ans.W = value1.W + value2.W;
return ans;
}
/// <summary>
/// Subtracts one Quaternion from another.
/// </summary>
/// <param name="value1">The first source Quaternion.</param>
/// <param name="value2">The second Quaternion, to be subtracted from the first.</param>
/// <returns>The result of the subtraction.</returns>
public static Quaternion Subtract(Quaternion value1, Quaternion value2)
{
Quaternion ans;
ans.X = value1.X - value2.X;
ans.Y = value1.Y - value2.Y;
ans.Z = value1.Z - value2.Z;
ans.W = value1.W - value2.W;
return ans;
}
/// <summary>
/// Multiplies two Quaternions together.
/// </summary>
/// <param name="value1">The Quaternion on the left side of the multiplication.</param>
/// <param name="value2">The Quaternion on the right side of the multiplication.</param>
/// <returns>The result of the multiplication.</returns>
public static Quaternion Multiply(Quaternion value1, Quaternion value2)
{
Quaternion ans;
double q1x = value1.X;
double q1y = value1.Y;
double q1z = value1.Z;
double q1w = value1.W;
double q2x = value2.X;
double q2y = value2.Y;
double q2z = value2.Z;
double q2w = value2.W;
// cross(av, bv)
double cx = q1y * q2z - q1z * q2y;
double cy = q1z * q2x - q1x * q2z;
double cz = q1x * q2y - q1y * q2x;
double dot = q1x * q2x + q1y * q2y + q1z * q2z;
ans.X = q1x * q2w + q2x * q1w + cx;
ans.Y = q1y * q2w + q2y * q1w + cy;
ans.Z = q1z * q2w + q2z * q1w + cz;
ans.W = q1w * q2w - dot;
return ans;
}
/// <summary>
/// Multiplies a Quaternion by a scalar value.
/// </summary>
/// <param name="value1">The source Quaternion.</param>
/// <param name="value2">The scalar value.</param>
/// <returns>The result of the multiplication.</returns>
public static Quaternion Multiply(Quaternion value1, double value2)
{
Quaternion ans;
ans.X = value1.X * value2;
ans.Y = value1.Y * value2;
ans.Z = value1.Z * value2;
ans.W = value1.W * value2;
return ans;
}
/// <summary>
/// Divides a Quaternion by another Quaternion.
/// </summary>
/// <param name="value1">The source Quaternion.</param>
/// <param name="value2">The divisor.</param>
/// <returns>The result of the division.</returns>
public static Quaternion Divide(Quaternion value1, Quaternion value2)
{
Quaternion ans;
double q1x = value1.X;
double q1y = value1.Y;
double q1z = value1.Z;
double q1w = value1.W;
//-------------------------------------
// Inverse part.
double ls = value2.X * value2.X + value2.Y * value2.Y +
value2.Z * value2.Z + value2.W * value2.W;
double invNorm = 1.0 / ls;
double q2x = -value2.X * invNorm;
double q2y = -value2.Y * invNorm;
double q2z = -value2.Z * invNorm;
double q2w = value2.W * invNorm;
//-------------------------------------
// Multiply part.
// cross(av, bv)
double cx = q1y * q2z - q1z * q2y;
double cy = q1z * q2x - q1x * q2z;
double cz = q1x * q2y - q1y * q2x;
double dot = q1x * q2x + q1y * q2y + q1z * q2z;
ans.X = q1x * q2w + q2x * q1w + cx;
ans.Y = q1y * q2w + q2y * q1w + cy;
ans.Z = q1z * q2w + q2z * q1w + cz;
ans.W = q1w * q2w - dot;
return ans;
}
/// <summary>
/// Flips the sign of each component of the quaternion.
/// </summary>
/// <param name="value">The source Quaternion.</param>
/// <returns>The negated Quaternion.</returns>
public static Quaternion operator -(Quaternion value)
{
Quaternion ans;
ans.X = -value.X;
ans.Y = -value.Y;
ans.Z = -value.Z;
ans.W = -value.W;
return ans;
}
/// <summary>
/// Adds two Quaternions element-by-element.
/// </summary>
/// <param name="value1">The first source Quaternion.</param>
/// <param name="value2">The second source Quaternion.</param>
/// <returns>The result of adding the Quaternions.</returns>
public static Quaternion operator +(Quaternion value1, Quaternion value2)
{
Quaternion ans;
ans.X = value1.X + value2.X;
ans.Y = value1.Y + value2.Y;
ans.Z = value1.Z + value2.Z;
ans.W = value1.W + value2.W;
return ans;
}
/// <summary>
/// Subtracts one Quaternion from another.
/// </summary>
/// <param name="value1">The first source Quaternion.</param>
/// <param name="value2">The second Quaternion, to be subtracted from the first.</param>
/// <returns>The result of the subtraction.</returns>
public static Quaternion operator -(Quaternion value1, Quaternion value2)
{
Quaternion ans;
ans.X = value1.X - value2.X;
ans.Y = value1.Y - value2.Y;
ans.Z = value1.Z - value2.Z;
ans.W = value1.W - value2.W;
return ans;
}
/// <summary>
/// Multiplies two Quaternions together.
