-
Notifications
You must be signed in to change notification settings - Fork 3
/
chapter04-dual-fourier.tex
executable file
·960 lines (838 loc) · 36.9 KB
/
chapter04-dual-fourier.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
% Copyright 2013 Nicolai Hähnle <nhaehnle@gmail.com>
%
% This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
% Unported License, see http://creativecommons.org/licenses/by-sa/3.0/
%
% Among other things, this means that yes, you may take e.g. illustrations from
% the book and use them in your own work. However, (a) you must give proper
% attribution by naming me as its original author and (b) you must make your
% derivative work available under the same or similar license terms.
%
% See the Creative Commons website for the exact licensing terms.
\chapter{Dual lattices and Fourier analysis}
\label{chapter:dual-lattices}
Consider the problem of integer programming or, more generally, lattice programming:
given a closed convex set $K$ and a lattice $\Lambda$,
decide whether there exists a lattice point $x \in K \cap \Lambda$.
A natural approach to deciding this problem
is to slice $K$ along translates of a lattice hyperplane,
analogous to the nearest-plane approach to the closest vector problem.
Each of the slices intersecting $K$ leads to an integer programming problem
of lower dimension.
\begin{center}
\begin{tikzpicture}
\draw[thick,fill=black!10]
(0,0) -- (2,-1.3) -- (5,-0.2) node[below right] {$K$} arc[start angle=-50, end angle=10, radius=2cm]
-- (3,2) -- (1,1.8) -- cycle;
\draw (6,1.5) node[right] {$y^Tx = \alpha \in \Z$};
\draw[->] (-0.5,0.1) -- node[left,near end] {$y$} +(0.1,-0.5);
\clip (-1,-2) rectangle (6,2.5);
\foreach \t in {-3,-2,-1,0,1,2}
\draw ($(-1,0) + \t*(0,1.2)$) -- +(7,1.4);
\end{tikzpicture}
\end{center}
These translates of lattice hyperplanes are defined by equations $y^Tx = \alpha \in \Z$,
where $y \in \R^d$ satisfies $y^Tx \in \Z$ for all $x \in \Lambda$.
This is one justification for the definition of \emph{dual lattices},
which we study in this chapter.
The running time of this particular approach to integer programming
depends strongly on how many lattice hyperplanes intersect $K$.
Fourier analysis neatly relates a lattice and its dual,
which allows us to bound the number of lattice hyperplanes that must be investigated.
\section{The dual lattice}
\begin{definition}
Let $\Lambda \subset \R^d$ be a full dimensional lattice.
Its \emph{dual lattice} is given by
\[
\Lambda^\star := \{ y \in \R^d ~:~ \forall x \in \Lambda:\, y^Tx \in \Z \}
\]
\end{definition}
\begin{lemma}
\label{lemma:dual-basis}
Let $B \in \R^{d \times d}$ be a basis of $\Lambda$.
Then $\Lambda^\star = \Lambda(B^{-T})$.
In particular, $\Lambda^\star$ is a lattice.
\end{lemma}
\begin{proof}
Let $c_1, \ldots, c_d$ be the columns of $B^{-T}$.
\[
\begin{array}{|c|}
\hline \quad c_1^T \quad \\\hline
\vdots \\\hline
c_d^T \\\hline
\end{array}
\cdot
\begin{array}{|c|c|c|}
\hline & &\\[0.5em]
b_1 & \dots & b_d \\
& & \\[0.5em]\hline
\end{array}
=
\begin{array}{|lcr|}
\hline 1 & & 0 \\
& \ddots & \\
0 & & 1 \\\hline
\end{array}
\]
Let $y \in \Lambda^\star$.
Since the $c_1, \ldots, c_d$ form a basis of $\R^d$,
we can write
\[
y = \alpha_1 c_1 + \dots + \alpha_d c_d,\, \alpha_j \in \R
\]
It suffices to show that all $\alpha_j \in \Z$,
which follows from
\[
\Z \ni y^T b_j = \alpha_1 c_1^T b_j + \dots + \alpha_d c_d^T b_j = \alpha_j.
\]
Now suppose $y \in \Lambda(B^{-T})$, that is,
we can write
\[
y = \alpha_1 c_1 + \dots + \alpha_d c_d,\, \alpha_j \in \Z
\]
Let $x \in \Lambda$, that is,
\[
x = \beta_1 b_1 + \dots + \beta_d b_d,\, \beta_j \in \Z
\]
Then
\[
y^Tx = \alpha_1 \beta_1 + \dots + \alpha_d \beta_d \in \Z
\]
That is, $y^Tx \in \Z$ for all $x \in \Lambda$,
hence $y \in \Lambda^\star$ by definition.
\end{proof}
\begin{corollary}
\label{corollary:transformed-dual-lattice}
Let $\Lambda \subset \R^d$ be a full-dimensional lattice.
\begin{enumerate}
\item $\det \Lambda^\star = \frac{1}{\det \Lambda}$.
\item $(\Lambda^\star)^\star = \Lambda$.
\item Let $M \in \R^{d\times d}$ be an invertible matrix.
Then $(M \Lambda)^\star = M^{-T} \Lambda^\star$.
\item $(\alpha \Lambda)^\star = \frac{1}{\alpha} \Lambda^\star$ for $\alpha > 0$.
\end{enumerate}
\end{corollary}
Intuitively, a dense lattice has a sparse dual and vice versa.
Two aspects of this connection are formalized in the Corollary,
but it can also be seen in the lattice hyperplanes corresponding to dual lattice vectors.
For a given $y \in \Lambda^\star$,
the distance between adjacent lattice hyperplanes $y^Tx = \alpha$ and $y^Tx = \alpha + 1$
for $\alpha \in \Z$ is $1 / \|y\|_2$.
In a dense lattice, lattice hyperplane translates must lie close to each other,
which means that dual lattice vectors must be long.
We will develop more statements of this form throughout this chapter.
