From 72008d252ca4242b74cf39dffbf4c95c4d0ff8ce Mon Sep 17 00:00:00 2001 From: Oliver Borchers Date: Sat, 27 Nov 2021 15:13:22 +0100 Subject: [PATCH] V0.1.17 (#51) * Updated readme * Updated gitignore * Travis for all branches * Fixed setup.py * Updated gitignore * blacked * Updated travis * Fixed travis branches * Updated ci for PR checks * Fixed Typing Issue * Removed 3.10 build --- .gitignore | 2 + .travis.yml | 2 + README.md | 37 +- fse/__init__.py | 24 +- fse/inputs.py | 237 +- fse/models/average.py | 20 +- fse/models/average_inner.c | 9119 ++++++++++++++++++++++++++++++ fse/models/average_inner.pxd | 4 +- fse/models/average_inner.pyx | 4 +- fse/models/base_s2v.py | 68 +- fse/models/sentencevectors.py | 28 +- fse/models/sif.py | 8 +- fse/models/usif.py | 8 +- fse/models/utils.py | 14 +- fse/test/test_average.py | 8 +- fse/test/test_base_s2v.py | 4 +- fse/test/test_inputs.py | 4 +- fse/test/test_sentencevectors.py | 4 +- fse/test/test_utils.py | 5 +- notebooks/STS-Benchmarks.ipynb | 338 +- setup.py | 15 +- 21 files changed, 9556 insertions(+), 397 deletions(-) create mode 100644 fse/models/average_inner.c diff --git a/.gitignore b/.gitignore index 3433c1c..37a54f4 100644 --- a/.gitignore +++ b/.gitignore @@ -7,6 +7,8 @@ *.o *.so *.pyc +*.pyo +*.pyd # Packages # ############ diff --git a/.travis.yml b/.travis.yml index d15b8e6..967b9e2 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,3 +1,4 @@ +if: (type = push AND branch IN (master, develop)) OR (type = pull_request AND NOT branch =~ /no-ci/) sudo: false cache: @@ -12,6 +13,7 @@ python: - "3.6" - "3.7" - "3.8" + - "3.9" branches: only: diff --git a/README.md b/README.md index bccbf53..01a4bbb 100644 --- a/README.md +++ b/README.md @@ -12,12 +12,26 @@ Fast Sentence Embeddings (fse) Fast Sentence Embeddings is a Python library that serves as an addition to Gensim. This library is intended to compute *sentence vectors* for large collections of sentences or documents. -**Disclaimer**: I am currently working full time. Unfortunately, I have yet to find time to add all the features I'd like to see. Especially the API needs some overhaul and we need support for gensim 4.0.0. If you want to support [fse](https://forms.gle/8uSU323fWUVtVwcAA), take a quick survey to improve it :-) +**Disclaimer**: I am working full time. Unfortunately, I have yet to find time to add all the features I'd like to see. Especially the API needs some overhaul and we need support for gensim 4.0.0. + +I am looking for active contributors to keep this package alive. Please feel free to ping me at if you are interested. + +Audience +------------ + +This package builds upon Gensim and is intenteded to compute sentence/paragraph vectors for large databases. Use this package if: +- (Sentence) Transformers are too slow +- Your dataset is too large for existing solutions (spacy) +- Using GPUs is not an option. + +The average (online) inference time for a well optimized (and batched) sentence-transformer is around 1ms-10ms per sentence. +If that is not enough and you are willing to sacrifice a bit in terms of quality, this is your package. + Features ------------ -Find the corresponding blog post(s) here: +Find the corresponding blog post(s) here (code may be outdated): - [Visualizing 100,000 Amazon Products](https://towardsdatascience.com/vis-amz-83dea6fcb059) - [Sentence Embeddings. Fast, please!](https://towardsdatascience.com/fse-2b1ffa791cf9) @@ -57,20 +71,12 @@ Key features of **fse** are: I regularly observe 300k-500k sentences/s for preprocessed data on my Macbook (2016). Visit **Tutorial.ipynb** for an example. -Things I will work on next: - -**[ ]** MaxPooling / Hierarchical Pooling Embedding - -**[ ]** Approximate Nearest Neighbor Search for SentenceVectors - - - Installation ------------ This software depends on NumPy, Scipy, Scikit-learn, Gensim, and Wordfreq. -You must have them installed prior to installing fse. Required Python version is 3.6. +You must have them installed prior to installing fse. As with gensim, it is also recommended you install a BLAS library before installing fse. @@ -157,6 +163,11 @@ Model | [STS Benchmark](http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark#Re Changelog ------------- +0.1.17: +- Fixed dependency issue where you cannot install fse properly +- Updated readme +- Updated travis python versions (3.6, 3.9) + 0.1.15 from 0.1.11: - Fixed major FT Ngram computation bug - Rewrote the input class. Turns out NamedTuple was pretty slow. @@ -186,9 +197,9 @@ Proceedings of the 3rd Workshop on Representation Learning for NLP. (Toulon, Fra Copyright ------------- -Author: Oliver Borchers +Author: Oliver Borchers -Copyright (C) 2019 Oliver Borchers +Copyright (C) 2021 Oliver Borchers Citation ------------- diff --git a/fse/__init__.py b/fse/__init__.py index daea6ae..6f8d61a 100644 --- a/fse/__init__.py +++ b/fse/__init__.py @@ -1,20 +1,24 @@ +import logging + from fse import models -from .inputs import BaseIndexedList -from .inputs import IndexedList -from .inputs import CIndexedList -from .inputs import SplitIndexedList -from .inputs import SplitCIndexedList -from .inputs import CSplitIndexedList -from .inputs import CSplitCIndexedList -from .inputs import IndexedLineDocument +from .inputs import ( + BaseIndexedList, + CIndexedList, + CSplitCIndexedList, + CSplitIndexedList, + IndexedLineDocument, + IndexedList, + SplitCIndexedList, + SplitIndexedList, +) -import logging class NullHandler(logging.Handler): def emit(self, record): pass -logger = logging.getLogger('fse') + +logger = logging.getLogger("fse") if len(logger.handlers) == 0: # To ensure reload() doesn't add another one logger.addHandler(NullHandler()) diff --git a/fse/inputs.py b/fse/inputs.py index 5671c0e..6e4a6b2 100644 --- a/fse/inputs.py +++ b/fse/inputs.py @@ -1,33 +1,30 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers -from typing import MutableSequence +from pathlib import Path +from typing import List, MutableSequence, Union from gensim.utils import any2unicode +from numpy import concatenate, ndarray from smart_open import open -from pathlib import Path - -from numpy import ndarray, concatenate class BaseIndexedList(MutableSequence): - - def __init__(self, *args:[list, set, ndarray]): - """ Base object to be used for feeding in-memory stored lists of sentences to - the training routine. + def __init__(self, *args: List[Union[list, set, ndarray]]): + """Base object to be used for feeding in-memory stored lists of sentences to the + training routine. Parameters ---------- args : lists, sets, ndarray Arguments to be merged into a single contianer. Can be single or multiple list/set/ndarray objects. - """ self.items = list() - + if len(args) == 1: self._check_list_type(args[0]) self.items = args[0] @@ -37,23 +34,23 @@ def __init__(self, *args:[list, set, ndarray]): super().__init__() - def _check_list_type(self, obj:object): - """ Checks input validity """ + def _check_list_type(self, obj: object): + """Checks input validity.""" if isinstance(obj, (list, set, ndarray)): return 1 else: raise TypeError(f"Arg must be list/set type. Got {type(obj)}") - def _check_str_type(self, obj:object): - """ Checks input validity """ + def _check_str_type(self, obj: object): + """Checks input validity.""" if isinstance(obj, str): return 1 else: raise TypeError(f"Arg must be str type. Got {type(obj)}") def __len__(self): - """ List length - + """List length. + Returns ------- int @@ -68,13 +65,12 @@ def __str__(self): ------- str Human readable representation of the object's state (words and tags). - """ return str(self.items) - def __getitem__(self, i:int) -> tuple: - """ Getitem method - + def __getitem__(self, i: int) -> tuple: + """Getitem method. + Returns ------- tuple ([str], int) @@ -82,27 +78,27 @@ def __getitem__(self, i:int) -> tuple: """ raise NotImplementedError() - def __delitem__(self, i:int): - """ Delete an item """ + def __delitem__(self, i: int): + """Delete an item.""" del self.items[i] - - def __setitem__(self, i:int, item:str): - """ Sets an item """ + + def __setitem__(self, i: int, item: str): + """Sets an item.""" self._check_str_type(item) self.items[i] = item - def insert(self, i:int, item:str): - """ Inserts an item at a position """ + def insert(self, i: int, item: str): + """Inserts an item at a position.""" self._check_str_type(item) self.items.insert(i, item) - def append(self, item:str): - """ Appends item at last position""" + def append(self, item: str): + """Appends item at last position.""" self._check_str_type(item) self.insert(len(self.items), item) - - def extend(self, arg:[list, set, ndarray]): - """ Extens list """ + + def extend(self, arg: [list, set, ndarray]): + """Extens list.""" self._check_list_type(arg) if not isinstance(arg, ndarray): @@ -110,23 +106,22 @@ def extend(self, arg:[list, set, ndarray]): else: self.items = concatenate([self.items, arg], axis=0) -class IndexedList(BaseIndexedList): - def __init__(self, *args:[list, set, ndarray]): - """ Quasi-list to be used for feeding in-memory stored lists of sentences to - the training routine. +class IndexedList(BaseIndexedList): + def __init__(self, *args: [list, set, ndarray]): + """Quasi-list to be used for feeding in-memory stored lists of sentences to the + training routine. Parameters ---------- args : lists, sets, ndarray Arguments to be merged into a single contianer. Can be single or multiple list/set objects. - """ super(IndexedList, self).__init__(*args) - def __getitem__(self, i:int) -> tuple: - """ Getitem method - + def __getitem__(self, i: int) -> tuple: + """Getitem method. + Returns ------- tuple @@ -134,11 +129,11 @@ def __getitem__(self, i:int) -> tuple: """ return (self.items.__getitem__(i), i) -class CIndexedList(BaseIndexedList): - def __init__(self, *args:[list, set, ndarray], custom_index:[list, ndarray]): - """ Quasi-list with custom indices to be used for feeding in-memory stored lists of sentences to - the training routine. +class CIndexedList(BaseIndexedList): + def __init__(self, *args: [list, set, ndarray], custom_index: [list, ndarray]): + """Quasi-list with custom indices to be used for feeding in-memory stored lists + of sentences to the training routine. Parameters ---------- @@ -146,18 +141,19 @@ def __init__(self, *args:[list, set, ndarray], custom_index:[list, ndarray]): Arguments to be merged into a single contianer. Can be single or multiple list/set objects. custom_index : list, ndarray Custom index to support many to one mappings. - """ self.custom_index = custom_index super(CIndexedList, self).__init__(*args) if len(self.items) != len(self.custom_index): - raise RuntimeError(f"Size of custom_index {len(custom_index)} does not match items {len(self.items)}") + raise RuntimeError( + f"Size of custom_index {len(custom_index)} does not match items {len(self.items)}" + ) + + def __getitem__(self, i: int) -> tuple: + """Getitem method. - def __getitem__(self, i:int) -> tuple: - """ Getitem method - Returns ------- tuple @@ -165,38 +161,37 @@ def __getitem__(self, i:int) -> tuple: """ return (self.items.__getitem__(i), self.custom_index[i]) - def __delitem__(self, i:int): + def __delitem__(self, i: int): raise NotImplementedError("Method currently not supported") - - def __setitem__(self, i:int, item:str): + + def __setitem__(self, i: int, item: str): raise NotImplementedError("Method currently not supported") - def insert(self, i:int, item:str): + def insert(self, i: int, item: str): raise NotImplementedError("Method currently not supported") - def append(self, item:str): + def append(self, item: str): raise NotImplementedError("Method currently not supported") - - def extend(self, arg:[list, set, ndarray]): + + def extend(self, arg: [list, set, ndarray]): raise NotImplementedError("Method currently not supported") -class SplitIndexedList(BaseIndexedList): - def __init__(self, *args:[list, set, ndarray]): - """ Quasi-list with string splitting to be used for feeding in-memory stored lists of sentences to - the training routine. +class SplitIndexedList(BaseIndexedList): + def __init__(self, *args: [list, set, ndarray]): + """Quasi-list with string splitting to be used for feeding in-memory stored + lists of sentences to the training routine. Parameters ---------- args : lists, sets, ndarray Arguments to be merged into a single contianer. Can be single or multiple list/set objects. - """ super(SplitIndexedList, self).__init__(*args) - def __getitem__(self, i:int) -> tuple: - """ Getitem method - + def __getitem__(self, i: int) -> tuple: + """Getitem method. + Returns ------- tuple @@ -204,11 +199,11 @@ def __getitem__(self, i:int) -> tuple: """ return (self.items.__getitem__(i).split(), i) -class SplitCIndexedList(BaseIndexedList): - def __init__(self, *args:[list, set, ndarray], custom_index:[list, ndarray]): - """ Quasi-list with custom indices and string splitting to be used for feeding in-memory stored lists of sentences to - the training routine. +class SplitCIndexedList(BaseIndexedList): + def __init__(self, *args: [list, set, ndarray], custom_index: [list, ndarray]): + """Quasi-list with custom indices and string splitting to be used for feeding + in-memory stored lists of sentences to the training routine. Parameters ---------- @@ -216,46 +211,46 @@ def __init__(self, *args:[list, set, ndarray], custom_index:[list, ndarray]): Arguments to be merged into a single contianer. Can be single or multiple list/set objects. custom_index : list, ndarray Custom index to support many to one mappings. - """ self.custom_index = custom_index super(SplitCIndexedList, self).__init__(*args) if len(self.items) != len(self.custom_index): - raise RuntimeError(f"Size of custom_index {len(custom_index)} does not match items {len(self.items)}") + raise RuntimeError( + f"Size of custom_index {len(custom_index)} does not match items {len(self.items)}" + ) + def __getitem__(self, i: int) -> tuple: + """Getitem method. - def __getitem__(self, i:int) -> tuple: - """ Getitem method - Returns ------- tuple Returns the core object, tuple, for every sentence embedding model. """ return (self.items.__getitem__(i).split(), self.custom_index[i]) - - def __delitem__(self, i:int): + + def __delitem__(self, i: int): raise NotImplementedError("Method currently not supported") - - def __setitem__(self, i:int, item:str): + + def __setitem__(self, i: int, item: str): raise NotImplementedError("Method currently not supported") - def insert(self, i:int, item:str): + def insert(self, i: int, item: str): raise NotImplementedError("Method currently not supported") - def append(self, item:str): + def append(self, item: str): raise NotImplementedError("Method currently not supported") - - def extend(self, arg:[list, set, ndarray]): + + def extend(self, arg: [list, set, ndarray]): raise NotImplementedError("Method currently not supported") -class CSplitIndexedList(BaseIndexedList): - def __init__(self, *args:[list, set, ndarray], custom_split:callable): - """ Quasi-list with custom string splitting to be used for feeding in-memory stored lists of sentences to - the training routine. +class CSplitIndexedList(BaseIndexedList): + def __init__(self, *args: [list, set, ndarray], custom_split: callable): + """Quasi-list with custom string splitting to be used for feeding in-memory + stored lists of sentences to the training routine. Parameters ---------- @@ -263,14 +258,13 @@ def __init__(self, *args:[list, set, ndarray], custom_split:callable): Arguments to be merged into a single contianer. Can be single or multiple list/set objects. custom_split : callable Split function to be used to convert strings into list of str. - """ self.custom_split = custom_split super(CSplitIndexedList, self).__init__(*args) - def __getitem__(self, i:int) -> tuple: - """ Getitem method - + def __getitem__(self, i: int) -> tuple: + """Getitem method. + Returns ------- tuple @@ -278,11 +272,16 @@ def __getitem__(self, i:int) -> tuple: """ return (self.custom_split(self.items.__getitem__(i)), i) -class CSplitCIndexedList(BaseIndexedList): - def __init__(self, *args:[list, set, ndarray], custom_split:callable, custom_index:[list, ndarray]): - """ Quasi-list with custom indices and ustom string splitting to be used for feeding in-memory stored lists of sentences to - the training routine. +class CSplitCIndexedList(BaseIndexedList): + def __init__( + self, + *args: [list, set, ndarray], + custom_split: callable, + custom_index: [list, ndarray], + ): + """Quasi-list with custom indices and ustom string splitting to be used for + feeding in-memory stored lists of sentences to the training routine. Parameters ---------- @@ -292,19 +291,20 @@ def __init__(self, *args:[list, set, ndarray], custom_split:callable, custom_ind Split function to be used to convert strings into list of str. custom_index : list, ndarray Custom index to support many to one mappings. - """ self.custom_split = custom_split self.custom_index = custom_index - + super(CSplitCIndexedList, self).__init__(*args) if len(self.items) != len(self.custom_index): - raise RuntimeError(f"Size of custom_index {len(custom_index)} does not match items {len(self.items)}") + raise RuntimeError( + f"Size of custom_index {len(custom_index)} does not match items {len(self.items)}" + ) + + def __getitem__(self, i: int) -> tuple: + """Getitem method. - def __getitem__(self, i:int) -> tuple: - """ Getitem method - Returns ------- tuple @@ -312,25 +312,25 @@ def __getitem__(self, i:int) -> tuple: """ return (self.custom_split(self.items.__getitem__(i)), self.custom_index[i]) - def __delitem__(self, i:int): + def __delitem__(self, i: int): raise NotImplementedError("Method currently not supported") - - def __setitem__(self, i:int, item:str): + + def __setitem__(self, i: int, item: str): raise NotImplementedError("Method currently not supported") - def insert(self, i:int, item:str): + def insert(self, i: int, item: str): raise NotImplementedError("Method currently not supported") - def append(self, item:str): + def append(self, item: str): raise NotImplementedError("Method currently not supported") - - def extend(self, arg:[list, set, ndarray]): + + def extend(self, arg: [list, set, ndarray]): raise NotImplementedError("Method currently not supported") -class IndexedLineDocument(object): +class IndexedLineDocument(object): def __init__(self, path, get_able=True): - """ Iterate over a file that contains sentences: one line = tuple([str], int). + """Iterate over a file that contains sentences: one line = tuple([str], int). Words are expected to be already preprocessed and separated by whitespace. Sentence tags are constructed automatically from the sentence line number. @@ -351,19 +351,19 @@ def __init__(self, path, get_able=True): if self.get_able: self._build_offsets() - + def _build_offsets(self): - """ Builds an offset table to index the file """ + """Builds an offset table to index the file.""" with open(self.path, "rb") as f: offset = f.tell() for line in f: self.line_offset.append(offset) offset += len(line) - + def __getitem__(self, i): - """ Returns the line indexed by i. Primarily used for + """Returns the line indexed by i. Primarily used for :meth:`~fse.models.sentencevectors.SentenceVectors.most_similar` - + Parameters ---------- i : int @@ -376,7 +376,9 @@ def __getitem__(self, i): """ if not self.get_able: - raise RuntimeError("To index the lines, you must contruct with get_able=True") + raise RuntimeError( + "To index the lines, you must contruct with get_able=True" + ) with open(self.path, "rb") as f: f.seek(self.line_offset[i]) @@ -391,8 +393,7 @@ def __iter__(self): ------ tuple : (list[str], int) Tuple of list of string and index - """ with open(self.path, "rb") as f: for i, line in enumerate(f): - yield (any2unicode(line).split(), i) \ No newline at end of file + yield (any2unicode(line).split(), i) diff --git a/fse/models/average.py b/fse/models/average.py index d4874e6..d291663 100644 --- a/fse/models/average.py +++ b/fse/models/average.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers """This module implements the base class to compute average representations for sentences, using highly optimized C routines, data streaming and Pythonic interfaces. @@ -83,7 +83,7 @@ def train_average_np( Returns ------- int, int - Number of effective sentences (non-zero) and effective words in the vocabulary used + Number of effective sentences (non-zero) and effective words in the vocabulary used during training the sentence embedding. """ @@ -182,7 +182,7 @@ def train_average_np( class Average(BaseSentence2VecModel): - """ Train, use and evaluate averaged sentence vectors. + """Train, use and evaluate averaged sentence vectors. The model can be stored/loaded via its :meth:`~fse.models.average.Average.save` and :meth:`~fse.models.average.Average.load` methods. @@ -194,15 +194,15 @@ class Average(BaseSentence2VecModel): wv : :class:`~gensim.models.keyedvectors.BaseKeyedVectors` This object essentially contains the mapping between words and embeddings. After training, it can be used directly to query those embeddings in various ways. See the module level docstring for examples. - + sv : :class:`~fse.models.sentencevectors.SentenceVectors` This object contains the sentence vectors inferred from the training data. There will be one such vector for each unique docusentence supplied during training. They may be individually accessed using the index. - + prep : :class:`~fse.models.base_s2v.BaseSentence2VecPreparer` The prep object is used to transform and initialize the sv.vectors. Aditionally, it can be used to move the vectors to disk for training with memmap. - + """ def __init__( @@ -214,7 +214,7 @@ def __init__( lang_freq: str = None, **kwargs ): - """ Average (unweighted) sentence embeddings model. Performs a simple averaging operation over all + """Average (unweighted) sentence embeddings model. Performs a simple averaging operation over all words in a sentences without further transformation. The implementation is based on Iyyer et al. (2015): Deep Unordered Composition Rivals Syntactic Methods for Text Classification. @@ -239,7 +239,7 @@ def __init__( frequencies into the wv.vocab.count based on :class:`~wordfreq` If no frequency information is available, you can choose the language to estimate the frequency. See https://github.com/LuminosoInsight/wordfreq - + """ super(Average, self).__init__( @@ -276,7 +276,7 @@ def _post_train_calls(self, **kwargs): pass def _post_inference_calls(self, **kwargs): - """ Function calls to perform after training & inference + """Function calls to perform after training & inference Examples include the removal of components """ pass diff --git a/fse/models/average_inner.c b/fse/models/average_inner.c new file mode 100644 index 0000000..204595f --- /dev/null +++ b/fse/models/average_inner.c @@ -0,0 +1,9119 @@ +/* Generated by Cython 0.29.14 */ + +/* BEGIN: Cython Metadata +{ + "distutils": { + "depends": [ + "fse/models/voidptr.h" + ], + "include_dirs": [ + "fse/models" + ], + "language": "c", + "name": "fse.models.average_inner", + "sources": [ + "fse/models/average_inner.pyx" + ] + }, + "module_name": "fse.models.average_inner" +} +END: Cython Metadata */ + +#define PY_SSIZE_T_CLEAN +#include "Python.h" +#ifndef Py_PYTHON_H + #error Python headers needed to compile C extensions, please install development version of Python. +#elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) + #error Cython requires Python 2.6+ or Python 3.3+. +#else +#define CYTHON_ABI "0_29_14" +#define CYTHON_HEX_VERSION 0x001D0EF0 +#define CYTHON_FUTURE_DIVISION 0 +#include +#ifndef offsetof + #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) +#endif +#if !defined(WIN32) && !defined(MS_WINDOWS) + #ifndef __stdcall + #define __stdcall + #endif + #ifndef __cdecl + #define __cdecl + #endif + #ifndef __fastcall + #define __fastcall + #endif +#endif +#ifndef DL_IMPORT + #define DL_IMPORT(t) t +#endif +#ifndef DL_EXPORT + #define DL_EXPORT(t) t +#endif +#define __PYX_COMMA , +#ifndef HAVE_LONG_LONG + #if PY_VERSION_HEX >= 0x02070000 + #define HAVE_LONG_LONG + #endif +#endif +#ifndef PY_LONG_LONG + #define PY_LONG_LONG LONG_LONG +#endif +#ifndef Py_HUGE_VAL + #define Py_HUGE_VAL HUGE_VAL +#endif +#ifdef PYPY_VERSION + #define CYTHON_COMPILING_IN_PYPY 1 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #undef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 0 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #if PY_VERSION_HEX < 0x03050000 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #undef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #undef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 1 + #undef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 0 + #undef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 0 + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 + #undef CYTHON_USE_DICT_VERSIONS + #define CYTHON_USE_DICT_VERSIONS 0 + #undef CYTHON_USE_EXC_INFO_STACK + #define CYTHON_USE_EXC_INFO_STACK 0 +#elif defined(PYSTON_VERSION) + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 1 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 + #undef CYTHON_USE_DICT_VERSIONS + #define CYTHON_USE_DICT_VERSIONS 0 + #undef CYTHON_USE_EXC_INFO_STACK + #define CYTHON_USE_EXC_INFO_STACK 0 +#else + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 1 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) + #define CYTHON_USE_PYTYPE_LOOKUP 1 + #endif + #if PY_MAJOR_VERSION < 3 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #elif !defined(CYTHON_USE_PYLONG_INTERNALS) + #define CYTHON_USE_PYLONG_INTERNALS 1 + #endif + #ifndef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 1 + #endif + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #if PY_VERSION_HEX < 0x030300F0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #elif !defined(CYTHON_USE_UNICODE_WRITER) + #define CYTHON_USE_UNICODE_WRITER 1 + #endif + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #ifndef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 1 + #endif + #ifndef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 1 + #endif + #ifndef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT (PY_VERSION_HEX >= 0x03050000) + #endif + #ifndef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) + #endif + #ifndef CYTHON_USE_DICT_VERSIONS + #define CYTHON_USE_DICT_VERSIONS (PY_VERSION_HEX >= 0x030600B1) + #endif + #ifndef CYTHON_USE_EXC_INFO_STACK + #define CYTHON_USE_EXC_INFO_STACK (PY_VERSION_HEX >= 0x030700A3) + #endif +#endif +#if !defined(CYTHON_FAST_PYCCALL) +#define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) +#endif +#if CYTHON_USE_PYLONG_INTERNALS + #include "longintrepr.h" + #undef SHIFT + #undef BASE + #undef MASK + #ifdef SIZEOF_VOID_P + enum { __pyx_check_sizeof_voidp = 1 / (int)(SIZEOF_VOID_P == sizeof(void*)) }; + #endif +#endif +#ifndef __has_attribute + #define __has_attribute(x) 0 +#endif +#ifndef __has_cpp_attribute + #define __has_cpp_attribute(x) 0 +#endif +#ifndef CYTHON_RESTRICT + #if defined(__GNUC__) + #define CYTHON_RESTRICT __restrict__ + #elif defined(_MSC_VER) && _MSC_VER >= 1400 + #define CYTHON_RESTRICT __restrict + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_RESTRICT restrict + #else + #define CYTHON_RESTRICT + #endif +#endif +#ifndef CYTHON_UNUSED +# if defined(__GNUC__) +# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +#endif +#ifndef CYTHON_MAYBE_UNUSED_VAR +# if defined(__cplusplus) + template void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } +# else +# define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) +# endif +#endif +#ifndef CYTHON_NCP_UNUSED +# if CYTHON_COMPILING_IN_CPYTHON +# define CYTHON_NCP_UNUSED +# else +# define CYTHON_NCP_UNUSED CYTHON_UNUSED +# endif +#endif +#define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) +#ifdef _MSC_VER + #ifndef _MSC_STDINT_H_ + #if _MSC_VER < 1300 + typedef unsigned char uint8_t; + typedef unsigned int uint32_t; + #else + typedef unsigned __int8 uint8_t; + typedef unsigned __int32 uint32_t; + #endif + #endif +#else + #include +#endif +#ifndef CYTHON_FALLTHROUGH + #if defined(__cplusplus) && __cplusplus >= 201103L + #if __has_cpp_attribute(fallthrough) + #define CYTHON_FALLTHROUGH [[fallthrough]] + #elif __has_cpp_attribute(clang::fallthrough) + #define CYTHON_FALLTHROUGH [[clang::fallthrough]] + #elif __has_cpp_attribute(gnu::fallthrough) + #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] + #endif + #endif + #ifndef CYTHON_FALLTHROUGH + #if __has_attribute(fallthrough) + #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) + #else + #define CYTHON_FALLTHROUGH + #endif + #endif + #if defined(__clang__ ) && defined(__apple_build_version__) + #if __apple_build_version__ < 7000000 + #undef CYTHON_FALLTHROUGH + #define CYTHON_FALLTHROUGH + #endif + #endif +#endif + +#ifndef CYTHON_INLINE + #if defined(__clang__) + #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) + #elif defined(__GNUC__) + #define CYTHON_INLINE __inline__ + #elif defined(_MSC_VER) + #define CYTHON_INLINE __inline + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_INLINE inline + #else + #define CYTHON_INLINE + #endif +#endif + +#if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) + #define Py_OptimizeFlag 0 +#endif +#define __PYX_BUILD_PY_SSIZE_T "n" +#define CYTHON_FORMAT_SSIZE_T "z" +#if PY_MAJOR_VERSION < 3 + #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) + #define __Pyx_DefaultClassType PyClass_Type +#else + #define __Pyx_BUILTIN_MODULE_NAME "builtins" +#if PY_VERSION_HEX >= 0x030800A4 && PY_VERSION_HEX < 0x030800B2 + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a, 0, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) +#else + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) +#endif + #define __Pyx_DefaultClassType PyType_Type +#endif +#ifndef Py_TPFLAGS_CHECKTYPES + #define Py_TPFLAGS_CHECKTYPES 0 +#endif +#ifndef Py_TPFLAGS_HAVE_INDEX + #define Py_TPFLAGS_HAVE_INDEX 0 +#endif +#ifndef Py_TPFLAGS_HAVE_NEWBUFFER + #define Py_TPFLAGS_HAVE_NEWBUFFER 0 +#endif +#ifndef Py_TPFLAGS_HAVE_FINALIZE + #define Py_TPFLAGS_HAVE_FINALIZE 0 +#endif +#ifndef METH_STACKLESS + #define METH_STACKLESS 0 +#endif +#if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL) + #ifndef METH_FASTCALL + #define METH_FASTCALL 0x80 + #endif + typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs); + typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args, + Py_ssize_t nargs, PyObject *kwnames); +#else + #define __Pyx_PyCFunctionFast _PyCFunctionFast + #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords +#endif +#if CYTHON_FAST_PYCCALL +#define __Pyx_PyFastCFunction_Check(func)\ + ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))))) +#else +#define __Pyx_PyFastCFunction_Check(func) 0 +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) + #define PyObject_Malloc(s) PyMem_Malloc(s) + #define PyObject_Free(p) PyMem_Free(p) + #define PyObject_Realloc(p) PyMem_Realloc(p) +#endif +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030400A1 + #define PyMem_RawMalloc(n) PyMem_Malloc(n) + #define PyMem_RawRealloc(p, n) PyMem_Realloc(p, n) + #define PyMem_RawFree(p) PyMem_Free(p) +#endif +#if CYTHON_COMPILING_IN_PYSTON + #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) +#else + #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) +#endif +#if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#elif PY_VERSION_HEX >= 0x03060000 + #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() +#elif PY_VERSION_HEX >= 0x03000000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#else + #define __Pyx_PyThreadState_Current _PyThreadState_Current +#endif +#if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT) +#include "pythread.h" +#define Py_tss_NEEDS_INIT 0 +typedef int Py_tss_t; +static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) { + *key = PyThread_create_key(); + return 0; +} +static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) { + Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t)); + *key = Py_tss_NEEDS_INIT; + return key; +} +static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) { + PyObject_Free(key); +} +static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) { + return *key != Py_tss_NEEDS_INIT; +} +static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) { + PyThread_delete_key(*key); + *key = Py_tss_NEEDS_INIT; +} +static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) { + return PyThread_set_key_value(*key, value); +} +static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { + return PyThread_get_key_value(*key); +} +#endif +#if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) +#define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) +#else +#define __Pyx_PyDict_NewPresized(n) PyDict_New() +#endif +#if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION + #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) +#else + #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) +#endif +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && CYTHON_USE_UNICODE_INTERNALS +#define __Pyx_PyDict_GetItemStr(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash) +#else +#define __Pyx_PyDict_GetItemStr(dict, name) PyDict_GetItem(dict, name) +#endif +#if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) + #define CYTHON_PEP393_ENABLED 1 + #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ + 0 : _PyUnicode_Ready((PyObject *)(op))) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) + #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) + #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) + #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) +#else + #define CYTHON_PEP393_ENABLED 0 + #define PyUnicode_1BYTE_KIND 1 + #define PyUnicode_2BYTE_KIND 2 + #define PyUnicode_4BYTE_KIND 4 + #define __Pyx_PyUnicode_READY(op) (0) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) + #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) + #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) + #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) +#endif +#if CYTHON_COMPILING_IN_PYPY + #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) +#else + #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ + PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) + #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) + #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) + #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) +#endif +#define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyString_Check(b) && !PyString_CheckExact(b)))) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) +#define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyUnicode_Check(b) && !PyUnicode_CheckExact(b)))) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) +#else + #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) +#endif +#if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) + #define PyObject_ASCII(o) PyObject_Repr(o) +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBaseString_Type PyUnicode_Type + #define PyStringObject PyUnicodeObject + #define PyString_Type PyUnicode_Type + #define PyString_Check PyUnicode_Check + #define PyString_CheckExact PyUnicode_CheckExact + #define PyObject_Unicode PyObject_Str +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) + #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) +#else + #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) + #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) +#endif +#ifndef PySet_CheckExact + #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) +#endif +#if CYTHON_ASSUME_SAFE_MACROS + #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq) +#else + #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq) +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyIntObject PyLongObject + #define PyInt_Type PyLong_Type + #define PyInt_Check(op) PyLong_Check(op) + #define PyInt_CheckExact(op) PyLong_CheckExact(op) + #define PyInt_FromString PyLong_FromString + #define PyInt_FromUnicode PyLong_FromUnicode + #define PyInt_FromLong PyLong_FromLong + #define PyInt_FromSize_t PyLong_FromSize_t + #define PyInt_FromSsize_t PyLong_FromSsize_t + #define PyInt_AsLong PyLong_AsLong + #define PyInt_AS_LONG PyLong_AS_LONG + #define PyInt_AsSsize_t PyLong_AsSsize_t + #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask + #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask + #define PyNumber_Int PyNumber_Long +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBoolObject PyLongObject +#endif +#if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY + #ifndef PyUnicode_InternFromString + #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) + #endif +#endif +#if PY_VERSION_HEX < 0x030200A4 + typedef long Py_hash_t; + #define __Pyx_PyInt_FromHash_t PyInt_FromLong + #define __Pyx_PyInt_AsHash_t PyInt_AsLong +#else + #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t + #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : (Py_INCREF(func), func)) +#else + #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) +#endif +#if CYTHON_USE_ASYNC_SLOTS + #if PY_VERSION_HEX >= 0x030500B1 + #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods + #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) + #else + #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) + #endif +#else + #define __Pyx_PyType_AsAsync(obj) NULL +#endif +#ifndef __Pyx_PyAsyncMethodsStruct + typedef struct { + unaryfunc am_await; + unaryfunc am_aiter; + unaryfunc am_anext; + } __Pyx_PyAsyncMethodsStruct; +#endif + +#if defined(WIN32) || defined(MS_WINDOWS) + #define _USE_MATH_DEFINES +#endif +#include +#ifdef NAN +#define __PYX_NAN() ((float) NAN) +#else +static CYTHON_INLINE float __PYX_NAN() { + float value; + memset(&value, 0xFF, sizeof(value)); + return value; +} +#endif +#if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) +#define __Pyx_truncl trunc +#else +#define __Pyx_truncl truncl +#endif + + +#define __PYX_ERR(f_index, lineno, Ln_error) \ +{ \ + __pyx_filename = __pyx_f[f_index]; __pyx_lineno = lineno; __pyx_clineno = __LINE__; goto Ln_error; \ +} + +#ifndef __PYX_EXTERN_C + #ifdef __cplusplus + #define __PYX_EXTERN_C extern "C" + #else + #define __PYX_EXTERN_C extern + #endif +#endif + +#define __PYX_HAVE__fse__models__average_inner +#define __PYX_HAVE_API__fse__models__average_inner +/* Early includes */ +#include +#include +#include "numpy/arrayobject.h" +#include "numpy/ndarrayobject.h" +#include "numpy/ndarraytypes.h" +#include "numpy/arrayscalars.h" +#include "numpy/ufuncobject.h" + + /* NumPy API declarations from "numpy/__init__.pxd" */ + +#include "voidptr.h" +#ifdef _OPENMP +#include +#endif /* _OPENMP */ + +#if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) +#define CYTHON_WITHOUT_ASSERTIONS +#endif + +typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; + const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; + +#define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 +#define __PYX_DEFAULT_STRING_ENCODING_IS_UTF8 0 +#define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT (PY_MAJOR_VERSION >= 3 && __PYX_DEFAULT_STRING_ENCODING_IS_UTF8) +#define __PYX_DEFAULT_STRING_ENCODING "" +#define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString +#define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#define __Pyx_uchar_cast(c) ((unsigned char)c) +#define __Pyx_long_cast(x) ((long)x) +#define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ + (sizeof(type) < sizeof(Py_ssize_t)) ||\ + (sizeof(type) > sizeof(Py_ssize_t) &&\ + likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX) &&\ + (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ + v == (type)PY_SSIZE_T_MIN))) ||\ + (sizeof(type) == sizeof(Py_ssize_t) &&\ + (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX))) ) +static CYTHON_INLINE int __Pyx_is_valid_index(Py_ssize_t i, Py_ssize_t limit) { + return (size_t) i < (size_t) limit; +} +#if defined (__cplusplus) && __cplusplus >= 201103L + #include + #define __Pyx_sst_abs(value) std::abs(value) +#elif SIZEOF_INT >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) abs(value) +#elif SIZEOF_LONG >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) labs(value) +#elif defined (_MSC_VER) + #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) +#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define __Pyx_sst_abs(value) llabs(value) +#elif defined (__GNUC__) + #define __Pyx_sst_abs(value) __builtin_llabs(value) +#else + #define __Pyx_sst_abs(value) ((value<0) ? -value : value) +#endif +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); +#define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) +#define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) +#define __Pyx_PyBytes_FromString PyBytes_FromString +#define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); +#if PY_MAJOR_VERSION < 3 + #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#else + #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize +#endif +#define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) +#define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) +#define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) +#define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) +#define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) +static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { + const Py_UNICODE *u_end = u; + while (*u_end++) ; + return (size_t)(u_end - u - 1); +} +#define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) +#define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode +#define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode +#define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) +#define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) +static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b); +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); +static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject*); +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); +#define __Pyx_PySequence_Tuple(obj)\ + (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); +#if CYTHON_ASSUME_SAFE_MACROS +#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) +#else +#define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) +#endif +#define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) +#if PY_MAJOR_VERSION >= 3 +#define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) +#else +#define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) +#endif +#define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII +static int __Pyx_sys_getdefaultencoding_not_ascii; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + PyObject* ascii_chars_u = NULL; + PyObject* ascii_chars_b = NULL; + const char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + if (strcmp(default_encoding_c, "ascii") == 0) { + __Pyx_sys_getdefaultencoding_not_ascii = 0; + } else { + char ascii_chars[128]; + int c; + for (c = 0; c < 128; c++) { + ascii_chars[c] = c; + } + __Pyx_sys_getdefaultencoding_not_ascii = 1; + ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); + if (!ascii_chars_u) goto bad; + ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); + if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { + PyErr_Format( + PyExc_ValueError, + "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", + default_encoding_c); + goto bad; + } + Py_DECREF(ascii_chars_u); + Py_DECREF(ascii_chars_b); + } + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + Py_XDECREF(ascii_chars_u); + Py_XDECREF(ascii_chars_b); + return -1; +} +#endif +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) +#else +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +static char* __PYX_DEFAULT_STRING_ENCODING; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c) + 1); + if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; + strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + return -1; +} +#endif +#endif + + +/* Test for GCC > 2.95 */ +#if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) + #define likely(x) __builtin_expect(!!(x), 1) + #define unlikely(x) __builtin_expect(!!(x), 0) +#else /* !__GNUC__ or GCC < 2.95 */ + #define likely(x) (x) + #define unlikely(x) (x) +#endif /* __GNUC__ */ +static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } + +static PyObject *__pyx_m = NULL; +static PyObject *__pyx_d; +static PyObject *__pyx_b; +static PyObject *__pyx_cython_runtime = NULL; +static PyObject *__pyx_empty_tuple; +static PyObject *__pyx_empty_bytes; +static PyObject *__pyx_empty_unicode; +static int __pyx_lineno; +static int __pyx_clineno = 0; +static const char * __pyx_cfilenm= __FILE__; +static const char *__pyx_filename; + +/* Header.proto */ +#if !defined(CYTHON_CCOMPLEX) + #if defined(__cplusplus) + #define CYTHON_CCOMPLEX 1 + #elif defined(_Complex_I) + #define CYTHON_CCOMPLEX 1 + #else + #define CYTHON_CCOMPLEX 0 + #endif +#endif +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + #include + #else + #include + #endif +#endif +#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) + #undef _Complex_I + #define _Complex_I 1.0fj +#endif + + +static const char *__pyx_f[] = { + "fse/models/average_inner.pyx", + "__init__.pxd", + "type.pxd", +}; +/* NoFastGil.proto */ +#define __Pyx_PyGILState_Ensure PyGILState_Ensure +#define __Pyx_PyGILState_Release PyGILState_Release +#define __Pyx_FastGIL_Remember() +#define __Pyx_FastGIL_Forget() +#define __Pyx_FastGilFuncInit() + +/* ForceInitThreads.proto */ +#ifndef __PYX_FORCE_INIT_THREADS + #define __PYX_FORCE_INIT_THREADS 0 +#endif + + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":690 + * # in Cython to enable them only on the right systems. + * + * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t + */ +typedef npy_int8 __pyx_t_5numpy_int8_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":691 + * + * ctypedef npy_int8 int8_t + * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< + * ctypedef npy_int32 int32_t + * ctypedef npy_int64 int64_t + */ +typedef npy_int16 __pyx_t_5numpy_int16_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":692 + * ctypedef npy_int8 int8_t + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< + * ctypedef npy_int64 int64_t + * #ctypedef npy_int96 int96_t + */ +typedef npy_int32 __pyx_t_5numpy_int32_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":693 + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t + * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< + * #ctypedef npy_int96 int96_t + * #ctypedef npy_int128 int128_t + */ +typedef npy_int64 __pyx_t_5numpy_int64_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":697 + * #ctypedef npy_int128 int128_t + * + * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t + */ +typedef npy_uint8 __pyx_t_5numpy_uint8_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":698 + * + * ctypedef npy_uint8 uint8_t + * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< + * ctypedef npy_uint32 uint32_t + * ctypedef npy_uint64 uint64_t + */ +typedef npy_uint16 __pyx_t_5numpy_uint16_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":699 + * ctypedef npy_uint8 uint8_t + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< + * ctypedef npy_uint64 uint64_t + * #ctypedef npy_uint96 uint96_t + */ +typedef npy_uint32 __pyx_t_5numpy_uint32_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":700 + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t + * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< + * #ctypedef npy_uint96 uint96_t + * #ctypedef npy_uint128 uint128_t + */ +typedef npy_uint64 __pyx_t_5numpy_uint64_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":704 + * #ctypedef npy_uint128 uint128_t + * + * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< + * ctypedef npy_float64 float64_t + * #ctypedef npy_float80 float80_t + */ +typedef npy_float32 __pyx_t_5numpy_float32_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":705 + * + * ctypedef npy_float32 float32_t + * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< + * #ctypedef npy_float80 float80_t + * #ctypedef npy_float128 float128_t + */ +typedef npy_float64 __pyx_t_5numpy_float64_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":714 + * # The int types are mapped a bit surprising -- + * # numpy.int corresponds to 'l' and numpy.long to 'q' + * ctypedef npy_long int_t # <<<<<<<<<<<<<< + * ctypedef npy_longlong long_t + * ctypedef npy_longlong longlong_t + */ +typedef npy_long __pyx_t_5numpy_int_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":715 + * # numpy.int corresponds to 'l' and numpy.long to 'q' + * ctypedef npy_long int_t + * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< + * ctypedef npy_longlong longlong_t + * + */ +typedef npy_longlong __pyx_t_5numpy_long_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":716 + * ctypedef npy_long int_t + * ctypedef npy_longlong long_t + * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< + * + * ctypedef npy_ulong uint_t + */ +typedef npy_longlong __pyx_t_5numpy_longlong_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":718 + * ctypedef npy_longlong longlong_t + * + * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< + * ctypedef npy_ulonglong ulong_t + * ctypedef npy_ulonglong ulonglong_t + */ +typedef npy_ulong __pyx_t_5numpy_uint_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":719 + * + * ctypedef npy_ulong uint_t + * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< + * ctypedef npy_ulonglong ulonglong_t + * + */ +typedef npy_ulonglong __pyx_t_5numpy_ulong_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":720 + * ctypedef npy_ulong uint_t + * ctypedef npy_ulonglong ulong_t + * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< + * + * ctypedef npy_intp intp_t + */ +typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":722 + * ctypedef npy_ulonglong ulonglong_t + * + * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< + * ctypedef npy_uintp uintp_t + * + */ +typedef npy_intp __pyx_t_5numpy_intp_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":723 + * + * ctypedef npy_intp intp_t + * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< + * + * ctypedef npy_double float_t + */ +typedef npy_uintp __pyx_t_5numpy_uintp_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":725 + * ctypedef npy_uintp uintp_t + * + * ctypedef npy_double float_t # <<<<<<<<<<<<<< + * ctypedef npy_double double_t + * ctypedef npy_longdouble longdouble_t + */ +typedef npy_double __pyx_t_5numpy_float_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":726 + * + * ctypedef npy_double float_t + * ctypedef npy_double double_t # <<<<<<<<<<<<<< + * ctypedef npy_longdouble longdouble_t + * + */ +typedef npy_double __pyx_t_5numpy_double_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":727 + * ctypedef npy_double float_t + * ctypedef npy_double double_t + * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< + * + * ctypedef npy_cfloat cfloat_t + */ +typedef npy_longdouble __pyx_t_5numpy_longdouble_t; + +/* "fse/models/average_inner.pxd":15 + * void* PyCObject_AsVoidPtr(object obj) + * + * ctypedef np.float32_t REAL_t # <<<<<<<<<<<<<< + * ctypedef np.uint32_t uINT_t + * + */ +typedef __pyx_t_5numpy_float32_t __pyx_t_3fse_6models_13average_inner_REAL_t; + +/* "fse/models/average_inner.pxd":16 + * + * ctypedef np.float32_t REAL_t + * ctypedef np.uint32_t uINT_t # <<<<<<<<<<<<<< + * + * # BLAS routine signatures + */ +typedef __pyx_t_5numpy_uint32_t __pyx_t_3fse_6models_13average_inner_uINT_t; +/* Declarations.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + typedef ::std::complex< float > __pyx_t_float_complex; + #else + typedef float _Complex __pyx_t_float_complex; + #endif +#else + typedef struct { float real, imag; } __pyx_t_float_complex; +#endif +static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float); + +/* Declarations.