/// </summary>
/// <param name="value1">The Quaternion on the left side of the multiplication.</param>
/// <param name="value2">The Quaternion on the right side of the multiplication.</param>
/// <returns>The result of the multiplication.</returns>
public static Quaternion operator *(Quaternion value1, Quaternion value2)
{
Quaternion ans;
double q1x = value1.X;
double q1y = value1.Y;
double q1z = value1.Z;
double q1w = value1.W;
double q2x = value2.X;
double q2y = value2.Y;
double q2z = value2.Z;
double q2w = value2.W;
// cross(av, bv)
double cx = q1y * q2z - q1z * q2y;
double cy = q1z * q2x - q1x * q2z;
double cz = q1x * q2y - q1y * q2x;
double dot = q1x * q2x + q1y * q2y + q1z * q2z;
ans.X = q1x * q2w + q2x * q1w + cx;
ans.Y = q1y * q2w + q2y * q1w + cy;
ans.Z = q1z * q2w + q2z * q1w + cz;
ans.W = q1w * q2w - dot;
return ans;
}
/// <summary>
/// Multiplies a Quaternion by a scalar value.
/// </summary>
/// <param name="value1">The source Quaternion.</param>
/// <param name="value2">The scalar value.</param>
/// <returns>The result of the multiplication.</returns>
public static Quaternion operator *(Quaternion value1, double value2)
{
Quaternion ans;
ans.X = value1.X * value2;
ans.Y = value1.Y * value2;
ans.Z = value1.Z * value2;
ans.W = value1.W * value2;
return ans;
}
/// <summary>
/// Divides a Quaternion by another Quaternion.
/// </summary>
/// <param name="value1">The source Quaternion.</param>
/// <param name="value2">The divisor.</param>
/// <returns>The result of the division.</returns>
public static Quaternion operator /(Quaternion value1, Quaternion value2)
{
Quaternion ans;
double q1x = value1.X;
double q1y = value1.Y;
double q1z = value1.Z;
double q1w = value1.W;
//-------------------------------------
// Inverse part.
double ls = value2.X * value2.X + value2.Y * value2.Y +
value2.Z * value2.Z + value2.W * value2.W;
double invNorm = 1.0 / ls;
double q2x = -value2.X * invNorm;
double q2y = -value2.Y * invNorm;
double q2z = -value2.Z * invNorm;
double q2w = value2.W * invNorm;
//-------------------------------------
// Multiply part.
// cross(av, bv)
double cx = q1y * q2z - q1z * q2y;
double cy = q1z * q2x - q1x * q2z;
double cz = q1x * q2y - q1y * q2x;
double dot = q1x * q2x + q1y * q2y + q1z * q2z;
ans.X = q1x * q2w + q2x * q1w + cx;
ans.Y = q1y * q2w + q2y * q1w + cy;
ans.Z = q1z * q2w + q2z * q1w + cz;
ans.W = q1w * q2w - dot;
return ans;
}
/// <summary>
/// Returns a boolean indicating whether the two given Quaternions are equal.
/// </summary>
/// <param name="value1">The first Quaternion to compare.</param>
/// <param name="value2">The second Quaternion to compare.</param>
/// <returns>True if the Quaternions are equal; False otherwise.</returns>
public static bool operator ==(Quaternion value1, Quaternion value2)
{
return (value1.X == value2.X &&
value1.Y == value2.Y &&
value1.Z == value2.Z &&
value1.W == value2.W);
}
/// <summary>
/// Returns a boolean indicating whether the two given Quaternions are not equal.
/// </summary>
/// <param name="value1">The first Quaternion to compare.</param>
/// <param name="value2">The second Quaternion to compare.</param>
/// <returns>True if the Quaternions are not equal; False if they are equal.</returns>
public static bool operator !=(Quaternion value1, Quaternion value2)
{
return (value1.X != value2.X ||
value1.Y != value2.Y ||
value1.Z != value2.Z ||
value1.W != value2.W);
}
/// <summary>
/// Returns a boolean indicating whether the given Quaternion is equal to this Quaternion instance.
/// </summary>
/// <param name="other">The Quaternion to compare this instance to.</param>
/// <returns>True if the other Quaternion is equal to this instance; False otherwise.</returns>
public bool Equals(Quaternion other)
{
return (X == other.X &&
Y == other.Y &&
Z == other.Z &&
W == other.W);
}
/// <summary>
/// Returns a boolean indicating whether the given Object is equal to this Quaternion instance.
/// </summary>
/// <param name="obj">The Object to compare against.</param>
/// <returns>True if the Object is equal to this Quaternion; False otherwise.</returns>
public override bool Equals(object obj)
{
if (obj is Quaternion)
{
return Equals((Quaternion)obj);
}
return false;
}
/// <summary>
/// Returns a String representing this Quaternion instance.
/// </summary>
/// <returns>The string representation.</returns>
public override string ToString()
{
return String.Format("{{X:{0} Y:{1} Z:{2} W:{3}}}", X.ToString(), Y.ToString(), Z.ToString(), W.ToString());
}
/// <summary>
/// Returns the hash code for this instance.
/// </summary>
/// <returns>The hash code.</returns>
public override int GetHashCode()
{
return X.GetHashCode() + Y.GetHashCode() + Z.GetHashCode() + W.GetHashCode();
}
}
}