\section{Successive minima and covering radius}
Let us define some measures of the overall sparsity of a lattice.
\begin{definition}
Let $\Lambda \subset \R^d$ be a full-dimensional lattice.
The \emph{successive minima} $\lambda_1, \ldots, \lambda_d$ of $\Lambda$ are
\[
\lambda_j(\Lambda) := \min\{ r > 0 ~:~ \dim( \Lambda \cap B(0,r) ) \geq j \}
\]
where the dimension is the dimension of the linear span of the lattice points
of norm at most $r$.
The \emph{covering radius} of $\Lambda$ is the maximal distance from the lattice:
\[
\mu(\Lambda) := \max_{p \in \R^d} d(p, \Lambda)
\]
When the lattice is clear from the context,
we write $\lambda_1, \ldots, \lambda_d$ and $\mu$.
Furthermore, we write $\lambda_j^\star$ and $\mu^\star$ for the corresponding
quantities of the dual lattice.
\end{definition}
The covering radius can be equivalently defined as the smallest radius $r$
such that the union of balls of radius $r$ around each lattice point
covers the entire space -- hence its name.
\begin{example}
\label{example:rect-lattice-minima}
The lattice $\Lambda := \Lambda \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$
satisfies $\lambda_1 = 1$, $\lambda_2 = 3$, and $\mu = \sqrt{10}/2$.
\begin{center}
\begin{tikzpicture}
\foreach \x in {-2,-1,...,2.1}
\foreach \y in {-1,0,1}
\fill ($\x*(0.5,0) + \y*(0,1.5)$) circle[radius=2pt];
\draw (0,0) node[below] {$0$};
\draw (0.25,0.75) circle[radius=0.76cm];
\fill (0.25,0.75) circle[radius=2pt] node[right] {$p$};
\end{tikzpicture}
\end{center}
\end{example}
As the example shows,
$\lambda_1$ is the length of a shortest vector,
but $\lambda_2$ need not be the length of a ``second-shortest'' vector.
Instead, it is the length of a shortest vector among all vectors that are
linearly independent from a shortest vector.
In general,
we can choose linearly independent vectors $v_1, \ldots, v_d \in \Lambda$ with $\|v_j\|_2 = \lambda_j$.
Such a set of vectors is called a set of \emph{shortest independent vectors} of the lattice.
An exercise shows that such a set need \emph{not} be a basis of the lattice.
\begin{lemma}
\label{lemma:mu-lambda-d}
Let $\Lambda$ be a $d$-dimensional lattice.
Then $\mu \geq \lambda_d / 2$.
\end{lemma}
\begin{proof}
All lattice points in the interior of the ball of radius $\lambda_d$ around the origin
lie in a hyperplane $H$.
A point at distance $\lambda_d/2$ from $H$ has distance at least $\lambda_d/2$ to the lattice,
see Figure~\ref{fig:mu-vs-lambda-d}.
\end{proof}
\begin{figure}
\begin{center}
\begin{tikzpicture}
\fill (0,0) circle[radius=2pt];
\draw (0,0) circle[radius=2cm];
\draw[thick] (20:-3) -- (20:3) node[below right] {$H$};
\draw (0,0) -- node[right] {$\lambda_d$} (110:2);
\draw (110:1) circle[radius=1cm];
\end{tikzpicture}
\end{center}
\caption{The proof that $\mu \geq \lambda_d / 2$.}
\label{fig:mu-vs-lambda-d}
\end{figure}
The lattice $\Z$ shows that the inequality of this Lemma is tight.
Let us now relate quantities of a lattice and its dual.
The following Lemma shows that a lattice and its dual cannot be too dense at the same time.
\begin{lemma}
\label{lemma:transference-lower-bound}
Let $\Lambda \subset \R^d$ be a full-dimensional lattice.
Then $\lambda_1^\star \cdot \lambda_d \geq 1$,
and hence $\lambda_1^\star \cdot \mu \geq 1/2$.
\end{lemma}
\begin{proof}
Let $y \in \Lambda^\star$ be a shortest vector
and let $v_1, \ldots, v_d \in \Lambda$ be shortest independent vectors.
Since the $v_j$ form a basis of $\R^d$,
we must have $y^T v_k \neq 0$ for at least one $k$.
Using the Cauchy-Schwarz inequality and the fact that $y^T v_k \in \Z$,
we can compute
\[
1 \leq |y^T v_k| \leq \|y\|_2 \|v_k\|_2 = \lambda_1^\star \lambda_k \leq \lambda_1^\star \lambda_d \qedhere
\]
\end{proof}
\begin{example}
Consider $\Lambda = \Lambda \begin{pmatrix} 1 & 0 \\ 0 & M \end{pmatrix}$ for $M > 1$.
We have $\Lambda^\star = \Lambda \begin{pmatrix} 1 & 0 \\ 0 & M^{-1} \end{pmatrix}$
and therefore
\begin{align*}
\lambda_1 &= 1 \\
\lambda_d &= M \\
\lambda_1^\star &= M^{-1} \\
\lambda_d^\star &= 1
\end{align*}
That is, the inequality of Lemma~\ref{lemma:transference-lower-bound} is tight,
both when applied to $\Lambda$ and when applied to $\Lambda^\star$.
\end{example}
We are interested in analogous statements showing
that a lattice and its dual cannot be too \emph{sparse} at the same time.
That is, we would like to have an \emph{upper bound} on a product of the form $\lambda_1^\star \cdot \lambda_d$.
Some bounds of this type are shown in the exercises of this chapter,
using Minkowski's theorem and LLL-reduced bases.
We will derive a much stronger bound in Section~\ref{sec:transference-bound-banaszczyk}.
\section{Lattice width and Flatness theorems}
We will now tie dual lattices and the quantities defined in the last section
together with the approach to integer programming based on lattice hyperplanes.
\begin{definition}
Let $K \subset \R^d$ be a convex body.
Let $\Lambda$ be a full-dimensional lattice and let $y \in \Lambda^\star$.