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + typedef ::std::complex< double > __pyx_t_double_complex; + #else + typedef double _Complex __pyx_t_double_complex; + #endif +#else + typedef struct { double real, imag; } __pyx_t_double_complex; +#endif +static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double); + + +/*--- Type declarations ---*/ + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":729 + * ctypedef npy_longdouble longdouble_t + * + * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< + * ctypedef npy_cdouble cdouble_t + * ctypedef npy_clongdouble clongdouble_t + */ +typedef npy_cfloat __pyx_t_5numpy_cfloat_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":730 + * + * ctypedef npy_cfloat cfloat_t + * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< + * ctypedef npy_clongdouble clongdouble_t + * + */ +typedef npy_cdouble __pyx_t_5numpy_cdouble_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":731 + * ctypedef npy_cfloat cfloat_t + * ctypedef npy_cdouble cdouble_t + * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< + * + * ctypedef npy_cdouble complex_t + */ +typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":733 + * ctypedef npy_clongdouble clongdouble_t + * + * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew1(a): + */ +typedef npy_cdouble __pyx_t_5numpy_complex_t; +struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig; +struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig; + +/* "fse/models/average_inner.pxd":19 + * + * # BLAS routine signatures + * ctypedef void (*saxpy_ptr) (const int *N, const float *alpha, const float *X, const int *incX, float *Y, const int *incY) nogil # <<<<<<<<<<<<<< + * ctypedef void (*sscal_ptr) (const int *N, const float *alpha, const float *X, const int *incX) nogil + * + */ +typedef void (*__pyx_t_3fse_6models_13average_inner_saxpy_ptr)(int const *, float const *, float const *, int const *, float *, int const *); + +/* "fse/models/average_inner.pxd":20 + * # BLAS routine signatures + * ctypedef void (*saxpy_ptr) (const int *N, const float *alpha, const float *X, const int *incX, float *Y, const int *incY) nogil + * ctypedef void (*sscal_ptr) (const int *N, const float *alpha, const float *X, const int *incX) nogil # <<<<<<<<<<<<<< + * + * cdef saxpy_ptr saxpy + */ +typedef void (*__pyx_t_3fse_6models_13average_inner_sscal_ptr)(int const *, float const *, float const *, int const *); + +/* "fse/models/average_inner.pxd":28 + * DEF MAX_NGRAMS = 40 + * + * cdef struct BaseSentenceVecsConfig: # <<<<<<<<<<<<<< + * int size, workers + * + */ +struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig { + int size; + int workers; + __pyx_t_3fse_6models_13average_inner_REAL_t *mem; + __pyx_t_3fse_6models_13average_inner_REAL_t *word_vectors; + __pyx_t_3fse_6models_13average_inner_REAL_t *word_weights; + __pyx_t_3fse_6models_13average_inner_REAL_t *sentence_vectors; + __pyx_t_3fse_6models_13average_inner_uINT_t word_indices[0x2710]; + __pyx_t_3fse_6models_13average_inner_uINT_t sent_adresses[0x2710]; + __pyx_t_3fse_6models_13average_inner_uINT_t sentence_boundary[(0x2710 + 1)]; +}; + +/* "fse/models/average_inner.pxd":41 + * uINT_t sentence_boundary[MAX_WORDS + 1] + * + * cdef struct FTSentenceVecsConfig: # <<<<<<<<<<<<<< + * int size, workers, min_n, max_n, bucket + * + */ +struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig { + int size; + int workers; + int min_n; + int max_n; + int bucket; + __pyx_t_3fse_6models_13average_inner_REAL_t oov_weight; + __pyx_t_3fse_6models_13average_inner_REAL_t *mem; + __pyx_t_3fse_6models_13average_inner_REAL_t *word_vectors; + __pyx_t_3fse_6models_13average_inner_REAL_t *ngram_vectors; + __pyx_t_3fse_6models_13average_inner_REAL_t *word_weights; + __pyx_t_3fse_6models_13average_inner_REAL_t *sentence_vectors; + __pyx_t_3fse_6models_13average_inner_uINT_t word_indices[0x2710]; + __pyx_t_3fse_6models_13average_inner_uINT_t sent_adresses[0x2710]; + __pyx_t_3fse_6models_13average_inner_uINT_t sentence_boundary[(0x2710 + 1)]; + __pyx_t_3fse_6models_13average_inner_uINT_t subwords_idx_len[0x2710]; + __pyx_t_3fse_6models_13average_inner_uINT_t *subwords_idx; +}; + +/* --- Runtime support code (head) --- */ +/* Refnanny.proto */ +#ifndef CYTHON_REFNANNY + #define CYTHON_REFNANNY 0 +#endif +#if CYTHON_REFNANNY + typedef struct { + void (*INCREF)(void*, PyObject*, int); + void (*DECREF)(void*, PyObject*, int); + void (*GOTREF)(void*, PyObject*, int); + void (*GIVEREF)(void*, PyObject*, int); + void* (*SetupContext)(const char*, int, const char*); + void (*FinishContext)(void**); + } __Pyx_RefNannyAPIStruct; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); + #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; +#ifdef WITH_THREAD + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + if (acquire_gil) {\ + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + PyGILState_Release(__pyx_gilstate_save);\ + } else {\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + } +#else + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) +#endif + #define __Pyx_RefNannyFinishContext()\ + __Pyx_RefNanny->FinishContext(&__pyx_refnanny) + #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) + #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) + #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) + #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) +#else + #define __Pyx_RefNannyDeclarations + #define __Pyx_RefNannySetupContext(name, acquire_gil) + #define __Pyx_RefNannyFinishContext() + #define __Pyx_INCREF(r) Py_INCREF(r) + #define __Pyx_DECREF(r) Py_DECREF(r) + #define __Pyx_GOTREF(r) + #define __Pyx_GIVEREF(r) + #define __Pyx_XINCREF(r) Py_XINCREF(r) + #define __Pyx_XDECREF(r) Py_XDECREF(r) + #define __Pyx_XGOTREF(r) + #define __Pyx_XGIVEREF(r) +#endif +#define __Pyx_XDECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_XDECREF(tmp);\ + } while (0) +#define __Pyx_DECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_DECREF(tmp);\ + } while (0) +#define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) +#define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) + +/* PyObjectGetAttrStr.proto */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name); +#else +#define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) +#endif + +/* GetBuiltinName.proto */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name); + +/* GetItemInt.proto */ +#define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ + (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ + __Pyx_GetItemInt_Generic(o, to_py_func(i)))) +#define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ + (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, + int wraparound, int boundscheck); +#define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ + (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, + int wraparound, int boundscheck); +static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, + int is_list, int wraparound, int boundscheck); + +/* ExtTypeTest.proto */ +static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); + +/* PyDictVersioning.proto */ +#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS +#define __PYX_DICT_VERSION_INIT ((PY_UINT64_T) -1) +#define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) +#define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)\ + (version_var) = __PYX_GET_DICT_VERSION(dict);\ + (cache_var) = (value); +#define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) {\ + static PY_UINT64_T __pyx_dict_version = 0;\ + static PyObject *__pyx_dict_cached_value = NULL;\ + if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\ + (VAR) = __pyx_dict_cached_value;\ + } else {\ + (VAR) = __pyx_dict_cached_value = (LOOKUP);\ + __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\ + }\ +} +static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj); +static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj); +static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version); +#else +#define __PYX_GET_DICT_VERSION(dict) (0) +#define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var) +#define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) (VAR) = (LOOKUP); +#endif + +/* GetModuleGlobalName.proto */ +#if CYTHON_USE_DICT_VERSIONS +#define __Pyx_GetModuleGlobalName(var, name) {\ + static PY_UINT64_T __pyx_dict_version = 0;\ + static PyObject *__pyx_dict_cached_value = NULL;\ + (var) = (likely(__pyx_dict_version == __PYX_GET_DICT_VERSION(__pyx_d))) ?\ + (likely(__pyx_dict_cached_value) ? __Pyx_NewRef(__pyx_dict_cached_value) : __Pyx_GetBuiltinName(name)) :\ + __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ +} +#define __Pyx_GetModuleGlobalNameUncached(var, name) {\ + PY_UINT64_T __pyx_dict_version;\ + PyObject *__pyx_dict_cached_value;\ + (var) = __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ +} +static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value); +#else +#define __Pyx_GetModuleGlobalName(var, name) (var) = __Pyx__GetModuleGlobalName(name) +#define __Pyx_GetModuleGlobalNameUncached(var, name) (var) = __Pyx__GetModuleGlobalName(name) +static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name); +#endif + +/* PyCFunctionFastCall.proto */ +#if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); +#else +#define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) +#endif + +/* PyFunctionFastCall.proto */ +#if CYTHON_FAST_PYCALL +#define __Pyx_PyFunction_FastCall(func, args, nargs)\ + __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs); +#else +#define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) +#endif +#define __Pyx_BUILD_ASSERT_EXPR(cond)\ + (sizeof(char [1 - 2*!(cond)]) - 1) +#ifndef Py_MEMBER_SIZE +#define Py_MEMBER_SIZE(type, member) sizeof(((type *)0)->member) +#endif + static size_t __pyx_pyframe_localsplus_offset = 0; + #include "frameobject.h" + #define __Pxy_PyFrame_Initialize_Offsets()\ + ((void)__Pyx_BUILD_ASSERT_EXPR(sizeof(PyFrameObject) == offsetof(PyFrameObject, f_localsplus) + Py_MEMBER_SIZE(PyFrameObject, f_localsplus)),\ + (void)(__pyx_pyframe_localsplus_offset = ((size_t)PyFrame_Type.tp_basicsize) - Py_MEMBER_SIZE(PyFrameObject, f_localsplus))) + #define __Pyx_PyFrame_GetLocalsplus(frame)\ + (assert(__pyx_pyframe_localsplus_offset), (PyObject **)(((char *)(frame)) + __pyx_pyframe_localsplus_offset)) +#endif + +/* PyObjectCall.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); +#else +#define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) +#endif + +/* PyObjectCall2Args.proto */ +static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2); + +/* PyObjectCallMethO.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); +#endif + +/* PyObjectCallOneArg.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); + +/* PySequenceContains.proto */ +static CYTHON_INLINE int __Pyx_PySequence_ContainsTF(PyObject* item, PyObject* seq, int eq) { + int result = PySequence_Contains(seq, item); + return unlikely(result < 0) ? result : (result == (eq == Py_EQ)); +} + +/* ObjectGetItem.proto */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key); +#else +#define __Pyx_PyObject_GetItem(obj, key) PyObject_GetItem(obj, key) +#endif + +/* ListCompAppend.proto */ +#if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS +static CYTHON_INLINE int __Pyx_ListComp_Append(PyObject* list, PyObject* x) { + PyListObject* L = (PyListObject*) list; + Py_ssize_t len = Py_SIZE(list); + if (likely(L->allocated > len)) { + Py_INCREF(x); + PyList_SET_ITEM(list, len, x); + Py_SIZE(list) = len+1; + return 0; + } + return PyList_Append(list, x); +} +#else +#define __Pyx_ListComp_Append(L,x) PyList_Append(L,x) +#endif + +/* SliceTupleAndList.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyList_GetSlice(PyObject* src, Py_ssize_t start, Py_ssize_t stop); +static CYTHON_INLINE PyObject* __Pyx_PyTuple_GetSlice(PyObject* src, Py_ssize_t start, Py_ssize_t stop); +#else +#define __Pyx_PyList_GetSlice(seq, start, stop) PySequence_GetSlice(seq, start, stop) +#define __Pyx_PyTuple_GetSlice(seq, start, stop) PySequence_GetSlice(seq, start, stop) +#endif + +/* PyIntBinop.proto */ +#if !CYTHON_COMPILING_IN_PYPY +static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); +#else +#define __Pyx_PyInt_AddObjC(op1, op2, intval, inplace, zerodivision_check)\ + (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) +#endif + +/* RaiseArgTupleInvalid.proto */ +static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, + Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); + +/* RaiseDoubleKeywords.proto */ +static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); + +/* ParseKeywords.proto */ +static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ + PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ + const char* function_name); + +/* RaiseTooManyValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); + +/* RaiseNeedMoreValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); + +/* IterFinish.proto */ +static CYTHON_INLINE int __Pyx_IterFinish(void); + +/* UnpackItemEndCheck.proto */ +static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected); + +/* GetTopmostException.proto */ +#if CYTHON_USE_EXC_INFO_STACK +static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate); +#endif + +/* PyThreadStateGet.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; +#define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; +#define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type +#else +#define __Pyx_PyThreadState_declare +#define __Pyx_PyThreadState_assign +#define __Pyx_PyErr_Occurred() PyErr_Occurred() +#endif + +/* SaveResetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +#else +#define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb) +#define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) +#endif + +/* PyErrExceptionMatches.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) +static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); +#else +#define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) +#endif + +/* GetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); +#endif + +/* PyErrFetchRestore.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) +#define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) +#else +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) +#endif +#else +#define __Pyx_PyErr_Clear() PyErr_Clear() +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) +#define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) +#endif + +/* RaiseException.proto */ +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); + +/* TypeImport.proto */ +#ifndef __PYX_HAVE_RT_ImportType_proto +#define __PYX_HAVE_RT_ImportType_proto +enum __Pyx_ImportType_CheckSize { + __Pyx_ImportType_CheckSize_Error = 0, + __Pyx_ImportType_CheckSize_Warn = 1, + __Pyx_ImportType_CheckSize_Ignore = 2 +}; +static PyTypeObject *__Pyx_ImportType(PyObject* module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size); +#endif + +/* Import.proto */ +static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); + +/* ImportFrom.proto */ +static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name); + +/* PyObjectCallNoArg.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func); +#else +#define __Pyx_PyObject_CallNoArg(func) __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL) +#endif + +/* CLineInTraceback.proto */ +#ifdef CYTHON_CLINE_IN_TRACEBACK +#define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) +#else +static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); +#endif + +/* CodeObjectCache.proto */ +typedef struct { + PyCodeObject* code_object; + int code_line; +} __Pyx_CodeObjectCacheEntry; +struct __Pyx_CodeObjectCache { + int count; + int max_count; + __Pyx_CodeObjectCacheEntry* entries; +}; +static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; +static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); +static PyCodeObject *__pyx_find_code_object(int code_line); +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); + +/* AddTraceback.proto */ +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_npy_uint32(npy_uint32 value); + +/* RealImag.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + #define __Pyx_CREAL(z) ((z).real()) + #define __Pyx_CIMAG(z) ((z).imag()) + #else + #define __Pyx_CREAL(z) (__real__(z)) + #define __Pyx_CIMAG(z) (__imag__(z)) + #endif +#else + #define __Pyx_CREAL(z) ((z).real) + #define __Pyx_CIMAG(z) ((z).imag) +#endif +#if defined(__cplusplus) && CYTHON_CCOMPLEX\ + && (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) + #define __Pyx_SET_CREAL(z,x) ((z).real(x)) + #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) +#else + #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) + #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) +#endif + +/* Arithmetic.proto */ +#if CYTHON_CCOMPLEX + #define __Pyx_c_eq_float(a, b) ((a)==(b)) + #define __Pyx_c_sum_float(a, b) ((a)+(b)) + #define __Pyx_c_diff_float(a, b) ((a)-(b)) + #define __Pyx_c_prod_float(a, b) ((a)*(b)) + #define __Pyx_c_quot_float(a, b) ((a)/(b)) + #define __Pyx_c_neg_float(a) (-(a)) + #ifdef __cplusplus + #define __Pyx_c_is_zero_float(z) ((z)==(float)0) + #define __Pyx_c_conj_float(z) (::std::conj(z)) + #if 1 + #define __Pyx_c_abs_float(z) (::std::abs(z)) + #define __Pyx_c_pow_float(a, b) (::std::pow(a, b)) + #endif + #else + #define __Pyx_c_is_zero_float(z) ((z)==0) + #define __Pyx_c_conj_float(z) (conjf(z)) + #if 1 + #define __Pyx_c_abs_float(z) (cabsf(z)) + #define __Pyx_c_pow_float(a, b) (cpowf(a, b)) + #endif + #endif +#else + static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex); + static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex); + #if 1 + static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex, __pyx_t_float_complex); + #endif +#endif + +/* Arithmetic.proto */ +#if CYTHON_CCOMPLEX + #define __Pyx_c_eq_double(a, b) ((a)==(b)) + #define __Pyx_c_sum_double(a, b) ((a)+(b)) + #define __Pyx_c_diff_double(a, b) ((a)-(b)) + #define __Pyx_c_prod_double(a, b) ((a)*(b)) + #define __Pyx_c_quot_double(a, b) ((a)/(b)) + #define __Pyx_c_neg_double(a) (-(a)) + #ifdef __cplusplus + #define __Pyx_c_is_zero_double(z) ((z)==(double)0) + #define __Pyx_c_conj_double(z) (::std::conj(z)) + #if 1 + #define __Pyx_c_abs_double(z) (::std::abs(z)) + #define __Pyx_c_pow_double(a, b) (::std::pow(a, b)) + #endif + #else + #define __Pyx_c_is_zero_double(z) ((z)==0) + #define __Pyx_c_conj_double(z) (conj(z)) + #if 1 + #define __Pyx_c_abs_double(z) (cabs(z)) + #define __Pyx_c_pow_double(a, b) (cpow(a, b)) + #endif + #endif +#else + static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex); + static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex); + #if 1 + static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex, __pyx_t_double_complex); + #endif +#endif + +/* CIntFromPy.proto */ +static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); + +/* CIntFromPy.proto */ +static CYTHON_INLINE npy_uint32 __Pyx_PyInt_As_npy_uint32(PyObject *); + +/* CIntFromPy.proto */ +static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); + +/* FastTypeChecks.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); +#else +#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) +#define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) +#define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) +#endif +#define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) + +/* CheckBinaryVersion.proto */ +static int __Pyx_check_binary_version(void); + +/* PyObjectSetAttrStr.proto */ +#if CYTHON_USE_TYPE_SLOTS +#define __Pyx_PyObject_DelAttrStr(o,n) __Pyx_PyObject_SetAttrStr(o, n, NULL) +static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value); +#else +#define __Pyx_PyObject_DelAttrStr(o,n) PyObject_DelAttr(o,n) +#define __Pyx_PyObject_SetAttrStr(o,n,v) PyObject_SetAttr(o,n,v) +#endif + +/* VoidPtrExport.proto */ +static int __Pyx_ExportVoidPtr(PyObject *name, void *p, const char *sig); + +/* FunctionExport.proto */ +static int __Pyx_ExportFunction(const char *name, void (*f)(void), const char *sig); + +/* InitStrings.proto */ +static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); + + +/* Module declarations from 'cpython.buffer' */ + +/* Module declarations from 'libc.string' */ + +/* Module declarations from 'libc.stdio' */ + +/* Module declarations from '__builtin__' */ + +/* Module declarations from 'cpython.type' */ +static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0; + +/* Module declarations from 'cpython' */ + +/* Module declarations from 'cpython.object' */ + +/* Module declarations from 'cpython.ref' */ + +/* Module declarations from 'cpython.mem' */ + +/* Module declarations from 'numpy' */ + +/* Module declarations from 'numpy' */ +static PyTypeObject *__pyx_ptype_5numpy_dtype = 0; +static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0; +static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0; +static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0; +static PyTypeObject *__pyx_ptype_5numpy_generic = 0; +static PyTypeObject *__pyx_ptype_5numpy_number = 0; +static PyTypeObject *__pyx_ptype_5numpy_integer = 0; +static PyTypeObject *__pyx_ptype_5numpy_signedinteger = 0; +static PyTypeObject *__pyx_ptype_5numpy_unsignedinteger = 0; +static PyTypeObject *__pyx_ptype_5numpy_inexact = 0; +static PyTypeObject *__pyx_ptype_5numpy_floating = 0; +static PyTypeObject *__pyx_ptype_5numpy_complexfloating = 0; +static PyTypeObject *__pyx_ptype_5numpy_flexible = 0; +static PyTypeObject *__pyx_ptype_5numpy_character = 0; +static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0; + +/* Module declarations from 'cython' */ + +/* Module declarations from 'fse.models.average_inner' */ +static __pyx_t_3fse_6models_13average_inner_saxpy_ptr __pyx_v_3fse_6models_13average_inner_saxpy; +static __pyx_t_3fse_6models_13average_inner_sscal_ptr __pyx_v_3fse_6models_13average_inner_sscal; +static int __pyx_v_3fse_6models_13average_inner_ONE; +static int __pyx_v_3fse_6models_13average_inner_ZERO; +static __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_v_3fse_6models_13average_inner_ONEF; +static __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_v_3fse_6models_13average_inner_ZEROF; +static PyObject *__pyx_f_3fse_6models_13average_inner_init_base_s2v_config(struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig *, PyObject *, PyObject *, PyObject *); /*proto*/ +static PyObject *__pyx_f_3fse_6models_13average_inner_init_ft_s2v_config(struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig *, PyObject *, PyObject *, PyObject *); /*proto*/ +static PyObject *__pyx_f_3fse_6models_13average_inner_populate_base_s2v_config(struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig *, PyObject *, PyObject *); /*proto*/ +static PyObject *__pyx_f_3fse_6models_13average_inner_populate_ft_s2v_config(struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig *, PyObject *, PyObject *); /*proto*/ +static void __pyx_f_3fse_6models_13average_inner_compute_base_sentence_averages(struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig *, __pyx_t_3fse_6models_13average_inner_uINT_t); /*proto*/ +static void __pyx_f_3fse_6models_13average_inner_compute_ft_sentence_averages(struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig *, __pyx_t_3fse_6models_13average_inner_uINT_t); /*proto*/ +#define __Pyx_MODULE_NAME "fse.models.average_inner" +extern int __pyx_module_is_main_fse__models__average_inner; +int __pyx_module_is_main_fse__models__average_inner = 0; + +/* Implementation of 'fse.models.average_inner' */ +static PyObject *__pyx_builtin_enumerate; +static PyObject *__pyx_builtin_range; +static PyObject *__pyx_builtin_ImportError; +static const char __pyx_k__3[] = "*"; +static const char __pyx_k_ft[] = "ft"; +static const char __pyx_k_np[] = "np"; +static const char __pyx_k_sv[] = "sv"; +static const char __pyx_k_wv[] = "wv"; +static const char __pyx_k_max[] = "max"; +static const char __pyx_k_w2v[] = "w2v"; +static const char __pyx_k_fill[] = "fill"; +static const char __pyx_k_init[] = "init"; +static const char __pyx_k_main[] = "__main__"; +static const char __pyx_k_name[] = "__name__"; +static const char __pyx_k_test[] = "__test__"; +static const char __pyx_k_fblas[] = "fblas"; +static const char __pyx_k_index[] = "index"; +static const char __pyx_k_is_ft[] = "is_ft"; +static const char __pyx_k_max_n[] = "max_n"; +static const char __pyx_k_min_n[] = "min_n"; +static const char __pyx_k_model[] = "model"; +static const char __pyx_k_numpy[] = "numpy"; +static const char __pyx_k_range[] = "range"; +static const char __pyx_k_saxpy[] = "saxpy"; +static const char __pyx_k_sscal[] = "sscal"; +static const char __pyx_k_vocab[] = "vocab"; +static const char __pyx_k_bucket[] = "bucket"; +static const char __pyx_k_import[] = "__import__"; +static const char __pyx_k_memory[] = "memory"; +static const char __pyx_k_target[] = "target"; +static const char __pyx_k_vectors[] = "vectors"; +static const char __pyx_k_workers[] = "workers"; +static const char __pyx_k_cpointer[] = "_cpointer"; +static const char __pyx_k_pyx_capi[] = "__pyx_capi__"; +static const char __pyx_k_eff_words[] = "eff_words"; +static const char __pyx_k_enumerate[] = "enumerate"; +static const char __pyx_k_ImportError[] = "ImportError"; +static const char __pyx_k_vector_size[] = "vector_size"; +static const char __pyx_k_FAST_VERSION[] = "FAST_VERSION"; +static const char __pyx_k_word_weights[] = "word_weights"; +static const char __pyx_k_eff_sentences[] = "eff_sentences"; +static const char __pyx_k_ft_hash_bytes[] = "ft_hash_bytes"; +static const char __pyx_k_vectors_vocab[] = "vectors_vocab"; +static const char __pyx_k_vectors_ngrams[] = "vectors_ngrams"; +static const char __pyx_k_train_average_cy[] = "train_average_cy"; +static const char __pyx_k_indexed_sentences[] = "indexed_sentences"; +static const char __pyx_k_scipy_linalg_blas[] = "scipy.linalg.blas"; +static const char __pyx_k_MAX_WORDS_IN_BATCH[] = "MAX_WORDS_IN_BATCH"; +static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; +static const char __pyx_k_MAX_NGRAMS_IN_BATCH[] = "MAX_NGRAMS_IN_BATCH"; +static const char __pyx_k_compute_ngrams_bytes[] = "compute_ngrams_bytes"; +static const char __pyx_k_fse_models_average_inner[] = "fse.models.average_inner"; +static const char __pyx_k_fse_models_average_inner_pyx[] = "fse/models/average_inner.pyx"; +static const char __pyx_k_gensim_models__utils_any2vec[] = "gensim.models._utils_any2vec"; +static const char __pyx_k_numpy_core_multiarray_failed_to[] = "numpy.core.multiarray failed to import"; +static const char __pyx_k_Optimized_cython_functions_for_c[] = "Optimized cython functions for computing sentence embeddings"; +static const char __pyx_k_numpy_core_umath_failed_to_impor[] = "numpy.core.umath failed to import"; +static PyObject *__pyx_n_s_FAST_VERSION; +static PyObject *__pyx_n_s_ImportError; +static PyObject *__pyx_n_s_MAX_NGRAMS_IN_BATCH; +static PyObject *__pyx_n_s_MAX_WORDS_IN_BATCH; +static PyObject *__pyx_n_s__3; +static PyObject *__pyx_n_s_bucket; +static PyObject *__pyx_n_s_cline_in_traceback; +static PyObject *__pyx_n_s_compute_ngrams_bytes; +static PyObject *__pyx_n_s_cpointer; +static PyObject *__pyx_n_s_eff_sentences; +static PyObject *__pyx_n_s_eff_words; +static PyObject *__pyx_n_s_enumerate; +static PyObject *__pyx_n_s_fblas; +static PyObject *__pyx_n_s_fill; +static PyObject *__pyx_n_s_fse_models_average_inner; +static PyObject *__pyx_kp_s_fse_models_average_inner_pyx; +static PyObject *__pyx_n_s_ft; +static PyObject *__pyx_n_s_ft_hash_bytes; +static PyObject *__pyx_n_s_gensim_models__utils_any2vec; +static PyObject *__pyx_n_s_import; +static PyObject *__pyx_n_s_index; +static PyObject *__pyx_n_s_indexed_sentences; +static PyObject *__pyx_n_s_init; +static PyObject *__pyx_n_s_is_ft; +static PyObject *__pyx_n_s_main; +static PyObject *__pyx_n_s_max; +static PyObject *__pyx_n_s_max_n; +static PyObject *__pyx_n_s_memory; +static PyObject *__pyx_n_s_min_n; +static PyObject *__pyx_n_s_model; +static PyObject *__pyx_n_s_name; +static PyObject *__pyx_n_s_np; +static PyObject *__pyx_n_s_numpy; +static PyObject *__pyx_kp_s_numpy_core_multiarray_failed_to; +static PyObject *__pyx_kp_s_numpy_core_umath_failed_to_impor; +static PyObject *__pyx_n_s_pyx_capi; +static PyObject *__pyx_n_s_range; +static PyObject *__pyx_n_s_saxpy; +static PyObject *__pyx_n_s_scipy_linalg_blas; +static PyObject *__pyx_n_s_sscal; +static PyObject *__pyx_n_s_sv; +static PyObject *__pyx_n_s_target; +static PyObject *__pyx_n_s_test; +static PyObject *__pyx_n_s_train_average_cy; +static PyObject *__pyx_n_s_vector_size; +static PyObject *__pyx_n_s_vectors; +static PyObject *__pyx_n_s_vectors_ngrams; +static PyObject *__pyx_n_s_vectors_vocab; +static PyObject *__pyx_n_s_vocab; +static PyObject *__pyx_n_s_w2v; +static PyObject *__pyx_n_s_word_weights; +static PyObject *__pyx_n_s_workers; +static PyObject *__pyx_n_s_wv; +static PyObject *__pyx_pf_3fse_6models_13average_inner_train_average_cy(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_model, PyObject *__pyx_v_indexed_sentences, PyObject *__pyx_v_target, PyObject *__pyx_v_memory); /* proto */ +static PyObject *__pyx_pf_3fse_6models_13average_inner_2init(CYTHON_UNUSED PyObject *__pyx_self); /* proto */ +static PyObject *__pyx_int_0; +static PyObject *__pyx_int_1; +static PyObject *__pyx_int_40; +static PyObject *__pyx_int_10000; +static PyObject *__pyx_tuple_; +static PyObject *__pyx_tuple__2; +static PyObject *__pyx_tuple__4; +static PyObject *__pyx_codeobj__5; +static PyObject *__pyx_codeobj__6; +/* Late includes */ + +/* "fse/models/average_inner.pyx":37 + * DEF MAX_NGRAMS = 40 + * + * cdef init_base_s2v_config(BaseSentenceVecsConfig *c, model, target, memory): # <<<<<<<<<<<<<< + * """Load BaseAny2Vec parameters into a BaseSentenceVecsConfig struct. + * + */ + +static PyObject *__pyx_f_3fse_6models_13average_inner_init_base_s2v_config(struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig *__pyx_v_c, PyObject *__pyx_v_model, PyObject *__pyx_v_target, PyObject *__pyx_v_memory) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("init_base_s2v_config", 0); + + /* "fse/models/average_inner.pyx":53 + * + * """ + * c[0].workers = model.workers # <<<<<<<<<<<<<< + * c[0].size = model.sv.vector_size + * + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_workers); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 53, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 53, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + (__pyx_v_c[0]).workers = __pyx_t_2; + + /* "fse/models/average_inner.pyx":54 + * """ + * c[0].workers = model.workers + * c[0].size = model.sv.vector_size # <<<<<<<<<<<<<< + * + * c[0].mem = (np.PyArray_DATA(memory[0])) + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_sv); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 54, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_vector_size); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 54, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 54, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + (__pyx_v_c[0]).size = __pyx_t_2; + + /* "fse/models/average_inner.pyx":56 + * c[0].size = model.sv.vector_size + * + * c[0].mem = (np.PyArray_DATA(memory[0])) # <<<<<<<<<<<<<< + * + * c[0].word_vectors = (np.PyArray_DATA(model.wv.vectors)) + */ + __pyx_t_3 = __Pyx_GetItemInt(__pyx_v_memory, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 56, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 56, __pyx_L1_error) + (__pyx_v_c[0]).mem = ((__pyx_t_3fse_6models_13average_inner_REAL_t *)PyArray_DATA(((PyArrayObject *)__pyx_t_3))); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "fse/models/average_inner.pyx":58 + * c[0].mem = (np.PyArray_DATA(memory[0])) + * + * c[0].word_vectors = (np.PyArray_DATA(model.wv.vectors)) # <<<<<<<<<<<<<< + * c[0].word_weights = (np.PyArray_DATA(model.word_weights)) + * + */ + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_wv); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 58, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_vectors); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 58, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 58, __pyx_L1_error) + (__pyx_v_c[0]).word_vectors = ((__pyx_t_3fse_6models_13average_inner_REAL_t *)PyArray_DATA(((PyArrayObject *)__pyx_t_1))); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":59 + * + * c[0].word_vectors = (np.PyArray_DATA(model.wv.vectors)) + * c[0].word_weights = (np.PyArray_DATA(model.word_weights)) # <<<<<<<<<<<<<< + * + * c[0].sentence_vectors = (np.PyArray_DATA(target)) + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_word_weights); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 59, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 59, __pyx_L1_error) + (__pyx_v_c[0]).word_weights = ((__pyx_t_3fse_6models_13average_inner_REAL_t *)PyArray_DATA(((PyArrayObject *)__pyx_t_1))); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":61 + * c[0].word_weights = (np.PyArray_DATA(model.word_weights)) + * + * c[0].sentence_vectors = (np.PyArray_DATA(target)) # <<<<<<<<<<<<<< + * + * cdef init_ft_s2v_config(FTSentenceVecsConfig *c, model, target, memory): + */ + if (!