Skip to content

Latest commit

 

History

History
77 lines (57 loc) · 1.41 KB

README.md

File metadata and controls

77 lines (57 loc) · 1.41 KB

mlconfig

Installation

$ pip install mlconfig

Example

config.yaml

num_classes: 50

model:
  name: LeNet
  num_classes: ${num_classes}

optimizer:
  name: Adam
  lr: 1.e-3
  weight_decay: 1.e-4

main.py

from torch import nn
from torch import optim

from mlconfig import instantiate
from mlconfig import load
from mlconfig import register

register(optim.Adam)


@register
class LeNet(nn.Module):

    def __init__(self, num_classes):
        super(LeNet, self).__init__()
        self.num_classes = num_classes

        self.features = nn.Sequential(
            nn.Conv2d(1, 6, 5, bias=False),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5, bias=False),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
        )

        self.classifier = nn.Sequential(
            nn.Linear(16 * 5 * 5, 120),
            nn.ReLU(inplace=True),
            nn.Linear(120, 84),
            nn.ReLU(inplace=True),
            nn.Linear(84, self.num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x


def main():
    config = load('conf.yaml')

    model = instantiate(config.model)
    optimizer = instantiate(config.optimizer, model.parameters())


if __name__ == '__main__':
    main()