The \emph{lattice width of $K$ with respect to $y$} is
\[
w_y(K, \Lambda) := \max_{x \in K} y^T x - \min_{x \in K} y^T x
\]
The \emph{lattice width of $K$} is
\[
w(K, \Lambda) := \min_{y \in \Lambda^\star \setminus \{0\} } w_y(K,\Lambda)
\]
We write $w_y(K)$ or $w(K)$ when the lattice is clear from the context.
\end{definition}
The lattice width with respect to $y \in \Lambda^\star$
describes the distance in terms of lattice hyperplanes between parallel planes
sandwiching the convex body.
This width is particularly easy to compute for a ball $B(z,r)$,
see Figure~\ref{fig:lattice-width-ball}:
\begin{align*}
w_y(B(z,r)) &= \max_{x \in B(z,r)} y^Tx - \min_{x \in B(z,r)} y^Tx \\
&= y^T (z + r \frac{y}{\|y\|_2}) - y^T (z - r \frac{y}{\|y\|_2}) \\
&= 2r \frac{y^T y}{\|y\|_2} = 2r \|y\|_2
\end{align*}
\begin{figure}
\begin{center}
\begin{tikzpicture}
\draw[thick,fill=black!10] (0,0) circle[radius=1.5cm];
\fill (0,0) circle[radius=2pt] node[left] {$z$};
\draw (-30:1.5) +(60:-2) -- +(60:2);
\draw (-30:-1.5) +(60:-2) -- +(60:2);
\draw[->] (-30:1.5) ++(60:1) -- node[above,near end] {$y$} +(-30:0.6);
\draw (0,0) -- node[above] {$r$} (-30:1.5);
\end{tikzpicture}
\end{center}
\caption{The lattice width of a ball with respect to $y \in \Lambda^\star$.}
\label{fig:lattice-width-ball}
\end{figure}
\begin{lemma}
The lattice width of a ball of radius $r$ is $2r\lambda_1^\star$.
\end{lemma}
\begin{proof}
\[
w(B(z,r)) = \min_{y \in \Lambda^\star \setminus 0} w_y(B(z,r))
= \min_{y \in \Lambda^\star \setminus 0} 2r \|y\|_2 = 2r \lambda_1^\star
\qedhere
\]
\end{proof}
Since the lattice width is invariant under linear transformations (see the exercises),
this result easily extends to ellipsoids.
Intuitively, we can find the lattice width of an ellipsoid $E$
by finding a matrix $A$ such that $A \cdot E$ is a ball
and then computing a shortest vector in $A^{-T} \cdot \Lambda^\star$,
the dual lattice of $A \cdot \Lambda$.
\begin{theorem}[Flatness Theorem for Ellipsoids]
\label{thm:flatness-ellipsoids}
Let $d \in \N$.
Suppose there is a constant $c_d$ such that for every full-dimensional lattice $\Lambda \subset \R^d$
one has $\lambda_1^\star \cdot \mu \leq c_d$.
Then every ellipsoid $E$ with $w(E) \geq 2 c_d$ contains a lattice point.
\end{theorem}
\begin{proof}
By the above remark, we only need to consider the case where $E$ is a ball.
We have
\[
2 \lambda_1^\star \cdot \mu \leq 2 c_d \leq w(E) = 2r \lambda_1^\star,
\]
where $r$ is the radius of $E$.
This implies $\mu \leq r$.
Since $\mu$ is the maximal distance of any point from the lattice,
it follows that there is a lattice point with distance less than $r$ from the center of $E$.
\end{proof}
This suggests an analysis of the approach to integer programming
that we sketched in the beginning of this chapter,
at least in the case where $K$ is an ellipsoid:
Determine $w(K)$ using a shortest vector problem in an appropriately transformed dual lattice.
If $w(K) > 2c_d$, we can assert that $K$ contains a lattice point.
Otherwise, there are at most $\lfloor 2c_d + 1 \rfloor$
lattice hyperplanes in which we recursively solve a lower dimensional problem.
This leads to a running time of essentially $2^d c_d c_{d-1} \cdots c_1$.
In the remainder of this chapter,
we will show that we can choose $c_d = d$,
which leads to a running time for integer programming of essentially $2^{O(d \log d)}$.
For now,
let us remark that integer programming on ellipsoids is not very interesting in itself
because it is equivalent to a closest vector problem
with respect to a distorted $\ell_2$ norm.
We already saw how to solve this problem more efficiently in Chapter~\ref{chapter:voronoi-cell}.
Unlike the approach via Voronoi diagrams, however,
this new approach can be generalized to other convex bodies.
The key to the generalization is a classical result from convex geometry
about approximation of convex bodies by ellipsoids, see Figure~\ref{fig:loewner-john}.
For a proof of this result, see e.g. the exposition in~\cite{MR1491097}.
Note that the scaling factor of $d$ in the following Theorem is best possible,
since it is tight e.g. for simplices.
\begin{figure}
\begin{center}
\begin{tikzpicture}
\draw (0,0) circle[radius=1.5cm];
\draw (0,0) circle[radius=3cm];
\path[name path=face1] (30:1.5) +(120:-3) -- +(120:3);
\path[name path=faceA] (100:2.6) +(25:-3) -- +(25:3);
\path[name path=face2] (150:1.5) +(60:-3) -- +(60:3);
\path[name path=faceB] (180:1.9) + (90:-3) -- +(90:3);
\path[name path=face3] (270:1.5) +(-3,0) -- +(3,0);
\path[name path=faceC] (-45:2.1) +(45:-3) -- +(45:3);
\path[name intersections={of=face1 and faceA}] (intersection-1) coordinate (a);
\path[name intersections={of=face2 and faceA}] (intersection-1) coordinate (b);
\path[name intersections={of=face2 and faceB}] (intersection-1) coordinate (c);
\path[name intersections={of=face3 and faceB}] (intersection-1) coordinate (d);
\path[name intersections={of=face3 and faceC}] (intersection-1) coordinate (e);
\path[name intersections={of=face1 and faceC}] (intersection-1) coordinate (f);
\draw[thick] (a) -- (b) -- (c) -- (d) -- (e) -- (f) -- cycle;
\end{tikzpicture}
\end{center}
\caption{Approximating a convex body by ellipsoids as per Theorem~\ref{thm:loewner-john}.}
\label{fig:loewner-john}
\end{figure}
\begin{theorem}[Löwner-John ellipsoid]
\label{thm:loewner-john}
Let $K \subset \R^d$ be a convex body of positive volume
and let $E \subseteq K$ be an ellipsoid of maximal volume.