(likely(((__pyx_v_target) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_target, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 61, __pyx_L1_error) + (__pyx_v_c[0]).sentence_vectors = ((__pyx_t_3fse_6models_13average_inner_REAL_t *)PyArray_DATA(((PyArrayObject *)__pyx_v_target))); + + /* "fse/models/average_inner.pyx":37 + * DEF MAX_NGRAMS = 40 + * + * cdef init_base_s2v_config(BaseSentenceVecsConfig *c, model, target, memory): # <<<<<<<<<<<<<< + * """Load BaseAny2Vec parameters into a BaseSentenceVecsConfig struct. + * + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("fse.models.average_inner.init_base_s2v_config", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "fse/models/average_inner.pyx":63 + * c[0].sentence_vectors = (np.PyArray_DATA(target)) + * + * cdef init_ft_s2v_config(FTSentenceVecsConfig *c, model, target, memory): # <<<<<<<<<<<<<< + * """Load Fasttext parameters into a FTSentenceVecsConfig struct. + * + */ + +static PyObject *__pyx_f_3fse_6models_13average_inner_init_ft_s2v_config(struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig *__pyx_v_c, PyObject *__pyx_v_model, PyObject *__pyx_v_target, PyObject *__pyx_v_memory) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_t_6; + __Pyx_RefNannySetupContext("init_ft_s2v_config", 0); + + /* "fse/models/average_inner.pyx":80 + * """ + * + * c[0].workers = model.workers # <<<<<<<<<<<<<< + * c[0].size = model.sv.vector_size + * c[0].min_n = model.wv.min_n + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_workers); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 80, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 80, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + (__pyx_v_c[0]).workers = __pyx_t_2; + + /* "fse/models/average_inner.pyx":81 + * + * c[0].workers = model.workers + * c[0].size = model.sv.vector_size # <<<<<<<<<<<<<< + * c[0].min_n = model.wv.min_n + * c[0].max_n = model.wv.max_n + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_sv); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 81, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_vector_size); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 81, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 81, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + (__pyx_v_c[0]).size = __pyx_t_2; + + /* "fse/models/average_inner.pyx":82 + * c[0].workers = model.workers + * c[0].size = model.sv.vector_size + * c[0].min_n = model.wv.min_n # <<<<<<<<<<<<<< + * c[0].max_n = model.wv.max_n + * c[0].bucket = model.wv.bucket + */ + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_wv); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 82, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_min_n); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 82, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 82, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + (__pyx_v_c[0]).min_n = __pyx_t_2; + + /* "fse/models/average_inner.pyx":83 + * c[0].size = model.sv.vector_size + * c[0].min_n = model.wv.min_n + * c[0].max_n = model.wv.max_n # <<<<<<<<<<<<<< + * c[0].bucket = model.wv.bucket + * + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_wv); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 83, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_max_n); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 83, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 83, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + (__pyx_v_c[0]).max_n = __pyx_t_2; + + /* "fse/models/average_inner.pyx":84 + * c[0].min_n = model.wv.min_n + * c[0].max_n = model.wv.max_n + * c[0].bucket = model.wv.bucket # <<<<<<<<<<<<<< + * + * c[0].oov_weight = np.max(model.word_weights) + */ + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_wv); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 84, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_bucket); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 84, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 84, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + (__pyx_v_c[0]).bucket = __pyx_t_2; + + /* "fse/models/average_inner.pyx":86 + * c[0].bucket = model.wv.bucket + * + * c[0].oov_weight = np.max(model.word_weights) # <<<<<<<<<<<<<< + * + * c[0].mem = (np.PyArray_DATA(memory[0])) + */ + __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 86, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_max); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 86, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_word_weights); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 86, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_5 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_4, function); + } + } + __pyx_t_1 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_t_3) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3); + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 86, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __pyx_PyFloat_AsFloat(__pyx_t_1); if (unlikely((__pyx_t_6 == ((npy_float32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 86, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + (__pyx_v_c[0]).oov_weight = ((__pyx_t_3fse_6models_13average_inner_REAL_t)__pyx_t_6); + + /* "fse/models/average_inner.pyx":88 + * c[0].oov_weight = np.max(model.word_weights) + * + * c[0].mem = (np.PyArray_DATA(memory[0])) # <<<<<<<<<<<<<< + * + * memory[1].fill(ZERO) # Reset the ngram storage before filling the struct + */ + __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_memory, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 88, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 88, __pyx_L1_error) + (__pyx_v_c[0]).mem = ((__pyx_t_3fse_6models_13average_inner_REAL_t *)PyArray_DATA(((PyArrayObject *)__pyx_t_1))); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":90 + * c[0].mem = (np.PyArray_DATA(memory[0])) + * + * memory[1].fill(ZERO) # Reset the ngram storage before filling the struct # <<<<<<<<<<<<<< + * c[0].subwords_idx = (np.PyArray_DATA(memory[1])) + * + */ + __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_memory, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 90, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_fill); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 90, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_3fse_6models_13average_inner_ZERO); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 90, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_3); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_3, function); + } + } + __pyx_t_1 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_5, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 90, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":91 + * + * memory[1].fill(ZERO) # Reset the ngram storage before filling the struct + * c[0].subwords_idx = (np.PyArray_DATA(memory[1])) # <<<<<<<<<<<<<< + * + * c[0].word_vectors = (np.PyArray_DATA(model.wv.vectors_vocab)) + */ + __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_memory, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 91, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 91, __pyx_L1_error) + (__pyx_v_c[0]).subwords_idx = ((__pyx_t_3fse_6models_13average_inner_uINT_t *)PyArray_DATA(((PyArrayObject *)__pyx_t_1))); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":93 + * c[0].subwords_idx = (np.PyArray_DATA(memory[1])) + * + * c[0].word_vectors = (np.PyArray_DATA(model.wv.vectors_vocab)) # <<<<<<<<<<<<<< + * c[0].ngram_vectors = (np.PyArray_DATA(model.wv.vectors_ngrams)) + * c[0].word_weights = (np.PyArray_DATA(model.word_weights)) + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_wv); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 93, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_vectors_vocab); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 93, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 93, __pyx_L1_error) + (__pyx_v_c[0]).word_vectors = ((__pyx_t_3fse_6models_13average_inner_REAL_t *)PyArray_DATA(((PyArrayObject *)__pyx_t_3))); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "fse/models/average_inner.pyx":94 + * + * c[0].word_vectors = (np.PyArray_DATA(model.wv.vectors_vocab)) + * c[0].ngram_vectors = (np.PyArray_DATA(model.wv.vectors_ngrams)) # <<<<<<<<<<<<<< + * c[0].word_weights = (np.PyArray_DATA(model.word_weights)) + * + */ + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_wv); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 94, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_vectors_ngrams); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 94, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 94, __pyx_L1_error) + (__pyx_v_c[0]).ngram_vectors = ((__pyx_t_3fse_6models_13average_inner_REAL_t *)PyArray_DATA(((PyArrayObject *)__pyx_t_1))); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":95 + * c[0].word_vectors = (np.PyArray_DATA(model.wv.vectors_vocab)) + * c[0].ngram_vectors = (np.PyArray_DATA(model.wv.vectors_ngrams)) + * c[0].word_weights = (np.PyArray_DATA(model.word_weights)) # <<<<<<<<<<<<<< + * + * c[0].sentence_vectors = (np.PyArray_DATA(target)) + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_word_weights); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 95, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 95, __pyx_L1_error) + (__pyx_v_c[0]).word_weights = ((__pyx_t_3fse_6models_13average_inner_REAL_t *)PyArray_DATA(((PyArrayObject *)__pyx_t_1))); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":97 + * c[0].word_weights = (np.PyArray_DATA(model.word_weights)) + * + * c[0].sentence_vectors = (np.PyArray_DATA(target)) # <<<<<<<<<<<<<< + * + * cdef object populate_base_s2v_config(BaseSentenceVecsConfig *c, vocab, indexed_sentences): + */ + if (!(likely(((__pyx_v_target) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_target, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 97, __pyx_L1_error) + (__pyx_v_c[0]).sentence_vectors = ((__pyx_t_3fse_6models_13average_inner_REAL_t *)PyArray_DATA(((PyArrayObject *)__pyx_v_target))); + + /* "fse/models/average_inner.pyx":63 + * c[0].sentence_vectors = (np.PyArray_DATA(target)) + * + * cdef init_ft_s2v_config(FTSentenceVecsConfig *c, model, target, memory): # <<<<<<<<<<<<<< + * """Load Fasttext parameters into a FTSentenceVecsConfig struct. + * + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("fse.models.average_inner.init_ft_s2v_config", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "fse/models/average_inner.pyx":99 + * c[0].sentence_vectors = (np.PyArray_DATA(target)) + * + * cdef object populate_base_s2v_config(BaseSentenceVecsConfig *c, vocab, indexed_sentences): # <<<<<<<<<<<<<< + * """Prepare C structures for BaseAny2VecModel so we can go "full C" and release the Python GIL. + * + */ + +static PyObject *__pyx_f_3fse_6models_13average_inner_populate_base_s2v_config(struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig *__pyx_v_c, PyObject *__pyx_v_vocab, PyObject *__pyx_v_indexed_sentences) { + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_eff_words; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_eff_sents; + PyObject *__pyx_v_obj = NULL; + PyObject *__pyx_v_token = NULL; + PyObject *__pyx_v_word = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + Py_ssize_t __pyx_t_2; + PyObject *(*__pyx_t_3)(PyObject *); + PyObject *__pyx_t_4 = NULL; + int __pyx_t_5; + int __pyx_t_6; + PyObject *__pyx_t_7 = NULL; + Py_ssize_t __pyx_t_8; + PyObject *(*__pyx_t_9)(PyObject *); + PyObject *__pyx_t_10 = NULL; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_11; + __Pyx_RefNannySetupContext("populate_base_s2v_config", 0); + + /* "fse/models/average_inner.pyx":123 + * """ + * + * cdef uINT_t eff_words = ZERO # Effective words encountered in a sentence # <<<<<<<<<<<<<< + * cdef uINT_t eff_sents = ZERO # Effective sentences encountered + * + */ + __pyx_v_eff_words = __pyx_v_3fse_6models_13average_inner_ZERO; + + /* "fse/models/average_inner.pyx":124 + * + * cdef uINT_t eff_words = ZERO # Effective words encountered in a sentence + * cdef uINT_t eff_sents = ZERO # Effective sentences encountered # <<<<<<<<<<<<<< + * + * c.sentence_boundary[0] = ZERO + */ + __pyx_v_eff_sents = __pyx_v_3fse_6models_13average_inner_ZERO; + + /* "fse/models/average_inner.pyx":126 + * cdef uINT_t eff_sents = ZERO # Effective sentences encountered + * + * c.sentence_boundary[0] = ZERO # <<<<<<<<<<<<<< + * + * for obj in indexed_sentences: + */ + (__pyx_v_c->sentence_boundary[0]) = __pyx_v_3fse_6models_13average_inner_ZERO; + + /* "fse/models/average_inner.pyx":128 + * c.sentence_boundary[0] = ZERO + * + * for obj in indexed_sentences: # <<<<<<<<<<<<<< + * if not obj[0]: + * continue + */ + if (likely(PyList_CheckExact(__pyx_v_indexed_sentences)) || PyTuple_CheckExact(__pyx_v_indexed_sentences)) { + __pyx_t_1 = __pyx_v_indexed_sentences; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = 0; + __pyx_t_3 = NULL; + } else { + __pyx_t_2 = -1; __pyx_t_1 = PyObject_GetIter(__pyx_v_indexed_sentences); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 128, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = Py_TYPE(__pyx_t_1)->tp_iternext; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 128, __pyx_L1_error) + } + for (;;) { + if (likely(!__pyx_t_3)) { + if (likely(PyList_CheckExact(__pyx_t_1))) { + if (__pyx_t_2 >= PyList_GET_SIZE(__pyx_t_1)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyList_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_4); __pyx_t_2++; if (unlikely(0 < 0)) __PYX_ERR(0, 128, __pyx_L1_error) + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 128, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } else { + if (__pyx_t_2 >= PyTuple_GET_SIZE(__pyx_t_1)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_4); __pyx_t_2++; if (unlikely(0 < 0)) __PYX_ERR(0, 128, __pyx_L1_error) + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 128, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } + } else { + __pyx_t_4 = __pyx_t_3(__pyx_t_1); + if (unlikely(!__pyx_t_4)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(0, 128, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_4); + } + __Pyx_XDECREF_SET(__pyx_v_obj, __pyx_t_4); + __pyx_t_4 = 0; + + /* "fse/models/average_inner.pyx":129 + * + * for obj in indexed_sentences: + * if not obj[0]: # <<<<<<<<<<<<<< + * continue + * for token in obj[0]: + */ + __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_obj, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 129, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 129, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = ((!__pyx_t_5) != 0); + if (__pyx_t_6) { + + /* "fse/models/average_inner.pyx":130 + * for obj in indexed_sentences: + * if not obj[0]: + * continue # <<<<<<<<<<<<<< + * for token in obj[0]: + * word = vocab[token] if token in vocab else None # Vocab obj + */ + goto __pyx_L3_continue; + + /* "fse/models/average_inner.pyx":129 + * + * for obj in indexed_sentences: + * if not obj[0]: # <<<<<<<<<<<<<< + * continue + * for token in obj[0]: + */ + } + + /* "fse/models/average_inner.pyx":131 + * if not obj[0]: + * continue + * for token in obj[0]: # <<<<<<<<<<<<<< + * word = vocab[token] if token in vocab else None # Vocab obj + * if word is None: + */ + __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_obj, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 131, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + if (likely(PyList_CheckExact(__pyx_t_4)) || PyTuple_CheckExact(__pyx_t_4)) { + __pyx_t_7 = __pyx_t_4; __Pyx_INCREF(__pyx_t_7); __pyx_t_8 = 0; + __pyx_t_9 = NULL; + } else { + __pyx_t_8 = -1; __pyx_t_7 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 131, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_9 = Py_TYPE(__pyx_t_7)->tp_iternext; if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 131, __pyx_L1_error) + } + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + for (;;) { + if (likely(!__pyx_t_9)) { + if (likely(PyList_CheckExact(__pyx_t_7))) { + if (__pyx_t_8 >= PyList_GET_SIZE(__pyx_t_7)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyList_GET_ITEM(__pyx_t_7, __pyx_t_8); __Pyx_INCREF(__pyx_t_4); __pyx_t_8++; if (unlikely(0 < 0)) __PYX_ERR(0, 131, __pyx_L1_error) + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_7, __pyx_t_8); __pyx_t_8++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 131, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } else { + if (__pyx_t_8 >= PyTuple_GET_SIZE(__pyx_t_7)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_7, __pyx_t_8); __Pyx_INCREF(__pyx_t_4); __pyx_t_8++; if (unlikely(0 < 0)) __PYX_ERR(0, 131, __pyx_L1_error) + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_7, __pyx_t_8); __pyx_t_8++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 131, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } + } else { + __pyx_t_4 = __pyx_t_9(__pyx_t_7); + if (unlikely(!__pyx_t_4)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(0, 131, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_4); + } + __Pyx_XDECREF_SET(__pyx_v_token, __pyx_t_4); + __pyx_t_4 = 0; + + /* "fse/models/average_inner.pyx":132 + * continue + * for token in obj[0]: + * word = vocab[token] if token in vocab else None # Vocab obj # <<<<<<<<<<<<<< + * if word is None: + * continue + */ + __pyx_t_6 = (__Pyx_PySequence_ContainsTF(__pyx_v_token, __pyx_v_vocab, Py_EQ)); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 132, __pyx_L1_error) + if ((__pyx_t_6 != 0)) { + __pyx_t_10 = __Pyx_PyObject_GetItem(__pyx_v_vocab, __pyx_v_token); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 132, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_10); + __pyx_t_4 = __pyx_t_10; + __pyx_t_10 = 0; + } else { + __Pyx_INCREF(Py_None); + __pyx_t_4 = Py_None; + } + __Pyx_XDECREF_SET(__pyx_v_word, __pyx_t_4); + __pyx_t_4 = 0; + + /* "fse/models/average_inner.pyx":133 + * for token in obj[0]: + * word = vocab[token] if token in vocab else None # Vocab obj + * if word is None: # <<<<<<<<<<<<<< + * continue + * c.word_indices[eff_words] = word.index + */ + __pyx_t_6 = (__pyx_v_word == Py_None); + __pyx_t_5 = (__pyx_t_6 != 0); + if (__pyx_t_5) { + + /* "fse/models/average_inner.pyx":134 + * word = vocab[token] if token in vocab else None # Vocab obj + * if word is None: + * continue # <<<<<<<<<<<<<< + * c.word_indices[eff_words] = word.index + * c.sent_adresses[eff_words] = obj[1] + */ + goto __pyx_L6_continue; + + /* "fse/models/average_inner.pyx":133 + * for token in obj[0]: + * word = vocab[token] if token in vocab else None # Vocab obj + * if word is None: # <<<<<<<<<<<<<< + * continue + * c.word_indices[eff_words] = word.index + */ + } + + /* "fse/models/average_inner.pyx":135 + * if word is None: + * continue + * c.word_indices[eff_words] = word.index # <<<<<<<<<<<<<< + * c.sent_adresses[eff_words] = obj[1] + * + */ + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_word, __pyx_n_s_index); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 135, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_11 = __Pyx_PyInt_As_npy_uint32(__pyx_t_4); if (unlikely((__pyx_t_11 == ((npy_uint32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 135, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + (__pyx_v_c->word_indices[__pyx_v_eff_words]) = ((__pyx_t_3fse_6models_13average_inner_uINT_t)__pyx_t_11); + + /* "fse/models/average_inner.pyx":136 + * continue + * c.word_indices[eff_words] = word.index + * c.sent_adresses[eff_words] = obj[1] # <<<<<<<<<<<<<< + * + * eff_words += ONE + */ + __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_obj, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 136, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_11 = __Pyx_PyInt_As_npy_uint32(__pyx_t_4); if (unlikely((__pyx_t_11 == ((npy_uint32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 136, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + (__pyx_v_c->sent_adresses[__pyx_v_eff_words]) = ((__pyx_t_3fse_6models_13average_inner_uINT_t)__pyx_t_11); + + /* "fse/models/average_inner.pyx":138 + * c.sent_adresses[eff_words] = obj[1] + * + * eff_words += ONE # <<<<<<<<<<<<<< + * if eff_words == MAX_WORDS: + * break + */ + __pyx_v_eff_words = (__pyx_v_eff_words + __pyx_v_3fse_6models_13average_inner_ONE); + + /* "fse/models/average_inner.pyx":139 + * + * eff_words += ONE + * if eff_words == MAX_WORDS: # <<<<<<<<<<<<<< + * break + * eff_sents += 1 + */ + __pyx_t_5 = ((__pyx_v_eff_words == 0x2710) != 0); + if (__pyx_t_5) { + + /* "fse/models/average_inner.pyx":140 + * eff_words += ONE + * if eff_words == MAX_WORDS: + * break # <<<<<<<<<<<<<< + * eff_sents += 1 + * c.sentence_boundary[eff_sents] = eff_words + */ + goto __pyx_L7_break; + + /* "fse/models/average_inner.pyx":139 + * + * eff_words += ONE + * if eff_words == MAX_WORDS: # <<<<<<<<<<<<<< + * break + * eff_sents += 1 + */ + } + + /* "fse/models/average_inner.pyx":131 + * if not obj[0]: + * continue + * for token in obj[0]: # <<<<<<<<<<<<<< + * word = vocab[token] if token in vocab else None # Vocab obj + * if word is None: + */ + __pyx_L6_continue:; + } + __pyx_L7_break:; + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + + /* "fse/models/average_inner.pyx":141 + * if eff_words == MAX_WORDS: + * break + * eff_sents += 1 # <<<<<<<<<<<<<< + * c.sentence_boundary[eff_sents] = eff_words + * + */ + __pyx_v_eff_sents = (__pyx_v_eff_sents + 1); + + /* "fse/models/average_inner.pyx":142 + * break + * eff_sents += 1 + * c.sentence_boundary[eff_sents] = eff_words # <<<<<<<<<<<<<< + * + * if eff_words == MAX_WORDS: + */ + (__pyx_v_c->sentence_boundary[__pyx_v_eff_sents]) = __pyx_v_eff_words; + + /* "fse/models/average_inner.pyx":144 + * c.sentence_boundary[eff_sents] = eff_words + * + * if eff_words == MAX_WORDS: # <<<<<<<<<<<<<< + * break + * + */ + __pyx_t_5 = ((__pyx_v_eff_words == 0x2710) != 0); + if (__pyx_t_5) { + + /* "fse/models/average_inner.pyx":145 + * + * if eff_words == MAX_WORDS: + * break # <<<<<<<<<<<<<< + * + * return eff_sents, eff_words + */ + goto __pyx_L4_break; + + /* "fse/models/average_inner.pyx":144 + * c.sentence_boundary[eff_sents] = eff_words + * + * if eff_words == MAX_WORDS: # <<<<<<<<<<<<<< + * break + * + */ + } + + /* "fse/models/average_inner.pyx":128 + * c.sentence_boundary[0] = ZERO + * + * for obj in indexed_sentences: # <<<<<<<<<<<<<< + * if not obj[0]: + * continue + */ + __pyx_L3_continue:; + } + __pyx_L4_break:; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":147 + * break + * + * return eff_sents, eff_words # <<<<<<<<<<<<<< + * + * cdef object populate_ft_s2v_config(FTSentenceVecsConfig *c, vocab, indexed_sentences): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_npy_uint32(__pyx_v_eff_sents); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 147, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_7 = __Pyx_PyInt_From_npy_uint32(__pyx_v_eff_words); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 147, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 147, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_7); + PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_7); + __pyx_t_1 = 0; + __pyx_t_7 = 0; + __pyx_r = __pyx_t_4; + __pyx_t_4 = 0; + goto __pyx_L0; + + /* "fse/models/average_inner.pyx":99 + * c[0].sentence_vectors = (np.PyArray_DATA(target)) + * + * cdef object populate_base_s2v_config(BaseSentenceVecsConfig *c, vocab, indexed_sentences): # <<<<<<<<<<<<<< + * """Prepare C structures for BaseAny2VecModel so we can go "full C" and release the Python GIL. + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_10); + __Pyx_AddTraceback("fse.models.average_inner.populate_base_s2v_config", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_obj); + __Pyx_XDECREF(__pyx_v_token); + __Pyx_XDECREF(__pyx_v_word); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "fse/models/average_inner.pyx":149 + * return eff_sents, eff_words + * + * cdef object populate_ft_s2v_config(FTSentenceVecsConfig *c, vocab, indexed_sentences): # <<<<<<<<<<<<<< + * """Prepare C structures for FastText so we can go "full C" and release the Python GIL. + * + */ + +static PyObject *__pyx_f_3fse_6models_13average_inner_populate_ft_s2v_config(struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig *__pyx_v_c, PyObject *__pyx_v_vocab, PyObject *__pyx_v_indexed_sentences) { + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_eff_words; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_eff_sents; + PyObject *__pyx_v_obj = NULL; + PyObject *__pyx_v_token = NULL; + PyObject *__pyx_v_word = NULL; + PyObject *__pyx_v_encoded_ngrams = NULL; + PyObject *__pyx_v_hashes = NULL; + PyObject *__pyx_v_i = NULL; + PyObject *__pyx_v_h = NULL; + PyObject *__pyx_v_n = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + Py_ssize_t __pyx_t_2; + PyObject *(*__pyx_t_3)(PyObject *); + PyObject *__pyx_t_4 = NULL; + int __pyx_t_5; + int __pyx_t_6; + PyObject *__pyx_t_7 = NULL; + Py_ssize_t __pyx_t_8; + PyObject *(*__pyx_t_9)(PyObject *); + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_10; + PyObject *__pyx_t_11 = NULL; + PyObject *__pyx_t_12 = NULL; + PyObject *__pyx_t_13 = NULL; + PyObject *__pyx_t_14 = NULL; + int __pyx_t_15; + PyObject *__pyx_t_16 = NULL; + Py_ssize_t __pyx_t_17; + PyObject *(*__pyx_t_18)(PyObject *); + long __pyx_t_19; + Py_ssize_t __pyx_t_20; + __Pyx_RefNannySetupContext("populate_ft_s2v_config", 0); + + /* "fse/models/average_inner.pyx":173 + * """ + * + * cdef uINT_t eff_words = ZERO # Effective words encountered in a sentence # <<<<<<<<<<<<<< + * cdef uINT_t eff_sents = ZERO # Effective sentences encountered + * + */ + __pyx_v_eff_words = __pyx_v_3fse_6models_13average_inner_ZERO; + + /* "fse/models/average_inner.pyx":174 + * + * cdef uINT_t eff_words = ZERO # Effective words encountered in a sentence + * cdef uINT_t eff_sents = ZERO # Effective sentences encountered # <<<<<<<<<<<<<< + * + * c.sentence_boundary[0] = ZERO + */ + __pyx_v_eff_sents = __pyx_v_3fse_6models_13average_inner_ZERO; + + /* "fse/models/average_inner.pyx":176 + * cdef uINT_t eff_sents = ZERO # Effective sentences encountered + * + * c.sentence_boundary[0] = ZERO # <<<<<<<<<<<<<< + * + * for obj in indexed_sentences: + */ + (__pyx_v_c->sentence_boundary[0]) = __pyx_v_3fse_6models_13average_inner_ZERO; + + /* "fse/models/average_inner.pyx":178 + * c.sentence_boundary[0] = ZERO + * + * for obj in indexed_sentences: # <<<<<<<<<<<<<< + * if not obj[0]: + * continue + */ + if (likely(PyList_CheckExact(__pyx_v_indexed_sentences)) || PyTuple_CheckExact(__pyx_v_indexed_sentences)) { + __pyx_t_1 = __pyx_v_indexed_sentences; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = 0; + __pyx_t_3 = NULL; + } else { + __pyx_t_2 = -1; __pyx_t_1 = PyObject_GetIter(__pyx_v_indexed_sentences); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 178, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = Py_TYPE(__pyx_t_1)->tp_iternext; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 178, __pyx_L1_error) + } + for (;;) { + if (likely(!