-
Notifications
You must be signed in to change notification settings - Fork 30
/
train.py
164 lines (117 loc) · 4.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from __future__ import division
import torch
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import transforms
import numpy as np
import utils
# Model
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def trainEpoch(train_loader, model, criterion, optimizer, epoch):
# object to store & plot the losses
losses = utils.AverageMeter()
# switch to train mode
model.train()
# Train in mini-batches
for batch_idx, data in enumerate(train_loader):
# get the inputs
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels)
losses.update(loss.data.cpu().numpy(), labels.size(0))
loss.backward()
optimizer.step()
# Print info
print('Train Epoch: {} [{}/{} ({:.0f}%)]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch, batch_idx, len(train_loader), 100. * batch_idx / len(train_loader), loss=losses))
# Plot loss after all mini-batches have finished
plotter.plot('loss', 'train', 'Class Loss', epoch, losses.avg)
def valEpoch(val_loader, model, criterion, epoch):
losses = utils.AverageMeter()
# switch to evaluation mode
model.eval()
with torch.no_grad():
# Mini-batches
for batch_idx, data in enumerate(val_loader):
# get the inputs
inputs, labels = data
# forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels)
losses.update(loss.data.cpu().numpy(), labels.size(0))
_, predicted = torch.max(outputs, 1)
# Save predicted to compute accuracy
if batch_idx==0:
out = predicted.data.cpu().numpy()
label = labels.cpu().numpy()
else:
out = np.concatenate((out,predicted.data.cpu().numpy()),axis=0)
label = np.concatenate((label, labels.cpu().numpy()),axis=0)
# Accuracy
acc = np.sum(out == label)/len(out)
# Print validation info
print('Validation set: Average loss: {:.4f}\t'
'Accuracy {acc}'.format(losses.avg, acc=acc))
# Plot validation results
plotter.plot('loss', 'val', 'Class Loss', epoch, losses.avg)
plotter.plot('acc', 'val', 'Class Accuracy', epoch, acc)
# Return acc as the validation outcome
return acc
def trainProcess():
# Load model
model = Net()
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
best_val = float(0)
# CIFAR-10 Data
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=512,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=512,
shuffle=False, num_workers=2)
# Now, let's start the training process!
print('Training...')
for epoch in range(100):
# Compute a training epoch
trainEpoch(trainloader, model, criterion, optimizer, epoch)
# Compute a validation epoch
lossval = valEpoch(testloader, model, criterion, epoch)
# Print validation accuracy and best validation accuracy
best_val = max(lossval, best_val)
print '** Validation: %f (best) - %f (current)' % (best_val, lossval)
if __name__ == "__main__":
# Plots
global plotter
plotter = utils.VisdomLinePlotter(env_name='Tutorial Plots')
# Training process
trainProcess()