Then
\begin{enumerate}
\item $E$ is unique and
\item $K \subset d \star E$, where $d \star E$ is the scaling of $E$ by a factor of $d$ around its center.
\end{enumerate}
\end{theorem}
\begin{corollary}[Flatness Theorem]
Let $d \in \N$.
Suppose there is a constant $c_d$ such that
for every full-dimensional lattice $\Lambda \subset \R^d$
one has $\lambda_1^\star \cdot \mu \leq c_d$.
Then every convex body $K$ with $w(K) \geq 2d \cdot c_d$ contains a lattice point.
\end{corollary}
\begin{proof}
Let $E \subseteq K \subseteq d \star E$ as in Theorem~\ref{thm:loewner-john}.
Since
\[
d \cdot w(E) = w(d \star E) \geq w(K) \geq 2d \cdot c_d
\]
we have $w(E) \geq 2c_d$,
so there is a lattice point $x \in \Lambda \cap E \subseteq \Lambda \cap K$
by Theorem~\ref{thm:flatness-ellipsoids}.
\end{proof}
The best possible \emph{flatness constant} that can be derived with this approach is $\Theta(d^2)$.
A better flatness constant has been shown using more advanced techniques~\cite{MR1854250, MR1755679}:
if $K$ is an arbitrary convex body with $w(K) > \Omega(d^{4/3} \log^c d)$,
then $K$ contains a lattice point.
For centrally symmetric convex bodies
and for polytopes with polynomially many vertices or facets,
the flatness constant is known to be $O(d \log d)$~\cite{MR1410163,MR1854250}.
\section{Fourier series}
Our goal for the remainder of the chapter is to show a \emph{transference bound}
$\lambda_1^\star \cdot \mu \leq d$.
The covering radius $\mu$ is defined as the maximum of the $\Lambda$-periodic function $d(p,\Lambda)$,
so we will use Fourier analysis to study such functions.
\begin{definition}
A function $f: \R^d \to \C$ is $\Lambda$-periodic if $f(p + x) = f(p)$ for all $p \in \R^d$
and $x \in \Lambda$.
\end{definition}
One can say that
Fourier analysis is the study of a change of coordinates between two orthonormal bases
of a space of functions.
One of the bases is ``the pointwise basis'' while the other basis is in terms of simple wave functions.
Such language is to be taken with a grain of salt when talking about spaces of functions,
but it should serve as a reasonable guide to intuition.
Talking about orthonormality requires a scalar product on $\Lambda$-periodic functions:
\[
\langle f, g \rangle_\Lambda := \frac{1}{\det \Lambda} \int_{\cP_B} f(p) \overline{g(p)} \,dp
\]
where $B$ is some basis of $\Lambda$ and $\overline{z}$ is the complex conjugate of $z \in \C$.
As an orthonormal basis of wave functions,
we will use
\[
\omega_y(p) := e^{2\pi i p^T y}
\]
for $y \in \Lambda^\star$.
Let us establish some basic facts about $\langle \cdot, \cdot \rangle_\Lambda$ and the $\omega_y$.
\begin{remark}
In general,
we will not be precise about the exact integrability (and often continuity) conditions on $f$ and $g$.
\end{remark}
\begin{lemma}
$\langle \cdot, \cdot \rangle_\Lambda$ is a scalar product on
sufficiently nice $\Lambda$-periodic functions.
Furthermore, for every half-open polytope $P \subset \R^d$ such that
the translates $x + P$, $x \in \Lambda$, form a tiling of $\R^d$
(that is, $\R^d = \bigcup_{x\in \Lambda} x + P$ is a disjoint union),
one has
\[
\langle f, g \rangle_\Lambda = \frac{1}{\det \Lambda} \int_{P} f(p) \overline{g(p)} \,dp.
\]
In particular, the definition of $\langle \cdot, \cdot \rangle_\Lambda$
is independent of the choice of basis $B$.
\end{lemma}
\begin{proof}
One easily checks that $\langle \cdot, \cdot \rangle_\Lambda$
is a scalar product, that is, it satisfies linearity, conjugate symmetry, and positive definiteness.
For the second part,
the intuitive idea is that we can slice $P$ along the tiling defined by $\cP_B$
and then reassemble the pieces of $P$ into a disjoint union
equal to $\cP_B$.
This is similar to the proof of Theorem~\ref{thm:blichfeldt}.
We define $P_x := P \cap (x + \cP_B)$ for $x \in \Lambda$
and note that $P$ is the disjoint union of the $P_x$.
It is straightforward to show that $\cP_B$ is the disjoint union of the $P_x - x$.
We can use this to compute
\begin{align*}
\int_P f(p) \overline{g(p)} \,dp &= \sum_{x \in \Lambda} \int_{P_x} f(p) \overline{g(p)} \,dp
= \sum_{x \in \Lambda} \int_{P_x - x} f(p) \overline{g(p)} \,dp
= \int_{\cP_B} f(p) \overline{g(p)} \,dp
\end{align*}
For the second equation, we used the $\Lambda$-periodicity of $f$ and $g$.
Note that even though we operate with infinite sums,
there are no issues of convergence because only finitely many summands are non-zero.
\end{proof}
\begin{lemma}
\label{lemma:omega-orthonormal}
The $\omega_y$ form an orthonormal system of $\Lambda$-periodic functions.