__pyx_t_3)) { + if (likely(PyList_CheckExact(__pyx_t_1))) { + if (__pyx_t_2 >= PyList_GET_SIZE(__pyx_t_1)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyList_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_4); __pyx_t_2++; if (unlikely(0 < 0)) __PYX_ERR(0, 178, __pyx_L1_error) + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 178, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } else { + if (__pyx_t_2 >= PyTuple_GET_SIZE(__pyx_t_1)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_4); __pyx_t_2++; if (unlikely(0 < 0)) __PYX_ERR(0, 178, __pyx_L1_error) + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 178, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } + } else { + __pyx_t_4 = __pyx_t_3(__pyx_t_1); + if (unlikely(!__pyx_t_4)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(0, 178, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_4); + } + __Pyx_XDECREF_SET(__pyx_v_obj, __pyx_t_4); + __pyx_t_4 = 0; + + /* "fse/models/average_inner.pyx":179 + * + * for obj in indexed_sentences: + * if not obj[0]: # <<<<<<<<<<<<<< + * continue + * for token in obj[0]: + */ + __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_obj, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 179, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 179, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = ((!__pyx_t_5) != 0); + if (__pyx_t_6) { + + /* "fse/models/average_inner.pyx":180 + * for obj in indexed_sentences: + * if not obj[0]: + * continue # <<<<<<<<<<<<<< + * for token in obj[0]: + * c.sent_adresses[eff_words] = obj[1] + */ + goto __pyx_L3_continue; + + /* "fse/models/average_inner.pyx":179 + * + * for obj in indexed_sentences: + * if not obj[0]: # <<<<<<<<<<<<<< + * continue + * for token in obj[0]: + */ + } + + /* "fse/models/average_inner.pyx":181 + * if not obj[0]: + * continue + * for token in obj[0]: # <<<<<<<<<<<<<< + * c.sent_adresses[eff_words] = obj[1] + * if token in vocab: + */ + __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_obj, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 181, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + if (likely(PyList_CheckExact(__pyx_t_4)) || PyTuple_CheckExact(__pyx_t_4)) { + __pyx_t_7 = __pyx_t_4; __Pyx_INCREF(__pyx_t_7); __pyx_t_8 = 0; + __pyx_t_9 = NULL; + } else { + __pyx_t_8 = -1; __pyx_t_7 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 181, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_9 = Py_TYPE(__pyx_t_7)->tp_iternext; if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 181, __pyx_L1_error) + } + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + for (;;) { + if (likely(!__pyx_t_9)) { + if (likely(PyList_CheckExact(__pyx_t_7))) { + if (__pyx_t_8 >= PyList_GET_SIZE(__pyx_t_7)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyList_GET_ITEM(__pyx_t_7, __pyx_t_8); __Pyx_INCREF(__pyx_t_4); __pyx_t_8++; if (unlikely(0 < 0)) __PYX_ERR(0, 181, __pyx_L1_error) + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_7, __pyx_t_8); __pyx_t_8++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 181, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } else { + if (__pyx_t_8 >= PyTuple_GET_SIZE(__pyx_t_7)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_7, __pyx_t_8); __Pyx_INCREF(__pyx_t_4); __pyx_t_8++; if (unlikely(0 < 0)) __PYX_ERR(0, 181, __pyx_L1_error) + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_7, __pyx_t_8); __pyx_t_8++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 181, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } + } else { + __pyx_t_4 = __pyx_t_9(__pyx_t_7); + if (unlikely(!__pyx_t_4)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(0, 181, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_4); + } + __Pyx_XDECREF_SET(__pyx_v_token, __pyx_t_4); + __pyx_t_4 = 0; + + /* "fse/models/average_inner.pyx":182 + * continue + * for token in obj[0]: + * c.sent_adresses[eff_words] = obj[1] # <<<<<<<<<<<<<< + * if token in vocab: + * # In Vocabulary + */ + __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_obj, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 182, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_10 = __Pyx_PyInt_As_npy_uint32(__pyx_t_4); if (unlikely((__pyx_t_10 == ((npy_uint32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 182, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + (__pyx_v_c->sent_adresses[__pyx_v_eff_words]) = ((__pyx_t_3fse_6models_13average_inner_uINT_t)__pyx_t_10); + + /* "fse/models/average_inner.pyx":183 + * for token in obj[0]: + * c.sent_adresses[eff_words] = obj[1] + * if token in vocab: # <<<<<<<<<<<<<< + * # In Vocabulary + * word = vocab[token] + */ + __pyx_t_6 = (__Pyx_PySequence_ContainsTF(__pyx_v_token, __pyx_v_vocab, Py_EQ)); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 183, __pyx_L1_error) + __pyx_t_5 = (__pyx_t_6 != 0); + if (__pyx_t_5) { + + /* "fse/models/average_inner.pyx":185 + * if token in vocab: + * # In Vocabulary + * word = vocab[token] # <<<<<<<<<<<<<< + * c.word_indices[eff_words] = word.index + * c.subwords_idx_len[eff_words] = ZERO + */ + __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_v_vocab, __pyx_v_token); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 185, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_XDECREF_SET(__pyx_v_word, __pyx_t_4); + __pyx_t_4 = 0; + + /* "fse/models/average_inner.pyx":186 + * # In Vocabulary + * word = vocab[token] + * c.word_indices[eff_words] = word.index # <<<<<<<<<<<<<< + * c.subwords_idx_len[eff_words] = ZERO + * else: + */ + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_word, __pyx_n_s_index); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 186, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_10 = __Pyx_PyInt_As_npy_uint32(__pyx_t_4); if (unlikely((__pyx_t_10 == ((npy_uint32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 186, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + (__pyx_v_c->word_indices[__pyx_v_eff_words]) = ((__pyx_t_3fse_6models_13average_inner_uINT_t)__pyx_t_10); + + /* "fse/models/average_inner.pyx":187 + * word = vocab[token] + * c.word_indices[eff_words] = word.index + * c.subwords_idx_len[eff_words] = ZERO # <<<<<<<<<<<<<< + * else: + * # OOV words --> write ngram indices to memory + */ + (__pyx_v_c->subwords_idx_len[__pyx_v_eff_words]) = __pyx_v_3fse_6models_13average_inner_ZERO; + + /* "fse/models/average_inner.pyx":183 + * for token in obj[0]: + * c.sent_adresses[eff_words] = obj[1] + * if token in vocab: # <<<<<<<<<<<<<< + * # In Vocabulary + * word = vocab[token] + */ + goto __pyx_L8; + } + + /* "fse/models/average_inner.pyx":190 + * else: + * # OOV words --> write ngram indices to memory + * c.word_indices[eff_words] = ZERO # <<<<<<<<<<<<<< + * + * encoded_ngrams = compute_ngrams_bytes(token, c.min_n, c.max_n) + */ + /*else*/ { + (__pyx_v_c->word_indices[__pyx_v_eff_words]) = __pyx_v_3fse_6models_13average_inner_ZERO; + + /* "fse/models/average_inner.pyx":192 + * c.word_indices[eff_words] = ZERO + * + * encoded_ngrams = compute_ngrams_bytes(token, c.min_n, c.max_n) # <<<<<<<<<<<<<< + * hashes = [ft_hash_bytes(n) % c.bucket for n in encoded_ngrams] + * + */ + __Pyx_GetModuleGlobalName(__pyx_t_11, __pyx_n_s_compute_ngrams_bytes); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 192, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); + __pyx_t_12 = __Pyx_PyInt_From_int(__pyx_v_c->min_n); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 192, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_12); + __pyx_t_13 = __Pyx_PyInt_From_int(__pyx_v_c->max_n); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 192, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_13); + __pyx_t_14 = NULL; + __pyx_t_15 = 0; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_11))) { + __pyx_t_14 = PyMethod_GET_SELF(__pyx_t_11); + if (likely(__pyx_t_14)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_11); + __Pyx_INCREF(__pyx_t_14); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_11, function); + __pyx_t_15 = 1; + } + } + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_11)) { + PyObject *__pyx_temp[4] = {__pyx_t_14, __pyx_v_token, __pyx_t_12, __pyx_t_13}; + __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_11, __pyx_temp+1-__pyx_t_15, 3+__pyx_t_15); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 192, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_14); __pyx_t_14 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; + __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_11)) { + PyObject *__pyx_temp[4] = {__pyx_t_14, __pyx_v_token, __pyx_t_12, __pyx_t_13}; + __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_11, __pyx_temp+1-__pyx_t_15, 3+__pyx_t_15); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 192, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_14); __pyx_t_14 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; + __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; + } else + #endif + { + __pyx_t_16 = PyTuple_New(3+__pyx_t_15); if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 192, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_16); + if (__pyx_t_14) { + __Pyx_GIVEREF(__pyx_t_14); PyTuple_SET_ITEM(__pyx_t_16, 0, __pyx_t_14); __pyx_t_14 = NULL; + } + __Pyx_INCREF(__pyx_v_token); + __Pyx_GIVEREF(__pyx_v_token); + PyTuple_SET_ITEM(__pyx_t_16, 0+__pyx_t_15, __pyx_v_token); + __Pyx_GIVEREF(__pyx_t_12); + PyTuple_SET_ITEM(__pyx_t_16, 1+__pyx_t_15, __pyx_t_12); + __Pyx_GIVEREF(__pyx_t_13); + PyTuple_SET_ITEM(__pyx_t_16, 2+__pyx_t_15, __pyx_t_13); + __pyx_t_12 = 0; + __pyx_t_13 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_11, __pyx_t_16, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 192, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; + } + __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; + __Pyx_XDECREF_SET(__pyx_v_encoded_ngrams, __pyx_t_4); + __pyx_t_4 = 0; + + /* "fse/models/average_inner.pyx":193 + * + * encoded_ngrams = compute_ngrams_bytes(token, c.min_n, c.max_n) + * hashes = [ft_hash_bytes(n) % c.bucket for n in encoded_ngrams] # <<<<<<<<<<<<<< + * + * c.subwords_idx_len[eff_words] = min(len(encoded_ngrams), MAX_NGRAMS) + */ + __pyx_t_4 = PyList_New(0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 193, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + if (likely(PyList_CheckExact(__pyx_v_encoded_ngrams)) || PyTuple_CheckExact(__pyx_v_encoded_ngrams)) { + __pyx_t_11 = __pyx_v_encoded_ngrams; __Pyx_INCREF(__pyx_t_11); __pyx_t_17 = 0; + __pyx_t_18 = NULL; + } else { + __pyx_t_17 = -1; __pyx_t_11 = PyObject_GetIter(__pyx_v_encoded_ngrams); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 193, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); + __pyx_t_18 = Py_TYPE(__pyx_t_11)->tp_iternext; if (unlikely(!__pyx_t_18)) __PYX_ERR(0, 193, __pyx_L1_error) + } + for (;;) { + if (likely(!__pyx_t_18)) { + if (likely(PyList_CheckExact(__pyx_t_11))) { + if (__pyx_t_17 >= PyList_GET_SIZE(__pyx_t_11)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_16 = PyList_GET_ITEM(__pyx_t_11, __pyx_t_17); __Pyx_INCREF(__pyx_t_16); __pyx_t_17++; if (unlikely(0 < 0)) __PYX_ERR(0, 193, __pyx_L1_error) + #else + __pyx_t_16 = PySequence_ITEM(__pyx_t_11, __pyx_t_17); __pyx_t_17++; if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 193, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_16); + #endif + } else { + if (__pyx_t_17 >= PyTuple_GET_SIZE(__pyx_t_11)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_16 = PyTuple_GET_ITEM(__pyx_t_11, __pyx_t_17); __Pyx_INCREF(__pyx_t_16); __pyx_t_17++; if (unlikely(0 < 0)) __PYX_ERR(0, 193, __pyx_L1_error) + #else + __pyx_t_16 = PySequence_ITEM(__pyx_t_11, __pyx_t_17); __pyx_t_17++; if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 193, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_16); + #endif + } + } else { + __pyx_t_16 = __pyx_t_18(__pyx_t_11); + if (unlikely(!__pyx_t_16)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(0, 193, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_16); + } + __Pyx_XDECREF_SET(__pyx_v_n, __pyx_t_16); + __pyx_t_16 = 0; + __Pyx_GetModuleGlobalName(__pyx_t_13, __pyx_n_s_ft_hash_bytes); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 193, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_13); + __pyx_t_12 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_13))) { + __pyx_t_12 = PyMethod_GET_SELF(__pyx_t_13); + if (likely(__pyx_t_12)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_13); + __Pyx_INCREF(__pyx_t_12); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_13, function); + } + } + __pyx_t_16 = (__pyx_t_12) ? __Pyx_PyObject_Call2Args(__pyx_t_13, __pyx_t_12, __pyx_v_n) : __Pyx_PyObject_CallOneArg(__pyx_t_13, __pyx_v_n); + __Pyx_XDECREF(__pyx_t_12); __pyx_t_12 = 0; + if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 193, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_16); + __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; + __pyx_t_13 = __Pyx_PyInt_From_int(__pyx_v_c->bucket); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 193, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_13); + __pyx_t_12 = PyNumber_Remainder(__pyx_t_16, __pyx_t_13); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 193, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_12); + __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; + __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; + if (unlikely(__Pyx_ListComp_Append(__pyx_t_4, (PyObject*)__pyx_t_12))) __PYX_ERR(0, 193, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; + } + __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; + __Pyx_XDECREF_SET(__pyx_v_hashes, ((PyObject*)__pyx_t_4)); + __pyx_t_4 = 0; + + /* "fse/models/average_inner.pyx":195 + * hashes = [ft_hash_bytes(n) % c.bucket for n in encoded_ngrams] + * + * c.subwords_idx_len[eff_words] = min(len(encoded_ngrams), MAX_NGRAMS) # <<<<<<<<<<<<<< + * for i, h in enumerate(hashes[:MAX_NGRAMS]): + * c.subwords_idx[(eff_words * MAX_NGRAMS) + i] = h + */ + __pyx_t_19 = 40; + __pyx_t_17 = PyObject_Length(__pyx_v_encoded_ngrams); if (unlikely(__pyx_t_17 == ((Py_ssize_t)-1))) __PYX_ERR(0, 195, __pyx_L1_error) + if (((__pyx_t_19 < __pyx_t_17) != 0)) { + __pyx_t_20 = __pyx_t_19; + } else { + __pyx_t_20 = __pyx_t_17; + } + (__pyx_v_c->subwords_idx_len[__pyx_v_eff_words]) = ((__pyx_t_3fse_6models_13average_inner_uINT_t)__pyx_t_20); + + /* "fse/models/average_inner.pyx":196 + * + * c.subwords_idx_len[eff_words] = min(len(encoded_ngrams), MAX_NGRAMS) + * for i, h in enumerate(hashes[:MAX_NGRAMS]): # <<<<<<<<<<<<<< + * c.subwords_idx[(eff_words * MAX_NGRAMS) + i] = h + * + */ + __Pyx_INCREF(__pyx_int_0); + __pyx_t_4 = __pyx_int_0; + __pyx_t_11 = __Pyx_PyList_GetSlice(__pyx_v_hashes, 0, 40); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 196, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); + __pyx_t_12 = __pyx_t_11; __Pyx_INCREF(__pyx_t_12); __pyx_t_20 = 0; + __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; + for (;;) { + if (__pyx_t_20 >= PyList_GET_SIZE(__pyx_t_12)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_11 = PyList_GET_ITEM(__pyx_t_12, __pyx_t_20); __Pyx_INCREF(__pyx_t_11); __pyx_t_20++; if (unlikely(0 < 0)) __PYX_ERR(0, 196, __pyx_L1_error) + #else + __pyx_t_11 = PySequence_ITEM(__pyx_t_12, __pyx_t_20); __pyx_t_20++; if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 196, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); + #endif + __Pyx_XDECREF_SET(__pyx_v_h, __pyx_t_11); + __pyx_t_11 = 0; + __Pyx_INCREF(__pyx_t_4); + __Pyx_XDECREF_SET(__pyx_v_i, __pyx_t_4); + __pyx_t_11 = __Pyx_PyInt_AddObjC(__pyx_t_4, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 196, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); + __Pyx_DECREF(__pyx_t_4); + __pyx_t_4 = __pyx_t_11; + __pyx_t_11 = 0; + + /* "fse/models/average_inner.pyx":197 + * c.subwords_idx_len[eff_words] = min(len(encoded_ngrams), MAX_NGRAMS) + * for i, h in enumerate(hashes[:MAX_NGRAMS]): + * c.subwords_idx[(eff_words * MAX_NGRAMS) + i] = h # <<<<<<<<<<<<<< + * + * eff_words += ONE + */ + __pyx_t_10 = __Pyx_PyInt_As_npy_uint32(__pyx_v_h); if (unlikely((__pyx_t_10 == ((npy_uint32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 197, __pyx_L1_error) + __pyx_t_11 = __Pyx_PyInt_From_long((__pyx_v_eff_words * 40)); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 197, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); + __pyx_t_13 = PyNumber_Add(__pyx_t_11, __pyx_v_i); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 197, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_13); + __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; + __pyx_t_17 = __Pyx_PyIndex_AsSsize_t(__pyx_t_13); if (unlikely((__pyx_t_17 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 197, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; + (__pyx_v_c->subwords_idx[__pyx_t_17]) = ((__pyx_t_3fse_6models_13average_inner_uINT_t)__pyx_t_10); + + /* "fse/models/average_inner.pyx":196 + * + * c.subwords_idx_len[eff_words] = min(len(encoded_ngrams), MAX_NGRAMS) + * for i, h in enumerate(hashes[:MAX_NGRAMS]): # <<<<<<<<<<<<<< + * c.subwords_idx[(eff_words * MAX_NGRAMS) + i] = h + * + */ + } + __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + } + __pyx_L8:; + + /* "fse/models/average_inner.pyx":199 + * c.subwords_idx[(eff_words * MAX_NGRAMS) + i] = h + * + * eff_words += ONE # <<<<<<<<<<<<<< + * + * if eff_words == MAX_WORDS: + */ + __pyx_v_eff_words = (__pyx_v_eff_words + __pyx_v_3fse_6models_13average_inner_ONE); + + /* "fse/models/average_inner.pyx":201 + * eff_words += ONE + * + * if eff_words == MAX_WORDS: # <<<<<<<<<<<<<< + * break + * + */ + __pyx_t_5 = ((__pyx_v_eff_words == 0x2710) != 0); + if (__pyx_t_5) { + + /* "fse/models/average_inner.pyx":202 + * + * if eff_words == MAX_WORDS: + * break # <<<<<<<<<<<<<< + * + * eff_sents += 1 + */ + goto __pyx_L7_break; + + /* "fse/models/average_inner.pyx":201 + * eff_words += ONE + * + * if eff_words == MAX_WORDS: # <<<<<<<<<<<<<< + * break + * + */ + } + + /* "fse/models/average_inner.pyx":181 + * if not obj[0]: + * continue + * for token in obj[0]: # <<<<<<<<<<<<<< + * c.sent_adresses[eff_words] = obj[1] + * if token in vocab: + */ + } + __pyx_L7_break:; + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + + /* "fse/models/average_inner.pyx":204 + * break + * + * eff_sents += 1 # <<<<<<<<<<<<<< + * c.sentence_boundary[eff_sents] = eff_words + * + */ + __pyx_v_eff_sents = (__pyx_v_eff_sents + 1); + + /* "fse/models/average_inner.pyx":205 + * + * eff_sents += 1 + * c.sentence_boundary[eff_sents] = eff_words # <<<<<<<<<<<<<< + * + * if eff_words == MAX_WORDS: + */ + (__pyx_v_c->sentence_boundary[__pyx_v_eff_sents]) = __pyx_v_eff_words; + + /* "fse/models/average_inner.pyx":207 + * c.sentence_boundary[eff_sents] = eff_words + * + * if eff_words == MAX_WORDS: # <<<<<<<<<<<<<< + * break + * + */ + __pyx_t_5 = ((__pyx_v_eff_words == 0x2710) != 0); + if (__pyx_t_5) { + + /* "fse/models/average_inner.pyx":208 + * + * if eff_words == MAX_WORDS: + * break # <<<<<<<<<<<<<< + * + * return eff_sents, eff_words + */ + goto __pyx_L4_break; + + /* "fse/models/average_inner.pyx":207 + * c.sentence_boundary[eff_sents] = eff_words + * + * if eff_words == MAX_WORDS: # <<<<<<<<<<<<<< + * break + * + */ + } + + /* "fse/models/average_inner.pyx":178 + * c.sentence_boundary[0] = ZERO + * + * for obj in indexed_sentences: # <<<<<<<<<<<<<< + * if not obj[0]: + * continue + */ + __pyx_L3_continue:; + } + __pyx_L4_break:; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":210 + * break + * + * return eff_sents, eff_words # <<<<<<<<<<<<<< + * + * cdef void compute_base_sentence_averages(BaseSentenceVecsConfig *c, uINT_t num_sentences) nogil: + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_npy_uint32(__pyx_v_eff_sents); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_7 = __Pyx_PyInt_From_npy_uint32(__pyx_v_eff_words); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_7); + PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_7); + __pyx_t_1 = 0; + __pyx_t_7 = 0; + __pyx_r = __pyx_t_4; + __pyx_t_4 = 0; + goto __pyx_L0; + + /* "fse/models/average_inner.pyx":149 + * return eff_sents, eff_words + * + * cdef object populate_ft_s2v_config(FTSentenceVecsConfig *c, vocab, indexed_sentences): # <<<<<<<<<<<<<< + * """Prepare C structures for FastText so we can go "full C" and release the Python GIL. + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_11); + __Pyx_XDECREF(__pyx_t_12); + __Pyx_XDECREF(__pyx_t_13); + __Pyx_XDECREF(__pyx_t_14); + __Pyx_XDECREF(__pyx_t_16); + __Pyx_AddTraceback("fse.models.average_inner.populate_ft_s2v_config", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_obj); + __Pyx_XDECREF(__pyx_v_token); + __Pyx_XDECREF(__pyx_v_word); + __Pyx_XDECREF(__pyx_v_encoded_ngrams); + __Pyx_XDECREF(__pyx_v_hashes); + __Pyx_XDECREF(__pyx_v_i); + __Pyx_XDECREF(__pyx_v_h); + __Pyx_XDECREF(__pyx_v_n); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "fse/models/average_inner.pyx":212 + * return eff_sents, eff_words + * + * cdef void compute_base_sentence_averages(BaseSentenceVecsConfig *c, uINT_t num_sentences) nogil: # <<<<<<<<<<<<<< + * """Perform optimized sentence-level averaging for BaseAny2Vec model. + * + */ + +static void __pyx_f_3fse_6models_13average_inner_compute_base_sentence_averages(struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig *__pyx_v_c, __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_num_sentences) { + int __pyx_v_size; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_sent_idx; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_sent_start; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_sent_end; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_sent_row; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_i; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_word_idx; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_word_row; + __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_v_sent_len; + __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_v_inv_count; + int __pyx_t_1; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_2; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_3; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_4; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_5; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_6; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_7; + int __pyx_t_8; + + /* "fse/models/average_inner.pyx":228 + * """ + * cdef: + * int size = c.size # <<<<<<<<<<<<<< + * + * uINT_t sent_idx, sent_start, sent_end, sent_row + */ + __pyx_t_1 = __pyx_v_c->size; + __pyx_v_size = __pyx_t_1; + + /* "fse/models/average_inner.pyx":236 + * REAL_t sent_len, inv_count + * + * for sent_idx in range(num_sentences): # <<<<<<<<<<<<<< + * memset(c.mem, 0, size * cython.sizeof(REAL_t)) + * + */ + __pyx_t_2 = __pyx_v_num_sentences; + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_sent_idx = __pyx_t_4; + + /* "fse/models/average_inner.pyx":237 + * + * for sent_idx in range(num_sentences): + * memset(c.mem, 0, size * cython.sizeof(REAL_t)) # <<<<<<<<<<<<<< + * + * sent_start = c.sentence_boundary[sent_idx] + */ + (void)(memset(__pyx_v_c->mem, 0, (__pyx_v_size * (sizeof(__pyx_t_3fse_6models_13average_inner_REAL_t))))); + + /* "fse/models/average_inner.pyx":239 + * memset(c.mem, 0, size * cython.sizeof(REAL_t)) + * + * sent_start = c.sentence_boundary[sent_idx] # <<<<<<<<<<<<<< + * sent_end = c.sentence_boundary[sent_idx + 1] + * sent_len = ZEROF + */ + __pyx_v_sent_start = (__pyx_v_c->sentence_boundary[__pyx_v_sent_idx]); + + /* "fse/models/average_inner.pyx":240 + * + * sent_start = c.sentence_boundary[sent_idx] + * sent_end = c.sentence_boundary[sent_idx + 1] # <<<<<<<<<<<<<< + * sent_len = ZEROF + * + */ + __pyx_v_sent_end = (__pyx_v_c->sentence_boundary[(__pyx_v_sent_idx + 1)]); + + /* "fse/models/average_inner.pyx":241 + * sent_start = c.sentence_boundary[sent_idx] + * sent_end = c.sentence_boundary[sent_idx + 1] + * sent_len = ZEROF # <<<<<<<<<<<<<< + * + * for i in range(sent_start, sent_end): + */ + __pyx_v_sent_len = __pyx_v_3fse_6models_13average_inner_ZEROF; + + /* "fse/models/average_inner.pyx":243 + * sent_len = ZEROF + * + * for i in range(sent_start, sent_end): # <<<<<<<<<<<<<< + * sent_len += ONEF + * sent_row = c.sent_adresses[i] * size + */ + __pyx_t_5 = __pyx_v_sent_end; + __pyx_t_6 = __pyx_t_5; + for (__pyx_t_7 = __pyx_v_sent_start; __pyx_t_7 < __pyx_t_6; __pyx_t_7+=1) { + __pyx_v_i = __pyx_t_7; + + /* "fse/models/average_inner.pyx":244 + * + * for i in range(sent_start, sent_end): + * sent_len += ONEF # <<<<<<<<<<<<<< + * sent_row = c.sent_adresses[i] * size + * word_row = c.word_indices[i] * size + */ + __pyx_v_sent_len = (__pyx_v_sent_len + __pyx_v_3fse_6models_13average_inner_ONEF); + + /* "fse/models/average_inner.pyx":245 + * for i in range(sent_start, sent_end): + * sent_len += ONEF + * sent_row = c.sent_adresses[i] * size # <<<<<<<<<<<<<< + * word_row = c.word_indices[i] * size + * word_idx = c.word_indices[i] + */ + __pyx_v_sent_row = ((__pyx_v_c->sent_adresses[__pyx_v_i]) * __pyx_v_size); + + /* "fse/models/average_inner.pyx":246 + * sent_len += ONEF + * sent_row = c.sent_adresses[i] * size + * word_row = c.word_indices[i] * size # <<<<<<<<<<<<<< + * word_idx = c.word_indices[i] + * + */ + __pyx_v_word_row = ((__pyx_v_c->word_indices[__pyx_v_i]) * __pyx_v_size); + + /* "fse/models/average_inner.pyx":247 + * sent_row = c.sent_adresses[i] * size + * word_row = c.word_indices[i] * size + * word_idx = c.word_indices[i] # <<<<<<<<<<<<<< + * + * saxpy(&size, &c.word_weights[word_idx], &c.word_vectors[word_row], &ONE, c.mem, &ONE) + */ + __pyx_v_word_idx = (__pyx_v_c->word_indices[__pyx_v_i]); + + /* "fse/models/average_inner.pyx":249 + * word_idx = c.word_indices[i] + * + * saxpy(&size, &c.word_weights[word_idx], &c.word_vectors[word_row], &ONE, c.mem, &ONE) # <<<<<<<<<<<<<< + * + * if sent_len > ZEROF: + */ + __pyx_v_3fse_6models_13average_inner_saxpy((&__pyx_v_size), (&(__pyx_v_c->word_weights[__pyx_v_word_idx])), (&(__pyx_v_c->word_vectors[__pyx_v_word_row])), (&__pyx_v_3fse_6models_13average_inner_ONE), __pyx_v_c->mem, (&__pyx_v_3fse_6models_13average_inner_ONE)); + } + + /* "fse/models/average_inner.pyx":251 + * saxpy(&size, &c.word_weights[word_idx], &c.word_vectors[word_row], &ONE, c.mem, &ONE) + * + * if sent_len > ZEROF: # <<<<<<<<<<<<<< + * inv_count = ONEF / sent_len + * # If we perform the a*x on memory, the computation is compatible with many-to-one mappings + */ + __pyx_t_8 = ((__pyx_v_sent_len > __pyx_v_3fse_6models_13average_inner_ZEROF) != 0); + if (__pyx_t_8) { + + /* "fse/models/average_inner.pyx":252 + * + * if sent_len > ZEROF: + * inv_count = ONEF / sent_len # <<<<<<<<<<<<<< + * # If we perform the a*x on memory, the computation is compatible with many-to-one mappings + * # because it doesn't rescale the overall result + */ + __pyx_v_inv_count = (__pyx_v_3fse_6models_13average_inner_ONEF / __pyx_v_sent_len); + + /* "fse/models/average_inner.pyx":255 + * # If we perform the a*x on memory, the computation is compatible with many-to-one mappings + * # because it doesn't rescale the overall result + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) # <<<<<<<<<<<<<< + * + * cdef void compute_ft_sentence_averages(FTSentenceVecsConfig *c, uINT_t num_sentences) nogil: + */ + __pyx_v_3fse_6models_13average_inner_saxpy((&__pyx_v_size), (&__pyx_v_inv_count), __pyx_v_c->mem, (&__pyx_v_3fse_6models_13average_inner_ONE), (&(__pyx_v_c->sentence_vectors[__pyx_v_sent_row])), (&__pyx_v_3fse_6models_13average_inner_ONE)); + + /* "fse/models/average_inner.pyx":251 + * saxpy(&size, &c.word_weights[word_idx], &c.word_vectors[word_row], &ONE, c.mem, &ONE) + * + * if sent_len > ZEROF: # <<<<<<<<<<<<<< + * inv_count = ONEF / sent_len + * # If we perform the a*x on memory, the computation is compatible with many-to-one mappings + */ + } + } + + /* "fse/models/average_inner.pyx":212 + * return eff_sents, eff_words + * + * cdef void compute_base_sentence_averages(BaseSentenceVecsConfig *c, uINT_t num_sentences) nogil: # <<<<<<<<<<<<<< + * """Perform optimized sentence-level averaging for BaseAny2Vec model. + * + */ + + /* function exit code */ +} + +/* "fse/models/average_inner.pyx":257 + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) + * + * cdef void compute_ft_sentence_averages(FTSentenceVecsConfig *c, uINT_t num_sentences) nogil: # <<<<<<<<<<<<<< + * """Perform optimized sentence-level averaging for FastText model. + * + */ + +static void __pyx_f_3fse_6models_13average_inner_compute_ft_sentence_averages(struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig *__pyx_v_c, __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_num_sentences) { + int __pyx_v_size; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_sent_idx; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_sent_start; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_sent_end; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_sent_row; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_ngram_row; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_ngrams; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_i; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_j; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_word_idx; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_word_row; + __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_v_sent_len; + __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_v_inv_count; + __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_v_inv_ngram; + CYTHON_UNUSED __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_v_oov_weight; + int __pyx_t_1; + __pyx_t_3fse_6models_13average_inner_REAL_t __pyx_t_2; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_3; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_4; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_5; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_6; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_7; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_8; + int __pyx_t_9; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_10; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_11; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_12; + + /* "fse/models/average_inner.pyx":273 + * """ + * cdef: + * int size = c.size # <<<<<<<<<<<<<< + * + * uINT_t sent_idx, sent_start, sent_end, sent_row + */ + __pyx_t_1 = __pyx_v_c->size; + __pyx_v_size = __pyx_t_1; + + /* "fse/models/average_inner.pyx":283 + * REAL_t sent_len + * REAL_t inv_count, inv_ngram + * REAL_t oov_weight = c.oov_weight # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_2 = __pyx_v_c->oov_weight; + __pyx_v_oov_weight = __pyx_t_2; + + /* "fse/models/average_inner.pyx":286 + * + * + * for sent_idx in range(num_sentences): # <<<<<<<<<<<<<< + * memset(c.mem, 0, size * cython.sizeof(REAL_t)) + * sent_start = c.sentence_boundary[sent_idx] + */ + __pyx_t_3 = __pyx_v_num_sentences; + __pyx_t_4 = __pyx_t_3; + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { + __pyx_v_sent_idx = __pyx_t_5; + + /* "fse/models/average_inner.pyx":287 + * + * for sent_idx in range(num_sentences): + * memset(c.mem, 0, size * cython.sizeof(REAL_t)) # <<<<<<<<<<<<<< + * sent_start = c.sentence_boundary[sent_idx] + * sent_end = c.sentence_boundary[sent_idx + 1] + */ + (void)(memset(__pyx_v_c->mem, 0, (__pyx_v_size * (sizeof(__pyx_t_3fse_6models_13average_inner_REAL_t))))); + + /* "fse/models/average_inner.pyx":288 + * for sent_idx in range(num_sentences): + * memset(c.mem, 0, size * cython.sizeof(REAL_t)) + * sent_start = c.sentence_boundary[sent_idx] # <<<<<<<<<<<<<< + * sent_end = c.sentence_boundary[sent_idx + 1] + * sent_len = ZEROF + */ + __pyx_v_sent_start = (__pyx_v_c->sentence_boundary[__pyx_v_sent_idx]); + + /* "fse/models/average_inner.pyx":289 + * memset(c.mem, 0, size * cython.sizeof(REAL_t)) + * sent_start = c.sentence_boundary[sent_idx] + * sent_end = c.sentence_boundary[sent_idx + 1] # <<<<<<<<<<<<<< + * sent_len = ZEROF + * + */ + __pyx_v_sent_end = (__pyx_v_c->sentence_boundary[(__pyx_v_sent_idx + 1)]); + + /* "fse/models/average_inner.pyx":290 + * sent_start = c.sentence_boundary[sent_idx] + * sent_end = c.sentence_boundary[sent_idx + 1] + * sent_len = ZEROF # <<<<<<<<<<<<<< + * + * for i in range(sent_start, sent_end): + */ + __pyx_v_sent_len = __pyx_v_3fse_6models_13average_inner_ZEROF; + + /* "fse/models/average_inner.pyx":292 + * sent_len = ZEROF + * + * for i in range(sent_start, sent_end): # <<<<<<<<<<<<<< + * sent_len += ONEF + * sent_row = c.sent_adresses[i] * size + */ + __pyx_t_6 = __pyx_v_sent_end; + __pyx_t_7 = __pyx_t_6; + for (__pyx_t_8 = __pyx_v_sent_start; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) { + __pyx_v_i = __pyx_t_8; + + /* "fse/models/average_inner.pyx":293 + * + * for i in range(sent_start, sent_end): + * sent_len += ONEF # <<<<<<<<<<<<<< + * sent_row = c.sent_adresses[i] * size + * + */ + __pyx_v_sent_len = (__pyx_v_sent_len + __pyx_v_3fse_6models_13average_inner_ONEF); + + /* "fse/models/average_inner.pyx":294 + * for i in range(sent_start, sent_end): + * sent_len += ONEF + * sent_row = c.sent_adresses[i] * size # <<<<<<<<<<<<<< + * + * word_idx = c.word_indices[i] + */ + __pyx_v_sent_row = ((__pyx_v_c->sent_adresses[__pyx_v_i]) * __pyx_v_size); + + /* "fse/models/average_inner.pyx":296 + * sent_row = c.sent_adresses[i] * size + * + * word_idx = c.word_indices[i] # <<<<<<<<<<<<<< + * ngrams = c.subwords_idx_len[i] + * + */ + __pyx_v_word_idx = (__pyx_v_c->word_indices[__pyx_v_i]); + + /* "fse/models/average_inner.pyx":297 + * + * word_idx = c.word_indices[i] + * ngrams = c.subwords_idx_len[i] # <<<<<<<<<<<<<< + * + * if ngrams == 0: + */ + __pyx_v_ngrams = (__pyx_v_c->subwords_idx_len[__pyx_v_i]); + + /* "fse/models/average_inner.pyx":299 + * ngrams = c.subwords_idx_len[i] + * + * if ngrams == 0: # <<<<<<<<<<<<<< + * word_row = c.word_indices[i] * size + * saxpy(&size, &c.word_weights[word_idx], &c.word_vectors[word_row], &ONE, c.mem, &ONE) + */ + __pyx_t_9 = ((__pyx_v_ngrams == 0) != 0); + if (__pyx_t_9) { + + /* "fse/models/average_inner.pyx":300 + * + * if ngrams == 0: + * word_row = c.word_indices[i] * size # <<<<<<<<<<<<<< + * saxpy(&size, &c.word_weights[word_idx], &c.word_vectors[word_row], &ONE, c.mem, &ONE) + * else: + */ + __pyx_v_word_row = ((__pyx_v_c->word_indices[__pyx_v_i]) * __pyx_v_size); + + /* "fse/models/average_inner.pyx":301 + * if ngrams == 0: + * word_row = c.word_indices[i] * size + * saxpy(&size, &c.word_weights[word_idx], &c.word_vectors[word_row], &ONE, c.mem, &ONE) # <<<<<<<<<<<<<< + * else: + * inv_ngram = (ONEF / ngrams) * c.oov_weight + */ + __pyx_v_3fse_6models_13average_inner_saxpy((&__pyx_v_size), (&(__pyx_v_c->word_weights[__pyx_v_word_idx])), (&(__pyx_v_c->word_vectors[__pyx_v_word_row])), (&__pyx_v_3fse_6models_13average_inner_ONE), __pyx_v_c->mem, (&__pyx_v_3fse_6models_13average_inner_ONE)); + + /* "fse/models/average_inner.pyx":299 + * ngrams = c.subwords_idx_len[i] + * + * if ngrams == 0: # <<<<<<<<<<<<<< + * word_row = c.word_indices[i] * size + * saxpy(&size, &c.word_weights[word_idx], &c.word_vectors[word_row], &ONE, c.mem, &ONE) + */ + goto __pyx_L7; + } + + /* "fse/models/average_inner.pyx":303 + * saxpy(&size, &c.word_weights[word_idx], &c.word_vectors[word_row], &ONE, c.mem, &ONE) + * else: + * inv_ngram = (ONEF / ngrams) * c.oov_weight # <<<<<<<<<<<<<< + * for j in range(ngrams): + * ngram_row = c.subwords_idx[(i * MAX_NGRAMS)+j] * size + */ + /*else*/ { + __pyx_v_inv_ngram = ((__pyx_v_3fse_6models_13average_inner_ONEF / ((__pyx_t_3fse_6models_13average_inner_REAL_t)__pyx_v_ngrams)) * __pyx_v_c->oov_weight); + + /* "fse/models/average_inner.pyx":304 + * else: + * inv_ngram = (ONEF / ngrams) * c.oov_weight + * for j in range(ngrams): # <<<<<<<<<<<<<< + * ngram_row = c.subwords_idx[(i * MAX_NGRAMS)+j] * size + * saxpy(&size, &inv_ngram, &c.ngram_vectors[ngram_row], &ONE, c.mem, &ONE) + */ + __pyx_t_10 = __pyx_v_ngrams; + __pyx_t_11 = __pyx_t_10; + for (__pyx_t_12 = 0; __pyx_t_12 < __pyx_t_11; __pyx_t_12+=1) { + __pyx_v_j = __pyx_t_12; + + /* "fse/models/average_inner.pyx":305 + * inv_ngram = (ONEF / ngrams) * c.oov_weight + * for j in range(ngrams): + * ngram_row = c.subwords_idx[(i * MAX_NGRAMS)+j] * size # <<<<<<<<<<<<<< + * saxpy(&size, &inv_ngram, &c.ngram_vectors[ngram_row], &ONE, c.mem, &ONE) + * + */ + __pyx_v_ngram_row = ((__pyx_v_c->subwords_idx[((__pyx_v_i * 40) + __pyx_v_j)]) * __pyx_v_size); + + /* "fse/models/average_inner.pyx":306 + * for j in range(ngrams): + * ngram_row = c.subwords_idx[(i * MAX_NGRAMS)+j] * size + * saxpy(&size, &inv_ngram, &c.ngram_vectors[ngram_row], &ONE, c.mem, &ONE) # <<<<<<<<<<<<<< + * + * if sent_len > ZEROF: + */ + __pyx_v_3fse_6models_13average_inner_saxpy((&__pyx_v_size), (&__pyx_v_inv_ngram), (&(__pyx_v_c->ngram_vectors[__pyx_v_ngram_row])), (&__pyx_v_3fse_6models_13average_inner_ONE), __pyx_v_c->mem, (&__pyx_v_3fse_6models_13average_inner_ONE)); + } + } + __pyx_L7:; + } + + /* "fse/models/average_inner.pyx":308 + * saxpy(&size, &inv_ngram, &c.ngram_vectors[ngram_row], &ONE, c.mem, &ONE) + * + * if sent_len > ZEROF: # <<<<<<<<<<<<<< + * inv_count = ONEF / sent_len + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) + */ + __pyx_t_9 = ((__pyx_v_sent_len > __pyx_v_3fse_6models_13average_inner_ZEROF) != 0); + if (__pyx_t_9) { + + /* "fse/models/average_inner.pyx":309 + * + * if sent_len > ZEROF: + * inv_count = ONEF / sent_len # <<<<<<<<<<<<<< + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) + * + */ + __pyx_v_inv_count = (__pyx_v_3fse_6models_13average_inner_ONEF / __pyx_v_sent_len); + + /* "fse/models/average_inner.pyx":310 + * if sent_len > ZEROF: + * inv_count = ONEF / sent_len + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) # <<<<<<<<<<<<<< + * + * def train_average_cy(model, indexed_sentences, target, memory): + */ + __pyx_v_3fse_6models_13average_inner_saxpy((&__pyx_v_size), (&__pyx_v_inv_count), __pyx_v_c->mem, (&__pyx_v_3fse_6models_13average_inner_ONE), (&(__pyx_v_c->sentence_vectors[__pyx_v_sent_row])), (&__pyx_v_3fse_6models_13average_inner_ONE)); + + /* "fse/models/average_inner.pyx":308 + * saxpy(&size, &inv_ngram, &c.ngram_vectors[ngram_row], &ONE, c.mem, &ONE) + * + * if sent_len > ZEROF: # <<<<<<<<<<<<<< + * inv_count = ONEF / sent_len + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) + */ + } + } + + /* "fse/models/average_inner.pyx":257 + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) + * + * cdef void compute_ft_sentence_averages(FTSentenceVecsConfig *c, uINT_t num_sentences) nogil: # <<<<<<<<<<<<<< + * """Perform optimized sentence-level averaging for FastText model. + * + */ + + /* function exit code */ +} + +/* "fse/models/average_inner.pyx":312 + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) + * + * def train_average_cy(model, indexed_sentences, target, memory): # <<<<<<<<<<<<<< + * """Training on a sequence of sentences and update the target ndarray. + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_3fse_6models_13average_inner_1train_average_cy(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static char __pyx_doc_3fse_6models_13average_inner_train_average_cy[] = "train_average_cy(model, indexed_sentences, target, memory)\nTraining on a sequence of sentences and update the target ndarray.\n\n Called internally from :meth:`~fse.models.average.Average._do_train_job`.\n\n Parameters\n ----------\n model : :class:`~fse.models.base_s2v.BaseSentence2VecModel`\n The BaseSentence2VecModel model instance.\n indexed_sentences : iterable of tuple\n The sentences used to train the model.\n target : ndarray\n The target ndarray. We use the index from indexed_sentences\n to write into the corresponding row of target.\n memory : ndarray\n Private memory for each working thread.\n\n Returns\n -------\n int, int\n Number of effective sentences (non-zero) and effective words in the vocabulary used \n during training the sentence embedding.\n "; +static PyMethodDef __pyx_mdef_3fse_6models_13average_inner_1train_average_cy = {"train_average_cy", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_3fse_6models_13average_inner_1train_average_cy, METH_VARARGS|METH_KEYWORDS, __pyx_doc_3fse_6models_13average_inner_train_average_cy}; +static PyObject *__pyx_pw_3fse_6models_13average_inner_1train_average_cy(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v_model = 0; + PyObject *__pyx_v_indexed_sentences = 0; + PyObject *__pyx_v_target = 0; + PyObject *__pyx_v_memory = 0; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("train_average_cy (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_model,&__pyx_n_s_indexed_sentences,&__pyx_n_s_target,&__pyx_n_s_memory,0}; + PyObject* values[4] = {0,0,0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_model)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_indexed_sentences)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("train_average_cy", 1, 4, 4, 1); __PYX_ERR(0, 312, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 2: + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_target)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("train_average_cy", 1, 4, 4, 2); __PYX_ERR(0, 312, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 3: + if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_memory)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("train_average_cy", 1, 4, 4, 3); __PYX_ERR(0, 312, __pyx_L3_error) + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "train_average_cy") < 0)) __PYX_ERR(0, 312, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + } + __pyx_v_model = values[0]; + __pyx_v_indexed_sentences = values[1]; + __pyx_v_target = values[2]; + __pyx_v_memory = values[3]; + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("train_average_cy", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 312, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("fse.models.average_inner.train_average_cy", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_pf_3fse_6models_13average_inner_train_average_cy(__pyx_self, __pyx_v_model, __pyx_v_indexed_sentences, __pyx_v_target, __pyx_v_memory); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_3fse_6models_13average_inner_train_average_cy(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_model, PyObject *__pyx_v_indexed_sentences, PyObject *__pyx_v_target, PyObject *__pyx_v_memory) { + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_eff_sentences; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_v_eff_words; + struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig __pyx_v_w2v; + struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig __pyx_v_ft; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + int __pyx_t_3; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *(*__pyx_t_7)(PyObject *); + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_8; + __pyx_t_3fse_6models_13average_inner_uINT_t __pyx_t_9; + __Pyx_RefNannySetupContext("train_average_cy", 0); + + /* "fse/models/average_inner.pyx":336 + * """ + * + * cdef uINT_t eff_sentences = 0 # <<<<<<<<<<<<<< + * cdef uINT_t eff_words = 0 + * cdef BaseSentenceVecsConfig w2v + */ + __pyx_v_eff_sentences = 0; + + /* "fse/models/average_inner.pyx":337 + * + * cdef uINT_t eff_sentences = 0 + * cdef uINT_t eff_words = 0 # <<<<<<<<<<<<<< + * cdef BaseSentenceVecsConfig w2v + * cdef FTSentenceVecsConfig ft + */ + __pyx_v_eff_words = 0; + + /* "fse/models/average_inner.pyx":341 + * cdef FTSentenceVecsConfig ft + * + * if not model.is_ft: # <<<<<<<<<<<<<< + * init_base_s2v_config(&w2v, model, target, memory) + * + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_is_ft); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 341, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 341, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_3 = ((!__pyx_t_2) != 0); + if (__pyx_t_3) { + + /* "fse/models/average_inner.pyx":342 + * + * if not model.is_ft: + * init_base_s2v_config(&w2v, model, target, memory) # <<<<<<<<<<<<<< + * + * eff_sentences, eff_words = populate_base_s2v_config(&w2v, model.wv.vocab, indexed_sentences) + */ + __pyx_t_1 = __pyx_f_3fse_6models_13average_inner_init_base_s2v_config((&__pyx_v_w2v), __pyx_v_model, __pyx_v_target, __pyx_v_memory); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 342, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":344 + * init_base_s2v_config(&w2v, model, target, memory) + * + * eff_sentences, eff_words = populate_base_s2v_config(&w2v, model.wv.vocab, indexed_sentences) # <<<<<<<<<<<<<< + * + * with nogil: + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_wv); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 344, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_vocab); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 344, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __pyx_f_3fse_6models_13average_inner_populate_base_s2v_config((&__pyx_v_w2v), __pyx_t_4, __pyx_v_indexed_sentences); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 344, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { + PyObject* sequence = __pyx_t_1; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(0, 344, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + if (likely(PyTuple_CheckExact(sequence))) { + __pyx_t_4 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_5 = PyTuple_GET_ITEM(sequence, 1); + } else { + __pyx_t_4 = PyList_GET_ITEM(sequence, 0); + __pyx_t_5 = PyList_GET_ITEM(sequence, 1); + } + __Pyx_INCREF(__pyx_t_4); + __Pyx_INCREF(__pyx_t_5); + #else + __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 344, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 344, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + #endif + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else { + Py_ssize_t index = -1; + __pyx_t_6 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 344, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_7 = Py_TYPE(__pyx_t_6)->tp_iternext; + index = 0; __pyx_t_4 = __pyx_t_7(__pyx_t_6); if (unlikely(!__pyx_t_4)) goto __pyx_L4_unpacking_failed; + __Pyx_GOTREF(__pyx_t_4); + index = 1; __pyx_t_5 = __pyx_t_7(__pyx_t_6); if (unlikely(!__pyx_t_5)) goto __pyx_L4_unpacking_failed; + __Pyx_GOTREF(__pyx_t_5); + if (__Pyx_IternextUnpackEndCheck(__pyx_t_7(__pyx_t_6), 2) < 0) __PYX_ERR(0, 344, __pyx_L1_error) + __pyx_t_7 = NULL; + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + goto __pyx_L5_unpacking_done; + __pyx_L4_unpacking_failed:; + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __pyx_t_7 = NULL; + if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); + __PYX_ERR(0, 344, __pyx_L1_error) + __pyx_L5_unpacking_done:; + } + __pyx_t_8 = __Pyx_PyInt_As_npy_uint32(__pyx_t_4); if (unlikely((__pyx_t_8 == ((npy_uint32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 344, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_9 = __Pyx_PyInt_As_npy_uint32(__pyx_t_5); if (unlikely((__pyx_t_9 == ((npy_uint32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 344, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_eff_sentences = __pyx_t_8; + __pyx_v_eff_words = __pyx_t_9; + + /* "fse/models/average_inner.pyx":346 + * eff_sentences, eff_words = populate_base_s2v_config(&w2v, model.wv.vocab, indexed_sentences) + * + * with nogil: # <<<<<<<<<<<<<< + * compute_base_sentence_averages(&w2v, eff_sentences) + * else: + */ + { + #ifdef WITH_THREAD + PyThreadState *_save; + Py_UNBLOCK_THREADS + __Pyx_FastGIL_Remember(); + #endif + /*try:*/ { + + /* "fse/models/average_inner.pyx":347 + * + * with nogil: + * compute_base_sentence_averages(&w2v, eff_sentences) # <<<<<<<<<<<<<< + * else: + * init_ft_s2v_config(&ft, model, target, memory) + */ + __pyx_f_3fse_6models_13average_inner_compute_base_sentence_averages((&__pyx_v_w2v), __pyx_v_eff_sentences); + } + + /* "fse/models/average_inner.pyx":346 + * eff_sentences, eff_words = populate_base_s2v_config(&w2v, model.wv.vocab, indexed_sentences) + * + * with nogil: # <<<<<<<<<<<<<< + * compute_base_sentence_averages(&w2v, eff_sentences) + * else: + */ + /*finally:*/ { + /*normal exit:*/{ + #ifdef WITH_THREAD + __Pyx_FastGIL_Forget(); + Py_BLOCK_THREADS + #endif + goto __pyx_L8; + } + __pyx_L8:; + } + } + + /* "fse/models/average_inner.pyx":341 + * cdef FTSentenceVecsConfig ft + * + * if not model.is_ft: # <<<<<<<<<<<<<< + * init_base_s2v_config(&w2v, model, target, memory) + * + */ + goto __pyx_L3; + } + + /* "fse/models/average_inner.pyx":349 + * compute_base_sentence_averages(&w2v, eff_sentences) + * else: + * init_ft_s2v_config(&ft, model, target, memory) # <<<<<<<<<<<<<< + * + * eff_sentences, eff_words = populate_ft_s2v_config(&ft, model.wv.vocab, indexed_sentences) + */ + /*else*/ { + __pyx_t_1 = __pyx_f_3fse_6models_13average_inner_init_ft_s2v_config((&__pyx_v_ft), __pyx_v_model, __pyx_v_target, __pyx_v_memory); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 349, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":351 + * init_ft_s2v_config(&ft, model, target, memory) + * + * eff_sentences, eff_words = populate_ft_s2v_config(&ft, model.wv.vocab, indexed_sentences) # <<<<<<<<<<<<<< + * + * with nogil: + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_model, __pyx_n_s_wv); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 351, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_vocab); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 351, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __pyx_f_3fse_6models_13average_inner_populate_ft_s2v_config((&__pyx_v_ft), __pyx_t_5, __pyx_v_indexed_sentences); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 351, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { + PyObject* sequence = __pyx_t_1; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(0, 351, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + if (likely(PyTuple_CheckExact(sequence))) { + __pyx_t_5 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); + } else { + __pyx_t_5 = PyList_GET_ITEM(sequence, 0); + __pyx_t_4 = PyList_GET_ITEM(sequence, 1); + } + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(__pyx_t_4); + #else + __pyx_t_5 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 351, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 351, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else { + Py_ssize_t index = -1; + __pyx_t_6 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 351, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_7 = Py_TYPE(__pyx_t_6)->tp_iternext; + index = 0; __pyx_t_5 = __pyx_t_7(__pyx_t_6); if (unlikely(!__pyx_t_5)) goto __pyx_L9_unpacking_failed; + __Pyx_GOTREF(__pyx_t_5); + index = 1; __pyx_t_4 = __pyx_t_7(__pyx_t_6); if (unlikely(!