forked from nmfs-ost/ss3-doc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
11likelihoods.tex
48 lines (39 loc) · 2.41 KB
/
11likelihoods.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
\section{Likelihood components}
The objective function $L$ is the weighted sum of the individual components
indexed by kind of data $i$, and fishery/survey $f$ as appropriate:
\begin{equation}
L = \sum_{i=1}^{I}\sum_{f=1}^{A_f}\lambda_{i,f} L_{i,f}+\lambda_R L_R + \sum_{\theta}^{}\lambda_\theta L_\theta + \sum_{P}^{}\lambda_P L_P
\end{equation}
where $L$ is the total objective function, $i$ is the index of the objective
function component, $A_f$ is the number of fleets, $L_{i,f}$ is the
objective function for data kind $i$ for the fishery/survey $f$,
$\lambda_{i,f}$ is a weighting factor for each objective function component,
$\theta$ is the parameter priors, and $P$ is the random parameter deviations.
The components of the objective function based on the model set-up and data are:
\begin{longtable}{p{1cm} p{3.5cm} p{5.5cm} Rp{5cm}}
\hline
Index & Source & Data/Parameter & Error structure\Tstrut\Bstrut\\
\hline
$i$ & fishery/survey $f$ & CPUE or Abundance index & user choice \Tstrut\\
$i$ & fishery $f$ & Discard biomass & user choice \Tstrut\\
$i$ & fishery/survey $f$ & Mean body weight & normal \Tstrut\\
$i$ & fishery/survey $f$ & Length composition & multinomial or Dirichlet-multinomial\Tstrut\\
$i$ & fishery/survey $f$ & Age composition & multinomial or Dirichlet-multinomial\Tstrut\\
% $i$ & fishery/survey $f$ & Dirichlet data weighting& gamma in log-space\Tstrut\\
$i$ & fishery/survey $f$ & Mean size-at-age & normal \Tstrut\\
$i$ & fishery/survey $f$ & Tag-recapture 1 & multinomial \Tstrut\\
$i$ & fishery/survey $f$ & Tag-recapture 2 & negative binomial\Tstrut\\
$i$ & fishery $f$ & Initial equilibrium catch & normal \Tstrut\\
$R$ & & Recruitment deviations & lognormal \Tstrut\\
$P$ & & Random parameter devs. & normal \Tstrut\\
$\theta$ & & Parameter priors & user choice\Tstrut\\
$F_B$ & & F ballpark penalty & \Tstrut\\
$C_P$ & & Crash penalty & \Tstrut\Bstrut\\
\hline
\end{longtable}
%Full description of likelihood distributions by source will be added in the future.
%\subsection{CPUE or abundance index}
%The distribution for CPUE or abundance index data can be lognormal, student-t, or normal. The %lognormal likelihood formulation is:
%\begin{equation} L_{i,f} = N(ln(\sigma)) + \sum_{y=1}^{N_y}\frac{(ln(I_{y,f})-ln(Q_f B_{y,f}))^2}{2\sigma^2}
%\end{equation}
\pagebreak