\end{lemma}
\begin{proof}
First, we check that
\[
\omega_y(p + x) = e^{2\pi i (p + x)^T y}
= e^{2\pi i p^Ty} \cdot \underbrace{e^{2\pi i \overbrace{x^Ty}^{\in \Z}}}_{=1} = \omega_y(p)
\]
for $y \in \Lambda^\star$ and $x \in \Lambda$.
Furthermore,
\begin{align*}
\langle \omega_y, \omega_y \rangle &= \frac{1}{\det \Lambda} \int_{\cP_B} \omega_y(p) \overline{\omega_y(p)} \,dp \\
&= \frac{1}{\det\Lambda} \int_{\cP_B} 1 \,dp = 1
\end{align*}
Finally, let $y \neq z \in \Lambda^\star$. Then
\begin{align*}
\langle \omega_y, \omega_z \rangle
&= \frac{1}{\det \Lambda} \int_{\cP_B} e^{2\pi i p^T(y - z)} \,dp
\end{align*}
Let $\Lambda' := \{ x \in \Lambda ~:~ x^T (y - z) = 0 \}$
and let $P'$ be a fundamental parallelepiped of $\Lambda'$.
Let $k \in \N_{\geq 1}$ be minimal such that the hyperplane $x^T (y - z) = k$
contains a lattice point.
Then $P := P' + [0,w)$, $w := k \cdot \frac{y - z}{\|y-z\|_2^2}$,
is a fundamental region of $\Lambda$, see Figure~\ref{fig:omega-orthogonal},
and we can rewrite the integral as.
\begin{align*}
\langle \omega_y, \omega_z \rangle
&= \frac{1}{\det \Lambda} \int_{P} e^{2\pi i p^T(y - z)} \,dp \\
&= \frac{1}{\det \Lambda} \int_{P'} e^{2\pi i p^T(y - z)}
\underbrace{\int_{[0,w)} e^{2\pi i q^T(y-z)} \,dq}_{=0} \,dp = 0
\end{align*}
The last equation follows from the fact that $w^T (y - z) = k$ is a positive integer,
and the inner integral can therefore be written as an integral over a closed path in the complex plane.
\end{proof}
\begin{figure}
\begin{center}
\begin{tikzpicture}
\coordinate (w) at (1.8,0.6);
\coordinate (w') at ($(w) + (-0.4,1.2)$);
\fill[black!10] (0,0) -- (w) -- (w') -- (-0.4,1.2) -- cycle;
\draw[very thick] (0,0) -- node[left] {$P'$} (-0.4,1.2);
\draw (0,0) -- (w);
\draw (-0.4,1.2) -- (w');
\fill (0,0) circle[radius=2pt] node[left] {$0$};
\foreach \x in {0,1,...,3} {
\draw ($\x*(2,0)$) +(0.5,-1.5) -- +(-1.0,3);
\foreach \y in {-1,0,...,2.01}
\fill ($\x*(2,0) + \y*(-0.4,1.2)$) circle[radius=2pt];
}
\draw[fill=white] (w) circle[radius=2pt] node[right] {$w$};
\draw (0.7,0.9) node {$P$};
\draw (0.5,-1.5) node[below] {$\scriptstyle x^T(y-z) = 0$};
\draw (2.5,-1.5) node[below] {$\scriptstyle x^T(y-z) = 2$};
\draw[->] (2.2,-0.6) -- node[below,very near end] {$y-z$} +(1.2,0.4);
\foreach \x in {-0.5,0.5,1.5,...,3.501}
\draw[help lines] ($\x*(2,0)$) +(0.5,-1.5) -- +(-1.0,3);
\end{tikzpicture}
\end{center}
\caption{Integrating parallel to $y-z$ in the proof of Lemma~\ref{lemma:omega-orthonormal}.}
\label{fig:omega-orthogonal}
\end{figure}
\begin{definition}
Let $f: \R^d \to \C$ be $\Lambda$-periodic.
The \emph{Fourier series} of $f$ is $\hat f: \Lambda^\star \to \C$ where
\[
\hat f(y) := \langle f, \omega_y \rangle_\Lambda = \frac{1}{\det \Lambda} \int_{\cP_B} f(p) e^{-2\pi i p^T y} \,dp,
\quad y \in \Lambda^\star
\]
\end{definition}
\begin{theorem}
For sufficiently nice $\Lambda$-periodic $f$, one has $f = \sum_{y \in \Lambda^\star} \hat f(y) \omega_y$.
\end{theorem}
\section{The distance from a lattice and Fourier transform}
The function $p \mapsto d(p,\Lambda)$,
which we might want to use to study the covering radius $\mu$,
is $\Lambda$-periodic.
However,
it is unwieldy for Fourier analysis since it is not even differentiable.
Let us instead consider the function $g_\Lambda: \R^d \to \R$ defined by
\[
g_\Lambda(p) := \sum_{x \in \Lambda} e^{-\pi \|p - x\|_2^2}
\]
This function is a sum of normal distributions centered at each lattice point:
\begin{center}
\begin{tikzpicture}
\clip (-2,-1.5) rectangle (2,1.5);
\foreach \x in {-3,-2,...,3.01}
\foreach \y in {-2,-1,...,2.01} {
\fill ($\x*(1.4,0.1) + \y*(0.2,1.2)$) circle[radius=2pt];
\draw[help lines] ($\x*(1.4,0.1) + \y*(0.2,1.2)$)
circle[radius=0.1cm]
circle[radius=0.2cm]
circle[radius=0.28cm]
circle[radius=0.34cm]
circle[radius=0.40cm]
circle[radius=0.55cm];
}
\end{tikzpicture}
\end{center}
Intuitively, $g_\Lambda(p)$ should be quite small if $d(p,\Lambda) > \sqrt{d}$,
because then $e^{-\pi \|p - x\|_2^2} < e^{-\pi d}$ for every $x \in \Lambda$,
so it should be a useful tool for lattices with $\mu > \sqrt{d}$.