__pyx_t_4)) goto __pyx_L9_unpacking_failed; + __Pyx_GOTREF(__pyx_t_4); + if (__Pyx_IternextUnpackEndCheck(__pyx_t_7(__pyx_t_6), 2) < 0) __PYX_ERR(0, 351, __pyx_L1_error) + __pyx_t_7 = NULL; + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + goto __pyx_L10_unpacking_done; + __pyx_L9_unpacking_failed:; + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __pyx_t_7 = NULL; + if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); + __PYX_ERR(0, 351, __pyx_L1_error) + __pyx_L10_unpacking_done:; + } + __pyx_t_9 = __Pyx_PyInt_As_npy_uint32(__pyx_t_5); if (unlikely((__pyx_t_9 == ((npy_uint32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 351, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_8 = __Pyx_PyInt_As_npy_uint32(__pyx_t_4); if (unlikely((__pyx_t_8 == ((npy_uint32)-1)) && PyErr_Occurred())) __PYX_ERR(0, 351, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_v_eff_sentences = __pyx_t_9; + __pyx_v_eff_words = __pyx_t_8; + + /* "fse/models/average_inner.pyx":353 + * eff_sentences, eff_words = populate_ft_s2v_config(&ft, model.wv.vocab, indexed_sentences) + * + * with nogil: # <<<<<<<<<<<<<< + * compute_ft_sentence_averages(&ft, eff_sentences) + * + */ + { + #ifdef WITH_THREAD + PyThreadState *_save; + Py_UNBLOCK_THREADS + __Pyx_FastGIL_Remember(); + #endif + /*try:*/ { + + /* "fse/models/average_inner.pyx":354 + * + * with nogil: + * compute_ft_sentence_averages(&ft, eff_sentences) # <<<<<<<<<<<<<< + * + * return eff_sentences, eff_words + */ + __pyx_f_3fse_6models_13average_inner_compute_ft_sentence_averages((&__pyx_v_ft), __pyx_v_eff_sentences); + } + + /* "fse/models/average_inner.pyx":353 + * eff_sentences, eff_words = populate_ft_s2v_config(&ft, model.wv.vocab, indexed_sentences) + * + * with nogil: # <<<<<<<<<<<<<< + * compute_ft_sentence_averages(&ft, eff_sentences) + * + */ + /*finally:*/ { + /*normal exit:*/{ + #ifdef WITH_THREAD + __Pyx_FastGIL_Forget(); + Py_BLOCK_THREADS + #endif + goto __pyx_L13; + } + __pyx_L13:; + } + } + } + __pyx_L3:; + + /* "fse/models/average_inner.pyx":356 + * compute_ft_sentence_averages(&ft, eff_sentences) + * + * return eff_sentences, eff_words # <<<<<<<<<<<<<< + * + * def init(): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_npy_uint32(__pyx_v_eff_sentences); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 356, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_4 = __Pyx_PyInt_From_npy_uint32(__pyx_v_eff_words); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 356, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 356, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_4); + __pyx_t_1 = 0; + __pyx_t_4 = 0; + __pyx_r = __pyx_t_5; + __pyx_t_5 = 0; + goto __pyx_L0; + + /* "fse/models/average_inner.pyx":312 + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) + * + * def train_average_cy(model, indexed_sentences, target, memory): # <<<<<<<<<<<<<< + * """Training on a sequence of sentences and update the target ndarray. + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_AddTraceback("fse.models.average_inner.train_average_cy", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "fse/models/average_inner.pyx":358 + * return eff_sentences, eff_words + * + * def init(): # <<<<<<<<<<<<<< + * return 1 + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_3fse_6models_13average_inner_3init(PyObject *__pyx_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static char __pyx_doc_3fse_6models_13average_inner_2init[] = "init()"; +static PyMethodDef __pyx_mdef_3fse_6models_13average_inner_3init = {"init", (PyCFunction)__pyx_pw_3fse_6models_13average_inner_3init, METH_NOARGS, __pyx_doc_3fse_6models_13average_inner_2init}; +static PyObject *__pyx_pw_3fse_6models_13average_inner_3init(PyObject *__pyx_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("init (wrapper)", 0); + __pyx_r = __pyx_pf_3fse_6models_13average_inner_2init(__pyx_self); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_3fse_6models_13average_inner_2init(CYTHON_UNUSED PyObject *__pyx_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("init", 0); + + /* "fse/models/average_inner.pyx":359 + * + * def init(): + * return 1 # <<<<<<<<<<<<<< + * + * MAX_WORDS_IN_BATCH = MAX_WORDS + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_int_1); + __pyx_r = __pyx_int_1; + goto __pyx_L0; + + /* "fse/models/average_inner.pyx":358 + * return eff_sentences, eff_words + * + * def init(): # <<<<<<<<<<<<<< + * return 1 + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":735 + * ctypedef npy_cdouble complex_t + * + * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(1, a) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":736 + * + * cdef inline object PyArray_MultiIterNew1(a): + * return PyArray_MultiIterNew(1, a) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew2(a, b): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 736, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":735 + * ctypedef npy_cdouble complex_t + * + * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(1, a) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":738 + * return PyArray_MultiIterNew(1, a) + * + * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(2, a, b) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":739 + * + * cdef inline object PyArray_MultiIterNew2(a, b): + * return PyArray_MultiIterNew(2, a, b) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 739, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":738 + * return PyArray_MultiIterNew(1, a) + * + * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(2, a, b) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":741 + * return PyArray_MultiIterNew(2, a, b) + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(3, a, b, c) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":742 + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): + * return PyArray_MultiIterNew(3, a, b, c) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 742, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":741 + * return PyArray_MultiIterNew(2, a, b) + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(3, a, b, c) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":744 + * return PyArray_MultiIterNew(3, a, b, c) + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(4, a, b, c, d) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":745 + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): + * return PyArray_MultiIterNew(4, a, b, c, d) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 745, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":744 + * return PyArray_MultiIterNew(3, a, b, c) + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(4, a, b, c, d) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":747 + * return PyArray_MultiIterNew(4, a, b, c, d) + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":748 + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + * return PyArray_MultiIterNew(5, a, b, c, d, e) # <<<<<<<<<<<<<< + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 748, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":747 + * return PyArray_MultiIterNew(4, a, b, c, d) + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":750 + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__pyx_v_d) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("PyDataType_SHAPE", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":751 + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< + * return d.subarray.shape + * else: + */ + __pyx_t_1 = (PyDataType_HASSUBARRAY(__pyx_v_d) != 0); + if (__pyx_t_1) { + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":752 + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape # <<<<<<<<<<<<<< + * else: + * return () + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject*)__pyx_v_d->subarray->shape)); + __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape); + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":751 + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< + * return d.subarray.shape + * else: + */ + } + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":754 + * return d.subarray.shape + * else: + * return () # <<<<<<<<<<<<<< + * + * + */ + /*else*/ { + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_empty_tuple); + __pyx_r = __pyx_empty_tuple; + goto __pyx_L0; + } + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":750 + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":929 + * int _import_umath() except -1 + * + * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< + * Py_INCREF(base) # important to do this before stealing the reference below! + * PyArray_SetBaseObject(arr, base) + */ + +static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("set_array_base", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":930 + * + * cdef inline void set_array_base(ndarray arr, object base): + * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<< + * PyArray_SetBaseObject(arr, base) + * + */ + Py_INCREF(__pyx_v_base); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":931 + * cdef inline void set_array_base(ndarray arr, object base): + * Py_INCREF(base) # important to do this before stealing the reference below! + * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<< + * + * cdef inline object get_array_base(ndarray arr): + */ + (void)(PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base)); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":929 + * int _import_umath() except -1 + * + * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< + * Py_INCREF(base) # important to do this before stealing the reference below! + * PyArray_SetBaseObject(arr, base) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":933 + * PyArray_SetBaseObject(arr, base) + * + * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< + * base = PyArray_BASE(arr) + * if base is NULL: + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) { + PyObject *__pyx_v_base; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("get_array_base", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":934 + * + * cdef inline object get_array_base(ndarray arr): + * base = PyArray_BASE(arr) # <<<<<<<<<<<<<< + * if base is NULL: + * return None + */ + __pyx_v_base = PyArray_BASE(__pyx_v_arr); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":935 + * cdef inline object get_array_base(ndarray arr): + * base = PyArray_BASE(arr) + * if base is NULL: # <<<<<<<<<<<<<< + * return None + * return base + */ + __pyx_t_1 = ((__pyx_v_base == NULL) != 0); + if (__pyx_t_1) { + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":936 + * base = PyArray_BASE(arr) + * if base is NULL: + * return None # <<<<<<<<<<<<<< + * return base + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":935 + * cdef inline object get_array_base(ndarray arr): + * base = PyArray_BASE(arr) + * if base is NULL: # <<<<<<<<<<<<<< + * return None + * return base + */ + } + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":937 + * if base is NULL: + * return None + * return base # <<<<<<<<<<<<<< + * + * # Versions of the import_* functions which are more suitable for + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_base)); + __pyx_r = ((PyObject *)__pyx_v_base); + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":933 + * PyArray_SetBaseObject(arr, base) + * + * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< + * base = PyArray_BASE(arr) + * if base is NULL: + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":941 + * # Versions of the import_* functions which are more suitable for + * # Cython code. + * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< + * try: + * __pyx_import_array() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_array", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":942 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * __pyx_import_array() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":943 + * cdef inline int import_array() except -1: + * try: + * __pyx_import_array() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") + */ + __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 943, __pyx_L3_error) + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":942 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * __pyx_import_array() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":944 + * try: + * __pyx_import_array() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.multiarray failed to import") + * + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 944, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":945 + * __pyx_import_array() + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_umath() except -1: + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 945, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(1, 945, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":942 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * __pyx_import_array() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":941 + * # Versions of the import_* functions which are more suitable for + * # Cython code. + * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< + * try: + * __pyx_import_array() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":947 + * raise ImportError("numpy.core.multiarray failed to import") + * + * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_umath", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":948 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":949 + * cdef inline int import_umath() except -1: + * try: + * _import_umath() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 949, __pyx_L3_error) + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":948 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":950 + * try: + * _import_umath() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.umath failed to import") + * + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 950, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":951 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_ufunc() except -1: + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 951, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(1, 951, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":948 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":947 + * raise ImportError("numpy.core.multiarray failed to import") + * + * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":953 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_ufunc", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":954 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":955 + * cdef inline int import_ufunc() except -1: + * try: + * _import_umath() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 955, __pyx_L3_error) + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":954 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":956 + * try: + * _import_umath() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.umath failed to import") + * + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 956, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":957 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + * + * cdef extern from *: + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 957, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(1, 957, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":954 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":953 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":967 + * + * + * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<< + * """ + * Cython equivalent of `isinstance(obj, np.timedelta64)` + */ + +static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_obj) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("is_timedelta64_object", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":979 + * bool + * """ + * return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyTimedeltaArrType_Type)); + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":967 + * + * + * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<< + * """ + * Cython equivalent of `isinstance(obj, np.timedelta64)` + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":982 + * + * + * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<< + * """ + * Cython equivalent of `isinstance(obj, np.datetime64)` + */ + +static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_obj) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("is_datetime64_object", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":994 + * bool + * """ + * return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyDatetimeArrType_Type)); + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":982 + * + * + * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<< + * """ + * Cython equivalent of `isinstance(obj, np.datetime64)` + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":997 + * + * + * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<< + * """ + * returns the int64 value underlying scalar numpy datetime64 object + */ + +static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *__pyx_v_obj) { + npy_datetime __pyx_r; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":1004 + * also needed. That can be found using `get_datetime64_unit`. + * """ + * return (obj).obval # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = ((PyDatetimeScalarObject *)__pyx_v_obj)->obval; + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":997 + * + * + * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<< + * """ + * returns the int64 value underlying scalar numpy datetime64 object + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":1007 + * + * + * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<< + * """ + * returns the int64 value underlying scalar numpy timedelta64 object + */ + +static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject *__pyx_v_obj) { + npy_timedelta __pyx_r; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":1011 + * returns the int64 value underlying scalar numpy timedelta64 object + * """ + * return (obj).obval # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = ((PyTimedeltaScalarObject *)__pyx_v_obj)->obval; + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":1007 + * + * + * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<< + * """ + * returns the int64 value underlying scalar numpy timedelta64 object + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":1014 + * + * + * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<< + * """ + * returns the unit part of the dtype for a numpy datetime64 object. + */ + +static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObject *__pyx_v_obj) { + NPY_DATETIMEUNIT __pyx_r; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":1018 + * returns the unit part of the dtype for a numpy datetime64 object. + * """ + * return (obj).obmeta.base # <<<<<<<<<<<<<< + */ + __pyx_r = ((NPY_DATETIMEUNIT)((PyDatetimeScalarObject *)__pyx_v_obj)->obmeta.base); + goto __pyx_L0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":1014 + * + * + * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<< + * """ + * returns the unit part of the dtype for a numpy datetime64 object. + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +static PyMethodDef __pyx_methods[] = { + {0, 0, 0, 0} +}; + +#if PY_MAJOR_VERSION >= 3 +#if CYTHON_PEP489_MULTI_PHASE_INIT +static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ +static int __pyx_pymod_exec_average_inner(PyObject* module); /*proto*/ +static PyModuleDef_Slot __pyx_moduledef_slots[] = { + {Py_mod_create, (void*)__pyx_pymod_create}, + {Py_mod_exec, (void*)__pyx_pymod_exec_average_inner}, + {0, NULL} +}; +#endif + +static struct PyModuleDef __pyx_moduledef = { + PyModuleDef_HEAD_INIT, + "average_inner", + __pyx_k_Optimized_cython_functions_for_c, /* m_doc */ + #if CYTHON_PEP489_MULTI_PHASE_INIT + 0, /* m_size */ + #else + -1, /* m_size */ + #endif + __pyx_methods /* m_methods */, + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_moduledef_slots, /* m_slots */ + #else + NULL, /* m_reload */ + #endif + NULL, /* m_traverse */ + NULL, /* m_clear */ + NULL /* m_free */ +}; +#endif +#ifndef CYTHON_SMALL_CODE +#if defined(__clang__) + #define CYTHON_SMALL_CODE +#elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define CYTHON_SMALL_CODE __attribute__((cold)) +#else + #define CYTHON_SMALL_CODE +#endif +#endif + +static __Pyx_StringTabEntry __pyx_string_tab[] = { + {&__pyx_n_s_FAST_VERSION, __pyx_k_FAST_VERSION, sizeof(__pyx_k_FAST_VERSION), 0, 0, 1, 1}, + {&__pyx_n_s_ImportError, __pyx_k_ImportError, sizeof(__pyx_k_ImportError), 0, 0, 1, 1}, + {&__pyx_n_s_MAX_NGRAMS_IN_BATCH, __pyx_k_MAX_NGRAMS_IN_BATCH, sizeof(__pyx_k_MAX_NGRAMS_IN_BATCH), 0, 0, 1, 1}, + {&__pyx_n_s_MAX_WORDS_IN_BATCH, __pyx_k_MAX_WORDS_IN_BATCH, sizeof(__pyx_k_MAX_WORDS_IN_BATCH), 0, 0, 1, 1}, + {&__pyx_n_s__3, __pyx_k__3, sizeof(__pyx_k__3), 0, 0, 1, 1}, + {&__pyx_n_s_bucket, __pyx_k_bucket, sizeof(__pyx_k_bucket), 0, 0, 1, 1}, + {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, + {&__pyx_n_s_compute_ngrams_bytes, __pyx_k_compute_ngrams_bytes, sizeof(__pyx_k_compute_ngrams_bytes), 0, 0, 1, 1}, + {&__pyx_n_s_cpointer, __pyx_k_cpointer, sizeof(__pyx_k_cpointer), 0, 0, 1, 1}, + {&__pyx_n_s_eff_sentences, __pyx_k_eff_sentences, sizeof(__pyx_k_eff_sentences), 0, 0, 1, 1}, + {&__pyx_n_s_eff_words, __pyx_k_eff_words, sizeof(__pyx_k_eff_words), 0, 0, 1, 1}, + {&__pyx_n_s_enumerate, __pyx_k_enumerate, sizeof(__pyx_k_enumerate), 0, 0, 1, 1}, + {&__pyx_n_s_fblas, __pyx_k_fblas, sizeof(__pyx_k_fblas), 0, 0, 1, 1}, + {&__pyx_n_s_fill, __pyx_k_fill, sizeof(__pyx_k_fill), 0, 0, 1, 1}, + {&__pyx_n_s_fse_models_average_inner, __pyx_k_fse_models_average_inner, sizeof(__pyx_k_fse_models_average_inner), 0, 0, 1, 1}, + {&__pyx_kp_s_fse_models_average_inner_pyx, __pyx_k_fse_models_average_inner_pyx, sizeof(__pyx_k_fse_models_average_inner_pyx), 0, 0, 1, 0}, + {&__pyx_n_s_ft, __pyx_k_ft, sizeof(__pyx_k_ft), 0, 0, 1, 1}, + {&__pyx_n_s_ft_hash_bytes, __pyx_k_ft_hash_bytes, sizeof(__pyx_k_ft_hash_bytes), 0, 0, 1, 1}, + {&__pyx_n_s_gensim_models__utils_any2vec, __pyx_k_gensim_models__utils_any2vec, sizeof(__pyx_k_gensim_models__utils_any2vec), 0, 0, 1, 1}, + {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, + {&__pyx_n_s_index, __pyx_k_index, sizeof(__pyx_k_index), 0, 0, 1, 1}, + {&__pyx_n_s_indexed_sentences, __pyx_k_indexed_sentences, sizeof(__pyx_k_indexed_sentences), 0, 0, 1, 1}, + {&__pyx_n_s_init, __pyx_k_init, sizeof(__pyx_k_init), 0, 0, 1, 1}, + {&__pyx_n_s_is_ft, __pyx_k_is_ft, sizeof(__pyx_k_is_ft), 0, 0, 1, 1}, + {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, + {&__pyx_n_s_max, __pyx_k_max, sizeof(__pyx_k_max), 0, 0, 1, 1}, + {&__pyx_n_s_max_n, __pyx_k_max_n, sizeof(__pyx_k_max_n), 0, 0, 1, 1}, + {&__pyx_n_s_memory, __pyx_k_memory, sizeof(__pyx_k_memory), 0, 0, 1, 1}, + {&__pyx_n_s_min_n, __pyx_k_min_n, sizeof(__pyx_k_min_n), 0, 0, 1, 1}, + {&__pyx_n_s_model, __pyx_k_model, sizeof(__pyx_k_model), 0, 0, 1, 1}, + {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, + {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, + {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, + {&__pyx_kp_s_numpy_core_multiarray_failed_to, __pyx_k_numpy_core_multiarray_failed_to, sizeof(__pyx_k_numpy_core_multiarray_failed_to), 0, 0, 1, 0}, + {&__pyx_kp_s_numpy_core_umath_failed_to_impor, __pyx_k_numpy_core_umath_failed_to_impor, sizeof(__pyx_k_numpy_core_umath_failed_to_impor), 0, 0, 1, 0}, + {&__pyx_n_s_pyx_capi, __pyx_k_pyx_capi, sizeof(__pyx_k_pyx_capi), 0, 0, 1, 1}, + {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, + {&__pyx_n_s_saxpy, __pyx_k_saxpy, sizeof(__pyx_k_saxpy), 0, 0, 1, 1}, + {&__pyx_n_s_scipy_linalg_blas, __pyx_k_scipy_linalg_blas, sizeof(__pyx_k_scipy_linalg_blas), 0, 0, 1, 1}, + {&__pyx_n_s_sscal, __pyx_k_sscal, sizeof(__pyx_k_sscal), 0, 0, 1, 1}, + {&__pyx_n_s_sv, __pyx_k_sv, sizeof(__pyx_k_sv), 0, 0, 1, 1}, + {&__pyx_n_s_target, __pyx_k_target, sizeof(__pyx_k_target), 0, 0, 1, 1}, + {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, + {&__pyx_n_s_train_average_cy, __pyx_k_train_average_cy, sizeof(__pyx_k_train_average_cy), 0, 0, 1, 1}, + {&__pyx_n_s_vector_size, __pyx_k_vector_size, sizeof(__pyx_k_vector_size), 0, 0, 1, 1}, + {&__pyx_n_s_vectors, __pyx_k_vectors, sizeof(__pyx_k_vectors), 0, 0, 1, 1}, + {&__pyx_n_s_vectors_ngrams, __pyx_k_vectors_ngrams, sizeof(__pyx_k_vectors_ngrams), 0, 0, 1, 1}, + {&__pyx_n_s_vectors_vocab, __pyx_k_vectors_vocab, sizeof(__pyx_k_vectors_vocab), 0, 0, 1, 1}, + {&__pyx_n_s_vocab, __pyx_k_vocab, sizeof(__pyx_k_vocab), 0, 0, 1, 1}, + {&__pyx_n_s_w2v, __pyx_k_w2v, sizeof(__pyx_k_w2v), 0, 0, 1, 1}, + {&__pyx_n_s_word_weights, __pyx_k_word_weights, sizeof(__pyx_k_word_weights), 0, 0, 1, 1}, + {&__pyx_n_s_workers, __pyx_k_workers, sizeof(__pyx_k_workers), 0, 0, 1, 1}, + {&__pyx_n_s_wv, __pyx_k_wv, sizeof(__pyx_k_wv), 0, 0, 1, 1}, + {0, 0, 0, 0, 0, 0, 0} +}; +static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) { + __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(0, 196, __pyx_L1_error) + __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 236, __pyx_L1_error) + __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(1, 945, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":945 + * __pyx_import_array() + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_umath() except -1: + */ + __pyx_tuple_ = PyTuple_Pack(1, __pyx_kp_s_numpy_core_multiarray_failed_to); if (unlikely(!__pyx_tuple_)) __PYX_ERR(1, 945, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple_); + __Pyx_GIVEREF(__pyx_tuple_); + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":951 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_ufunc() except -1: + */ + __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_umath_failed_to_impor); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(1, 951, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__2); + __Pyx_GIVEREF(__pyx_tuple__2); + + /* "fse/models/average_inner.pyx":312 + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) + * + * def train_average_cy(model, indexed_sentences, target, memory): # <<<<<<<<<<<<<< + * """Training on a sequence of sentences and update the target ndarray. + * + */ + __pyx_tuple__4 = PyTuple_Pack(8, __pyx_n_s_model, __pyx_n_s_indexed_sentences, __pyx_n_s_target, __pyx_n_s_memory, __pyx_n_s_eff_sentences, __pyx_n_s_eff_words, __pyx_n_s_w2v, __pyx_n_s_ft); if (unlikely(!__pyx_tuple__4)) __PYX_ERR(0, 312, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__4); + __Pyx_GIVEREF(__pyx_tuple__4); + __pyx_codeobj__5 = (PyObject*)__Pyx_PyCode_New(4, 0, 8, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__4, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_fse_models_average_inner_pyx, __pyx_n_s_train_average_cy, 312, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__5)) __PYX_ERR(0, 312, __pyx_L1_error) + + /* "fse/models/average_inner.pyx":358 + * return eff_sentences, eff_words + * + * def init(): # <<<<<<<<<<<<<< + * return 1 + * + */ + __pyx_codeobj__6 = (PyObject*)__Pyx_PyCode_New(0, 0, 0, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_fse_models_average_inner_pyx, __pyx_n_s_init, 358, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__6)) __PYX_ERR(0, 358, __pyx_L1_error) + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_RefNannyFinishContext(); + return -1; +} + +static CYTHON_SMALL_CODE int __Pyx_InitGlobals(void) { + if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 1, __pyx_L1_error); + __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_40 = PyInt_FromLong(40); if (unlikely(!__pyx_int_40)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_10000 = PyInt_FromLong(10000L); if (unlikely(!