This is not quite true in absolute terms, however.
Consider the lattice $\Lambda := \Lambda \begin{pmatrix} \varepsilon & 0 \\ 0 & C \end{pmatrix}$
for $\varepsilon > 0$ small and $C > 0$ large, see Figure~\ref{fig:g-sparse-dense-lattice}.
There is a point $p$ at distance $C/2$ of the lattice,
but $g_\Lambda(p) \to \infty$ as $\varepsilon \to 0$.
That is, we will have to measure $g_\Lambda(p)$ relative to some other quantity.
\begin{figure}
\begin{center}
\begin{tikzpicture}
\foreach \x in {-10,-9,...,10.01}
\foreach \y in {0,1}
\fill ($\x*(0.24,0) + \y*(0,2)$) circle[radius=2pt];
\fill (0.12,1) circle[radius=2pt] node[right] {$p$};
\end{tikzpicture}
\end{center}
\caption{$g_\Lambda(p)$ can be arbitrarily large even for points that are far from the lattice.}
\label{fig:g-sparse-dense-lattice}
\end{figure}
First, let us compute the Fourier series of $g$.
\begin{align*}
\widehat{g_\Lambda}(y) &= \langle g_\Lambda, \omega_y \rangle_\Lambda
= \frac{1}{\det\Lambda} \int_{\cP_B} g_\Lambda(p) e^{-2\pi i p^T y} \,dp \\
&= \frac{1}{\det\Lambda} \int_{\cP_B} \sum_{x \in \Lambda} e^{-\pi \|p - x\|_2^2} e^{-2\pi i p^T y} \,dp \\
&= \frac{1}{\det\Lambda} \int_{\cP_B} \sum_{x \in \Lambda} e^{-\pi \|p + x\|_2^2} e^{-2\pi i (p + x)^T y} \,dp \\
&= \frac{1}{\det\Lambda} \sum_{x \in \Lambda} \int_{x + \cP_B} e^{-\pi \|p\|_2^2} e^{-2\pi i p^T y} \,dp \\
&= \frac{1}{\det\Lambda} \int_{\R^d} e^{-\pi \|p\|_2^2} e^{-2\pi i p^T y} \,dp
\end{align*}
This motivates the introduction of the second main tool from Fourier analysis.
\begin{definition}
Let $f:\R^d \to \C$ with $\int |f| < \infty$.
The \emph{Fourier transform} of $f$ is $\tilde f: \R^d \to \C$, where
\[
\tilde f(y) := \int_{\R^d} f(p) e^{-2\pi i p^Ty} \,dp
\]
\end{definition}
\begin{theorem}
For sufficiently nice $f: \R^d \to \C$, one has $f(p) = \int_{\R^d} \tilde f(y) e^{2\pi i p^Ty} \,dy$.
\end{theorem}
\begin{fact}
The function $\rho: \R^d \to \R$, $\rho(x) := e^{-\pi \|x\|_2^2}$
is a fix point of the Fourier transform.
That is, $\tilde \rho = \rho$.
\end{fact}
\begin{lemma}[Fourier coefficients of $g_\Lambda$]
\label{lemma:fourier-coeff-g}
$\widehat{g_\Lambda}(y) = \det\Lambda^\star \rho(y)$.
\end{lemma}
\begin{proof}
We continue the computation from above:
\begin{align*}
\widehat{g_\Lambda}(y) &= \frac{1}{\det\Lambda} \int_{\R^d} \rho(p) e^{-2\pi i p^T y} \,dp \\
&= \det\Lambda^\star \tilde\rho(y) = \det\Lambda^\star \rho(y) \qedhere
\end{align*}
\end{proof}
As an aside,
Lemma~\ref{lemma:fourier-coeff-g} is related to the more general \emph{Poisson summation formula}.
For \emph{any} function $f(p) := \sum_{x \in \Lambda} h(p+x)$, where $h : \R^d \to \C$ is sufficiently nice,
the same kind of computation leads to
\[
\hat f(y) = \det\Lambda^\star \tilde h(y)
\]
In particular, we get
\[
h(\Lambda) = \sum_{x\in\Lambda} h(x)
= f(0) = \sum_{y \in \Lambda^\star} \hat f(y)
= \det\Lambda^\star \sum_{y \in \Lambda^\star} \tilde h(y) = \det\Lambda^\star \tilde h(\Lambda^\star).
\]
In any case, knowing the Fourier coefficients of $g_\Lambda$
opens the door to some new observations.
For example,
\[
g_\Lambda(p) = \sum_{y \in \Lambda^\star} \underbrace{\widehat{g_\Lambda}(y)}_{> 0} \underbrace{e^{2\pi i p^T y}}_{|\cdot| = 1}
\leq \sum_{y \in \Lambda^\star} \widehat{g_\Lambda}(y) = g_\Lambda(0)
\]
holds for all $p \in \R^d$.
Let us define
\[
f_\Lambda(p) := g_\Lambda(p) / g_\Lambda(0),
\]
measuring $g_\Lambda$ relative to its value at a lattice point.
We can confirm our intuition that $f$ should be large for points that lie close to the lattice.
\begin{lemma}
\label{lemma:f-large-close-to-lattice}
For all $p \in \R^d$, one has $f_\Lambda(p) \geq e^{-\pi d(p,\Lambda)^2}$.
\end{lemma}
\begin{proof}
For any $p \in \R^d$, we have
\begin{align*}
g_\Lambda(p) &= \sum_{x\in\Lambda} e^{-\pi \|p - x\|_2^2}
= \frac{1}{2} \sum_{x\in\Lambda} \left( e^{-\pi \|p-x\|_2^2} + e^{-\pi \|p+x\|_2^2} \right) \\
&= \sum_{x\in\Lambda} \frac{1}{2} \left( e^{-\pi (p^Tp - 2p^Tx + x^T x)} + e^{-\pi (p^Tp + 2p^Tx + x^Tx)} \right) \\
&= e^{-\pi \|p\|_2^2} \sum_{x\in\Lambda} \frac{1}{2} \left( e^{-\pi (x - 2p)^T x} + e^{-\pi (x + 2p)^T x} \right) \\
&\geq e^{-\pi \|p\|_2^2} \sum_{x\in\Lambda} e^{-\pi x^Tx} = e^{-\pi \|p\|_2^2} g_\Lambda(0),
\end{align*}
where the inequality follows from convexity.
This implies the result because $\Lambda$-periodicity allows us
to assume $\|p\|_2 = d(p,\Lambda)$ without loss of generality.
\end{proof}
In particular, if $d(p,\Lambda)$ is smaller than some constant,
then $f_\Lambda(p)$ is larger than a corresponding constant between $0$ and $1$.
On the other hand,
we will see that the inequality in Lemma~\ref{lemma:f-large-close-to-lattice}
is remarkably good even for points that are far away from the lattice.
In particular, $f_\Lambda(p)$ is exponentially small if $d(p,\Lambda) > \sqrt{d}$.
\begin{lemma}
\label{lemma:f-small-close-to-lattice}
For all $p \in \R^d$ and $k \in \N$, $k \geq 2$,
one has $f_\Lambda(p) \leq k^d e^{-(1-1/k^2) \pi d(p,\Lambda)^2}$.
When $d(p,\Lambda) \geq \sqrt{d}$, we have $f_\Lambda(p) \leq e^{-\pi d(p,\Lambda)^2 / 2}$.
\end{lemma}
\begin{proof}
We compare the lattices $\Lambda$ and $\frac{1}{k} \Lambda$.
\begin{align*}
g_{\frac{1}{k}\Lambda}(p/k) &= \sum_{x\in\Lambda} e^{-\pi/k^2 \|p - x\|_2^2} \\
&= \sum_{x \in\Lambda} e^{(1-1/k^2) \pi \|p - x\|_2^2} \cdot e^{-\pi \|p - x\|_2^2}
\geq e^{(1-1/k^2) \pi d(p,\Lambda)^2} g_\Lambda(p)
\end{align*}
On the other hand,
\begin{align*}
g_{\frac{1}{k}\Lambda}(p/k)
&\leq g_{\frac{1}{k}\Lambda}(0) \\
&= \sum_{y \in (\frac{1}{k}\Lambda)^\star} \widehat{g_{\frac{1}{k}\Lambda}}(y)
= \det (\frac{1}{k}\Lambda)^\star \sum_{y \in (\frac{1}{k}\Lambda)^\star} \rho(y)
= k^d \det\Lambda^\star \sum_{y \in k\Lambda^\star} \rho(y) \\
&\leq k^d \det\Lambda^\star \sum_{y \in \Lambda^\star} \rho(y)
= k^d \sum_{y\in\Lambda^\star} \widehat{g_\Lambda}(y) = k^d g_\Lambda(0)
\end{align*}
and the first claim follows.
The second claim follows by choosing $k = 2$,
since for $d(p,\Lambda) \geq \sqrt{d}$:
\begin{align*}
2^d e^{-\frac{3}{4} \pi d(p,\Lambda)^2}
&\leq e^{(\ln 2 - \frac{3}{4}\pi) d(p,\Lambda)^2} \leq e^{-\frac{1}{2} \pi d(p, \Lambda)^2}
\end{align*}
We used the fact that $\ln 2 < \pi/4$.
\end{proof}
\begin{remark}
\begin{enumerate}
\item
The condition that $k$ should be a natural number can be relaxed
if we modify the proof using the Fourier transform of functions
$\rho_k(p) = e^{-\pi \|p/k\|_2^2}$.
\item
Is it possible to efficiently compute a good approximation of $f(p)$?
If yes, this might lead to a sub-exponential time algorithm that approximates
the closest vector problem up to a factor of $\sqrt{d}$.
The existence of such an algorithm is plausible
because it is known that $\sqrt{d}$-approximate CVP lies in $NP \cap coNP$~\cite{MR2176561}.
In fact, the presentation in this chapter is loosely inspired by that paper,
which shows that an approximation of $f$ obtained by sampling Fourier coefficients
may be used as a certificate that
a given target point lies far from the lattice, and hence the problem lies in $coNP$.
\end{enumerate}
\end{remark}
\section{Banaszczyk's transference bound}
\label{sec:transference-bound-banaszczyk}
Suppose that $\mu = \sqrt{d}$.
By Lemma~\ref{lemma:f-small-close-to-lattice},
there is a point $p_0$ for which $f(p_0) \leq e^{-\pi d / 2}$.
That is, $g_\Lambda(p)$ fluctuates quite dramatically.
On the other hand,
\begin{align*}
g_\Lambda(p)
&= \sum_{y \in \Lambda^\star} \widehat{g_\Lambda}(y) e^{2\pi i p^T y}
= \det \Lambda^\star \sum_{y \in \Lambda^\star} \rho(y) e^{2\pi i p^T y},
\end{align*}
where the sum can be written as
\begin{align*}
1 + \underbrace{\sum_{y \in \Lambda^\star \setminus 0} \rho(y) e^{2\pi i p^T y}}_{
|\cdot| \leq \sum_{y \in \Lambda^\star} \rho(y)}
\end{align*}
It stands to reason that $\sum_{y \in \Lambda^\star} \rho(y) = g_{\Lambda^\star}(0) - 1$
is quite small when $\lambda_1^\star > \sqrt{d}$,
and hence $g_\Lambda(p)$ cannot fluctuate much.
This is indeed the case.
The Lemma formulates the required result for the primal rather than the dual lattice.
\begin{lemma}
Let $\lambda_1 > \sqrt{d}$. Then $g_\Lambda(0) < 1 + 2 \cdot 2^{-d}$.
\end{lemma}
\begin{proof}
The proof is analogous to Lemma~\ref{lemma:f-small-close-to-lattice}.
\begin{align*}
\sum_{y \in \Lambda \setminus 0} e^{-\pi/4 \|y\|_2^2}
&= \sum_{y \in \Lambda \setminus 0} e^{-\pi \|y\|_2^2} \cdot e^{\frac{3}{4} \pi \overbrace{\|y\|_2^2}^{>d}}
> e^{\frac{3}{4} \pi d} \sum_{y \in \Lambda \setminus 0} e^{-\pi \|y\|_2^2}
% = e^{\frac{3}{4} \pi d} (g_\Lambda(0) - 1)
\end{align*}
On the other hand,
\begin{align*}
\sum_{y \in \Lambda \setminus 0} e^{-\pi/4 \|y\|_2^2}
&= \sum_{y \in \frac{1}{2} \Lambda \setminus 0} e^{-\pi \|y\|_2^2}
\\ & < g_{\frac{1}{2} \Lambda}(0)
= \sum_{y \in (\frac{1}{2} \Lambda)^\star} \widehat{g_{\frac{1}{2} \Lambda}}(y)
\\ & = \det(\frac{1}{2} \Lambda)^\star \sum_{y \in (\frac{1}{2} \Lambda)^\star} \rho(y)
= 2^d \det \Lambda^\star \sum_{y \in 2\Lambda^\star} \rho(y)
\\ & < 2^d \det \Lambda^\star \sum_{y \in \Lambda^\star} \rho(y)
= 2^d \sum_{y \in \Lambda^\star} \widehat{g_\Lambda}(y)
= 2^d g_\Lambda(0)
\end{align*}
Overall, we obtain
\[
2^d g_\Lambda(0) > e^{\frac{3}{4}\pi d} (g_\Lambda(0) - 1) > 4^d (g_\Lambda(0) - 1).
\]
We may rearrange as
\[
g_\Lambda(0) - 1 < 2^{-d} g_\Lambda(0)
\]
and finally get
\[
g_\Lambda(0) < \frac{1}{1 - 2^{-d}}
= 1 + \frac{2^{-d}}{\underbrace{1 - 2^{-d}}_{\geq 1/2}} \leq 1 + 2 \cdot 2^{-d}.
\qedhere
\]
\end{proof}
Let us apply this result to the dual lattice and continue the line of thought from before.
If $\lambda_1^\star > \sqrt{d}$,
we now get
\[
g_\Lambda(p) \geq \det \Lambda^\star (1 - (g_{\Lambda^\star}(0) - 1)) > \det \Lambda^\star (1 - 2 \cdot 2^{-d})
\]
for all $p \in \R^d$.
On the other hand,
\[
g_\Lambda(0) = \det \Lambda^\star g_{\Lambda^\star}(0) < \det\Lambda^\star (1 + 2 \cdot 2^{-d}).
\]
To summarize,
\begin{align*}
f(p) &= \frac{g_\Lambda(p)}{g_\Lambda(0)}
> \frac{1 - 2 \cdot 2^{-d}}{1+2\cdot 2^{-d}}
= 1 - \frac{4 \cdot 2^{-d}}{1 + 2 \cdot 2^{-d}}
= 1 - \frac{2}{2^{d - 1} + 1} \geq \frac{1}{3}
\end{align*}
for $d \geq 2$.
On the other hand,
we exhibited a point with $f(p_0) \leq e^{-\pi d/2} < \frac{1}{3}$.
This is a contradiction.
\begin{theorem}
\label{thm:transference-bound}
$\lambda_1^\star \cdot \mu \leq d$.
\end{theorem}
\begin{proof}
Scaling the lattice does not change $\lambda_1^\star \cdot \mu$,
so we may assume $\mu = \sqrt{d}$.
For $d \geq 2$, the discussion above shows a contradiction when $\lambda_1^\star > \sqrt{d}$.
For $d = 1$, observe that the claim holds for $\Lambda = \Z$.
The same scaling argument extends the claim to any other lattice.
\end{proof}
\section*{Exercises}
\begin{enumerate}
\item
Let $\Lambda \subset \R^d$ be a full-dimensional lattice.
Show: a vector $y \in \Lambda^\star \setminus \{0\}$ is primitive
if and only if
every lattice hyperplane $\{ y^T x = \alpha\}$, $\alpha \in \Z$, contains a point of $\Lambda$.
\item Prove Corollary~\ref{corollary:transformed-dual-lattice}.
\item
Show that the successive minima and the covering radius of a lattice are well-defined,
i.e. that the minimum (respectively maximum) in the definition is achieved.
\item
\begin{enumerate}[(a)]
\item Show: Every $2$-dimensional lattice has a basis $(b_1, b_2)$
in which $\|b_1\|_2 = \lambda_1$ and $\|b_2\| = \lambda_2$.
\item
Consider the \emph{parity lattice}
$\Lambda := \{ x \in \Z^d ~:~ x_1 \equiv \dots \equiv x_d \pmod{2} \}$.
Show: For $d \geq 5$, $\Lambda$ has no basis of shortest independent vectors,
that is, there is no basis that satisfies $\|b_j\|_2 = \lambda_j$ for all $j$.
\end{enumerate}
\item
Show $\lambda_1^\star \cdot \mu \leq 2^{(d-2)/2}$ using an LLL-reduced basis.
\item
\begin{enumerate}[(a)]
\item Show that
$\lambda_1 \leq 2 \left( \frac{\det \Lambda}{V_d} \right)^{1/d}$,
where $V_d = \frac{\pi^{d/2}}{\Gamma(\frac{d}{2} + 1)}$ is the volume of a unit ball.
\item Show: $\lambda_1 \cdot \lambda_1^\star \leq d$.
\end{enumerate}
\item
Show that lattice width is invariant under linear transformations:
Let $\Lambda$ be a lattice, $K$ be a convex body, and $f$ an invertible linear transformation.
Then $w(K, \Lambda) = w(f(K), f(\Lambda))$.
\end{enumerate}