__pyx_int_10000)) __PYX_ERR(0, 1, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +static CYTHON_SMALL_CODE int __Pyx_modinit_global_init_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_variable_export_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_function_export_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_type_init_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_type_import_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_variable_import_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_function_import_code(void); /*proto*/ + +static int __Pyx_modinit_global_init_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0); + /*--- Global init code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_variable_export_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0); + /*--- Variable export code ---*/ + if (__Pyx_ExportVoidPtr(__pyx_n_s_saxpy, (void *)&__pyx_v_3fse_6models_13average_inner_saxpy, "__pyx_t_3fse_6models_13average_inner_saxpy_ptr") < 0) __PYX_ERR(0, 1, __pyx_L1_error) + if (__Pyx_ExportVoidPtr(__pyx_n_s_sscal, (void *)&__pyx_v_3fse_6models_13average_inner_sscal, "__pyx_t_3fse_6models_13average_inner_sscal_ptr") < 0) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_RefNannyFinishContext(); + return -1; +} + +static int __Pyx_modinit_function_export_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0); + /*--- Function export code ---*/ + if (__Pyx_ExportFunction("init_base_s2v_config", (void (*)(void))__pyx_f_3fse_6models_13average_inner_init_base_s2v_config, "PyObject *(struct __pyx_t_3fse_6models_13average_inner_BaseSentenceVecsConfig *, PyObject *, PyObject *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) + if (__Pyx_ExportFunction("init_ft_s2v_config", (void (*)(void))__pyx_f_3fse_6models_13average_inner_init_ft_s2v_config, "PyObject *(struct __pyx_t_3fse_6models_13average_inner_FTSentenceVecsConfig *, PyObject *, PyObject *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_RefNannyFinishContext(); + return -1; +} + +static int __Pyx_modinit_type_init_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0); + /*--- Type init code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_type_import_code(void) { + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0); + /*--- Type import code ---*/ + __pyx_t_1 = PyImport_ImportModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 9, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__pyx_t_1, __Pyx_BUILTIN_MODULE_NAME, "type", + #if defined(PYPY_VERSION_NUM) && PYPY_VERSION_NUM < 0x050B0000 + sizeof(PyTypeObject), + #else + sizeof(PyHeapTypeObject), + #endif + __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_7cpython_4type_type) __PYX_ERR(2, 9, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = PyImport_ImportModule("numpy"); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 200, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_ptype_5numpy_dtype = __Pyx_ImportType(__pyx_t_1, "numpy", "dtype", sizeof(PyArray_Descr), __Pyx_ImportType_CheckSize_Ignore); + if (!__pyx_ptype_5numpy_dtype) __PYX_ERR(1, 200, __pyx_L1_error) + __pyx_ptype_5numpy_flatiter = __Pyx_ImportType(__pyx_t_1, "numpy", "flatiter", sizeof(PyArrayIterObject), __Pyx_ImportType_CheckSize_Ignore); + if (!__pyx_ptype_5numpy_flatiter) __PYX_ERR(1, 223, __pyx_L1_error) + __pyx_ptype_5numpy_broadcast = __Pyx_ImportType(__pyx_t_1, "numpy", "broadcast", sizeof(PyArrayMultiIterObject), __Pyx_ImportType_CheckSize_Ignore); + if (!__pyx_ptype_5numpy_broadcast) __PYX_ERR(1, 227, __pyx_L1_error) + __pyx_ptype_5numpy_ndarray = __Pyx_ImportType(__pyx_t_1, "numpy", "ndarray", sizeof(PyArrayObject), __Pyx_ImportType_CheckSize_Ignore); + if (!__pyx_ptype_5numpy_ndarray) __PYX_ERR(1, 239, __pyx_L1_error) + __pyx_ptype_5numpy_generic = __Pyx_ImportType(__pyx_t_1, "numpy", "generic", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_generic) __PYX_ERR(1, 771, __pyx_L1_error) + __pyx_ptype_5numpy_number = __Pyx_ImportType(__pyx_t_1, "numpy", "number", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_number) __PYX_ERR(1, 773, __pyx_L1_error) + __pyx_ptype_5numpy_integer = __Pyx_ImportType(__pyx_t_1, "numpy", "integer", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_integer) __PYX_ERR(1, 775, __pyx_L1_error) + __pyx_ptype_5numpy_signedinteger = __Pyx_ImportType(__pyx_t_1, "numpy", "signedinteger", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_signedinteger) __PYX_ERR(1, 777, __pyx_L1_error) + __pyx_ptype_5numpy_unsignedinteger = __Pyx_ImportType(__pyx_t_1, "numpy", "unsignedinteger", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_unsignedinteger) __PYX_ERR(1, 779, __pyx_L1_error) + __pyx_ptype_5numpy_inexact = __Pyx_ImportType(__pyx_t_1, "numpy", "inexact", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_inexact) __PYX_ERR(1, 781, __pyx_L1_error) + __pyx_ptype_5numpy_floating = __Pyx_ImportType(__pyx_t_1, "numpy", "floating", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_floating) __PYX_ERR(1, 783, __pyx_L1_error) + __pyx_ptype_5numpy_complexfloating = __Pyx_ImportType(__pyx_t_1, "numpy", "complexfloating", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_complexfloating) __PYX_ERR(1, 785, __pyx_L1_error) + __pyx_ptype_5numpy_flexible = __Pyx_ImportType(__pyx_t_1, "numpy", "flexible", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_flexible) __PYX_ERR(1, 787, __pyx_L1_error) + __pyx_ptype_5numpy_character = __Pyx_ImportType(__pyx_t_1, "numpy", "character", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_character) __PYX_ERR(1, 789, __pyx_L1_error) + __pyx_ptype_5numpy_ufunc = __Pyx_ImportType(__pyx_t_1, "numpy", "ufunc", sizeof(PyUFuncObject), __Pyx_ImportType_CheckSize_Ignore); + if (!__pyx_ptype_5numpy_ufunc) __PYX_ERR(1, 827, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_RefNannyFinishContext(); + return -1; +} + +static int __Pyx_modinit_variable_import_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0); + /*--- Variable import code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_function_import_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0); + /*--- Function import code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + + +#if PY_MAJOR_VERSION < 3 +#ifdef CYTHON_NO_PYINIT_EXPORT +#define __Pyx_PyMODINIT_FUNC void +#else +#define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC +#endif +#else +#ifdef CYTHON_NO_PYINIT_EXPORT +#define __Pyx_PyMODINIT_FUNC PyObject * +#else +#define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC +#endif +#endif + + +#if PY_MAJOR_VERSION < 3 +__Pyx_PyMODINIT_FUNC initaverage_inner(void) CYTHON_SMALL_CODE; /*proto*/ +__Pyx_PyMODINIT_FUNC initaverage_inner(void) +#else +__Pyx_PyMODINIT_FUNC PyInit_average_inner(void) CYTHON_SMALL_CODE; /*proto*/ +__Pyx_PyMODINIT_FUNC PyInit_average_inner(void) +#if CYTHON_PEP489_MULTI_PHASE_INIT +{ + return PyModuleDef_Init(&__pyx_moduledef); +} +static CYTHON_SMALL_CODE int __Pyx_check_single_interpreter(void) { + #if PY_VERSION_HEX >= 0x030700A1 + static PY_INT64_T main_interpreter_id = -1; + PY_INT64_T current_id = PyInterpreterState_GetID(PyThreadState_Get()->interp); + if (main_interpreter_id == -1) { + main_interpreter_id = current_id; + return (unlikely(current_id == -1)) ? -1 : 0; + } else if (unlikely(main_interpreter_id != current_id)) + #else + static PyInterpreterState *main_interpreter = NULL; + PyInterpreterState *current_interpreter = PyThreadState_Get()->interp; + if (!main_interpreter) { + main_interpreter = current_interpreter; + } else if (unlikely(main_interpreter != current_interpreter)) + #endif + { + PyErr_SetString( + PyExc_ImportError, + "Interpreter change detected - this module can only be loaded into one interpreter per process."); + return -1; + } + return 0; +} +static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name, int allow_none) { + PyObject *value = PyObject_GetAttrString(spec, from_name); + int result = 0; + if (likely(value)) { + if (allow_none || value != Py_None) { + result = PyDict_SetItemString(moddict, to_name, value); + } + Py_DECREF(value); + } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Clear(); + } else { + result = -1; + } + return result; +} +static CYTHON_SMALL_CODE PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { + PyObject *module = NULL, *moddict, *modname; + if (__Pyx_check_single_interpreter()) + return NULL; + if (__pyx_m) + return __Pyx_NewRef(__pyx_m); + modname = PyObject_GetAttrString(spec, "name"); + if (unlikely(!modname)) goto bad; + module = PyModule_NewObject(modname); + Py_DECREF(modname); + if (unlikely(!module)) goto bad; + moddict = PyModule_GetDict(module); + if (unlikely(!moddict)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__", 1) < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__", 1) < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__", 1) < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__", 0) < 0)) goto bad; + return module; +bad: + Py_XDECREF(module); + return NULL; +} + + +static CYTHON_SMALL_CODE int __pyx_pymod_exec_average_inner(PyObject *__pyx_pyinit_module) +#endif +#endif +{ + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannyDeclarations + #if CYTHON_PEP489_MULTI_PHASE_INIT + if (__pyx_m) { + if (__pyx_m == __pyx_pyinit_module) return 0; + PyErr_SetString(PyExc_RuntimeError, "Module 'average_inner' has already been imported. Re-initialisation is not supported."); + return -1; + } + #elif PY_MAJOR_VERSION >= 3 + if (__pyx_m) return __Pyx_NewRef(__pyx_m); + #endif + #if CYTHON_REFNANNY +__Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); +if (!__Pyx_RefNanny) { + PyErr_Clear(); + __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); + if (!__Pyx_RefNanny) + Py_FatalError("failed to import 'refnanny' module"); +} +#endif + __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit_average_inner(void)", 0); + if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #ifdef __Pxy_PyFrame_Initialize_Offsets + __Pxy_PyFrame_Initialize_Offsets(); + #endif + __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 1, __pyx_L1_error) + #ifdef __Pyx_CyFunction_USED + if (__pyx_CyFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_FusedFunction_USED + if (__pyx_FusedFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_Coroutine_USED + if (__pyx_Coroutine_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_Generator_USED + if (__pyx_Generator_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_AsyncGen_USED + if (__pyx_AsyncGen_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_StopAsyncIteration_USED + if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + /*--- Library function declarations ---*/ + /*--- Threads initialization code ---*/ + #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS + #ifdef WITH_THREAD /* Python build with threading support? */ + PyEval_InitThreads(); + #endif + #endif + /*--- Module creation code ---*/ + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_m = __pyx_pyinit_module; + Py_INCREF(__pyx_m); + #else + #if PY_MAJOR_VERSION < 3 + __pyx_m = Py_InitModule4("average_inner", __pyx_methods, __pyx_k_Optimized_cython_functions_for_c, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); + #else + __pyx_m = PyModule_Create(&__pyx_moduledef); + #endif + if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error) + Py_INCREF(__pyx_d); + __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error) + Py_INCREF(__pyx_b); + __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 1, __pyx_L1_error) + Py_INCREF(__pyx_cython_runtime); + if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 1, __pyx_L1_error); + /*--- Initialize various global constants etc. ---*/ + if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) + if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + if (__pyx_module_is_main_fse__models__average_inner) { + if (PyObject_SetAttr(__pyx_m, __pyx_n_s_name, __pyx_n_s_main) < 0) __PYX_ERR(0, 1, __pyx_L1_error) + } + #if PY_MAJOR_VERSION >= 3 + { + PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 1, __pyx_L1_error) + if (!PyDict_GetItemString(modules, "fse.models.average_inner")) { + if (unlikely(PyDict_SetItemString(modules, "fse.models.average_inner", __pyx_m) < 0)) __PYX_ERR(0, 1, __pyx_L1_error) + } + } + #endif + /*--- Builtin init code ---*/ + if (__Pyx_InitCachedBuiltins() < 0) goto __pyx_L1_error; + /*--- Constants init code ---*/ + if (__Pyx_InitCachedConstants() < 0) goto __pyx_L1_error; + /*--- Global type/function init code ---*/ + (void)__Pyx_modinit_global_init_code(); + if (unlikely(__Pyx_modinit_variable_export_code() != 0)) goto __pyx_L1_error; + if (unlikely(__Pyx_modinit_function_export_code() != 0)) goto __pyx_L1_error; + (void)__Pyx_modinit_type_init_code(); + if (unlikely(__Pyx_modinit_type_import_code() != 0)) goto __pyx_L1_error; + (void)__Pyx_modinit_variable_import_code(); + (void)__Pyx_modinit_function_import_code(); + /*--- Execution code ---*/ + #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) + if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + + /* "fse/models/average_inner.pyx":14 + * + * import cython + * import numpy as np # <<<<<<<<<<<<<< + * + * cimport numpy as np + */ + __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 14, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 14, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":18 + * cimport numpy as np + * + * from gensim.models._utils_any2vec import compute_ngrams_bytes, ft_hash_bytes # <<<<<<<<<<<<<< + * + * from libc.string cimport memset + */ + __pyx_t_1 = PyList_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 18, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(__pyx_n_s_compute_ngrams_bytes); + __Pyx_GIVEREF(__pyx_n_s_compute_ngrams_bytes); + PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_compute_ngrams_bytes); + __Pyx_INCREF(__pyx_n_s_ft_hash_bytes); + __Pyx_GIVEREF(__pyx_n_s_ft_hash_bytes); + PyList_SET_ITEM(__pyx_t_1, 1, __pyx_n_s_ft_hash_bytes); + __pyx_t_2 = __Pyx_Import(__pyx_n_s_gensim_models__utils_any2vec, __pyx_t_1, -1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 18, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_compute_ngrams_bytes); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 18, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_compute_ngrams_bytes, __pyx_t_1) < 0) __PYX_ERR(0, 18, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_ft_hash_bytes); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 18, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_ft_hash_bytes, __pyx_t_1) < 0) __PYX_ERR(0, 18, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "fse/models/average_inner.pyx":23 + * from libc.stdio cimport printf + * + * import scipy.linalg.blas as fblas # <<<<<<<<<<<<<< + * + * cdef saxpy_ptr saxpy=PyCObject_AsVoidPtr(fblas.saxpy._cpointer) # y += alpha * x + */ + __pyx_t_2 = PyList_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 23, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_INCREF(__pyx_n_s__3); + __Pyx_GIVEREF(__pyx_n_s__3); + PyList_SET_ITEM(__pyx_t_2, 0, __pyx_n_s__3); + __pyx_t_1 = __Pyx_Import(__pyx_n_s_scipy_linalg_blas, __pyx_t_2, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 23, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + if (PyDict_SetItem(__pyx_d, __pyx_n_s_fblas, __pyx_t_1) < 0) __PYX_ERR(0, 23, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":25 + * import scipy.linalg.blas as fblas + * + * cdef saxpy_ptr saxpy=PyCObject_AsVoidPtr(fblas.saxpy._cpointer) # y += alpha * x # <<<<<<<<<<<<<< + * cdef sscal_ptr sscal=PyCObject_AsVoidPtr(fblas.sscal._cpointer) # x = alpha * x + * + */ + __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_fblas); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 25, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_saxpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 25, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_cpointer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 25, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_v_3fse_6models_13average_inner_saxpy = ((__pyx_t_3fse_6models_13average_inner_saxpy_ptr)PyCObject_AsVoidPtr(__pyx_t_1)); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":26 + * + * cdef saxpy_ptr saxpy=PyCObject_AsVoidPtr(fblas.saxpy._cpointer) # y += alpha * x + * cdef sscal_ptr sscal=PyCObject_AsVoidPtr(fblas.sscal._cpointer) # x = alpha * x # <<<<<<<<<<<<<< + * + * cdef int ONE = 1 + */ + __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_fblas); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 26, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_sscal); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 26, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_cpointer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 26, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_v_3fse_6models_13average_inner_sscal = ((__pyx_t_3fse_6models_13average_inner_sscal_ptr)PyCObject_AsVoidPtr(__pyx_t_1)); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":28 + * cdef sscal_ptr sscal=PyCObject_AsVoidPtr(fblas.sscal._cpointer) # x = alpha * x + * + * cdef int ONE = 1 # <<<<<<<<<<<<<< + * cdef int ZERO = 0 + * + */ + __pyx_v_3fse_6models_13average_inner_ONE = ((int)1); + + /* "fse/models/average_inner.pyx":29 + * + * cdef int ONE = 1 + * cdef int ZERO = 0 # <<<<<<<<<<<<<< + * + * cdef REAL_t ONEF = 1.0 + */ + __pyx_v_3fse_6models_13average_inner_ZERO = ((int)0); + + /* "fse/models/average_inner.pyx":31 + * cdef int ZERO = 0 + * + * cdef REAL_t ONEF = 1.0 # <<<<<<<<<<<<<< + * cdef REAL_t ZEROF = 0.0 + * + */ + __pyx_v_3fse_6models_13average_inner_ONEF = ((__pyx_t_3fse_6models_13average_inner_REAL_t)1.0); + + /* "fse/models/average_inner.pyx":32 + * + * cdef REAL_t ONEF = 1.0 + * cdef REAL_t ZEROF = 0.0 # <<<<<<<<<<<<<< + * + * DEF MAX_WORDS = 10000 + */ + __pyx_v_3fse_6models_13average_inner_ZEROF = ((__pyx_t_3fse_6models_13average_inner_REAL_t)0.0); + + /* "fse/models/average_inner.pyx":312 + * saxpy(&size, &inv_count, c.mem, &ONE, &c.sentence_vectors[sent_row], &ONE) + * + * def train_average_cy(model, indexed_sentences, target, memory): # <<<<<<<<<<<<<< + * """Training on a sequence of sentences and update the target ndarray. + * + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_3fse_6models_13average_inner_1train_average_cy, NULL, __pyx_n_s_fse_models_average_inner); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 312, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_train_average_cy, __pyx_t_1) < 0) __PYX_ERR(0, 312, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":358 + * return eff_sentences, eff_words + * + * def init(): # <<<<<<<<<<<<<< + * return 1 + * + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_3fse_6models_13average_inner_3init, NULL, __pyx_n_s_fse_models_average_inner); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 358, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_init, __pyx_t_1) < 0) __PYX_ERR(0, 358, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "fse/models/average_inner.pyx":361 + * return 1 + * + * MAX_WORDS_IN_BATCH = MAX_WORDS # <<<<<<<<<<<<<< + * MAX_NGRAMS_IN_BATCH = MAX_NGRAMS + * FAST_VERSION = init() + */ + if (PyDict_SetItem(__pyx_d, __pyx_n_s_MAX_WORDS_IN_BATCH, __pyx_int_10000) < 0) __PYX_ERR(0, 361, __pyx_L1_error) + + /* "fse/models/average_inner.pyx":362 + * + * MAX_WORDS_IN_BATCH = MAX_WORDS + * MAX_NGRAMS_IN_BATCH = MAX_NGRAMS # <<<<<<<<<<<<<< + * FAST_VERSION = init() + */ + if (PyDict_SetItem(__pyx_d, __pyx_n_s_MAX_NGRAMS_IN_BATCH, __pyx_int_40) < 0) __PYX_ERR(0, 362, __pyx_L1_error) + + /* "fse/models/average_inner.pyx":363 + * MAX_WORDS_IN_BATCH = MAX_WORDS + * MAX_NGRAMS_IN_BATCH = MAX_NGRAMS + * FAST_VERSION = init() # <<<<<<<<<<<<<< + */ + __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_init); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 363, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_CallNoArg(__pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 363, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (PyDict_SetItem(__pyx_d, __pyx_n_s_FAST_VERSION, __pyx_t_2) < 0) __PYX_ERR(0, 363, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "fse/models/average_inner.pyx":1 + * #!/usr/bin/env cython # <<<<<<<<<<<<<< + * # cython: boundscheck=False + * # cython: wraparound=False + */ + __pyx_t_2 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_2) < 0) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "../../../../../home/oborchers/anaconda3/envs/dev/lib/python3.8/site-packages/numpy/__init__.pxd":1014 + * + * + * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<< + * """ + * returns the unit part of the dtype for a numpy datetime64 object. + */ + + /*--- Wrapped vars code ---*/ + + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + if (__pyx_m) { + if (__pyx_d) { + __Pyx_AddTraceback("init fse.models.average_inner", __pyx_clineno, __pyx_lineno, __pyx_filename); + } + Py_CLEAR(__pyx_m); + } else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_ImportError, "init fse.models.average_inner"); + } + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + #if CYTHON_PEP489_MULTI_PHASE_INIT + return (__pyx_m != NULL) ? 0 : -1; + #elif PY_MAJOR_VERSION >= 3 + return __pyx_m; + #else + return; + #endif +} + +/* --- Runtime support code --- */ +/* Refnanny */ +#if CYTHON_REFNANNY +static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { + PyObject *m = NULL, *p = NULL; + void *r = NULL; + m = PyImport_ImportModule(modname); + if (!m) goto end; + p = PyObject_GetAttrString(m, "RefNannyAPI"); + if (!p) goto end; + r = PyLong_AsVoidPtr(p); +end: + Py_XDECREF(p); + Py_XDECREF(m); + return (__Pyx_RefNannyAPIStruct *)r; +} +#endif + +/* PyObjectGetAttrStr */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { + PyTypeObject* tp = Py_TYPE(obj); + if (likely(tp->tp_getattro)) + return tp->tp_getattro(obj, attr_name); +#if PY_MAJOR_VERSION < 3 + if (likely(tp->tp_getattr)) + return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); +#endif + return PyObject_GetAttr(obj, attr_name); +} +#endif + +/* GetBuiltinName */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name) { + PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); + if (unlikely(!result)) { + PyErr_Format(PyExc_NameError, +#if PY_MAJOR_VERSION >= 3 + "name '%U' is not defined", name); +#else + "name '%.200s' is not defined", PyString_AS_STRING(name)); +#endif + } + return result; +} + +/* GetItemInt */ +static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { + PyObject *r; + if (!j) return NULL; + r = PyObject_GetItem(o, j); + Py_DECREF(j); + return r; +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + Py_ssize_t wrapped_i = i; + if (wraparound & unlikely(i < 0)) { + wrapped_i += PyList_GET_SIZE(o); + } + if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyList_GET_SIZE(o)))) { + PyObject *r = PyList_GET_ITEM(o, wrapped_i); + Py_INCREF(r); + return r; + } + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +#else + return PySequence_GetItem(o, i); +#endif +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + Py_ssize_t wrapped_i = i; + if (wraparound & unlikely(i < 0)) { + wrapped_i += PyTuple_GET_SIZE(o); + } + if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyTuple_GET_SIZE(o)))) { + PyObject *r = PyTuple_GET_ITEM(o, wrapped_i); + Py_INCREF(r); + return r; + } + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +#else + return PySequence_GetItem(o, i); +#endif +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS + if (is_list || PyList_CheckExact(o)) { + Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); + if ((!boundscheck) || (likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o))))) { + PyObject *r = PyList_GET_ITEM(o, n); + Py_INCREF(r); + return r; + } + } + else if (PyTuple_CheckExact(o)) { + Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); + if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyTuple_GET_SIZE(o)))) { + PyObject *r = PyTuple_GET_ITEM(o, n); + Py_INCREF(r); + return r; + } + } else { + PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; + if (likely(m && m->sq_item)) { + if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { + Py_ssize_t l = m->sq_length(o); + if (likely(l >= 0)) { + i += l; + } else { + if (!PyErr_ExceptionMatches(PyExc_OverflowError)) + return NULL; + PyErr_Clear(); + } + } + return m->sq_item(o, i); + } + } +#else + if (is_list || PySequence_Check(o)) { + return PySequence_GetItem(o, i); + } +#endif + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +} + +/* ExtTypeTest */ +static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; + } + if (likely(__Pyx_TypeCheck(obj, type))) + return 1; + PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", + Py_TYPE(obj)->tp_name, type->tp_name); + return 0; +} + +/* PyDictVersioning */ +#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj) { + PyObject *dict = Py_TYPE(obj)->tp_dict; + return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0; +} +static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj) { + PyObject **dictptr = NULL; + Py_ssize_t offset = Py_TYPE(obj)->tp_dictoffset; + if (offset) { +#if CYTHON_COMPILING_IN_CPYTHON + dictptr = (likely(offset > 0)) ? (PyObject **) ((char *)obj + offset) : _PyObject_GetDictPtr(obj); +#else + dictptr = _PyObject_GetDictPtr(obj); +#endif + } + return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0; +} +static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version) { + PyObject *dict = Py_TYPE(obj)->tp_dict; + if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict))) + return 0; + return obj_dict_version == __Pyx_get_object_dict_version(obj); +} +#endif + +/* GetModuleGlobalName */ +#if CYTHON_USE_DICT_VERSIONS +static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value) +#else +static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name) +#endif +{ + PyObject *result; +#if !CYTHON_AVOID_BORROWED_REFS +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 + result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); + __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) + if (likely(result)) { + return __Pyx_NewRef(result); + } else if (unlikely(PyErr_Occurred())) { + return NULL; + } +#else + result = PyDict_GetItem(__pyx_d, name); + __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) + if (likely(result)) { + return __Pyx_NewRef(result); + } +#endif +#else + result = PyObject_GetItem(__pyx_d, name); + __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) + if (likely(result)) { + return __Pyx_NewRef(result); + } + PyErr_Clear(); +#endif + return __Pyx_GetBuiltinName(name); +} + +/* PyCFunctionFastCall */ +#if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { + PyCFunctionObject *func = (PyCFunctionObject*)func_obj; + PyCFunction meth = PyCFunction_GET_FUNCTION(func); + PyObject *self = PyCFunction_GET_SELF(func); + int flags = PyCFunction_GET_FLAGS(func); + assert(PyCFunction_Check(func)); + assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))); + assert(nargs >= 0); + assert(nargs == 0 || args != NULL); + /* _PyCFunction_FastCallDict() must not be called with an exception set, + because it may clear it (directly or indirectly) and so the + caller loses its exception */ + assert(!PyErr_Occurred()); + if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { + return (*((__Pyx_PyCFunctionFastWithKeywords)(void*)meth)) (self, args, nargs, NULL); + } else { + return (*((__Pyx_PyCFunctionFast)(void*)meth)) (self, args, nargs); + } +} +#endif + +/* PyFunctionFastCall */ +#if CYTHON_FAST_PYCALL +static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, + PyObject *globals) { + PyFrameObject *f; + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject **fastlocals; + Py_ssize_t i; + PyObject *result; + assert(globals != NULL); + /* XXX Perhaps we should create a specialized + PyFrame_New() that doesn't take locals, but does + take builtins without sanity checking them. + */ + assert(tstate != NULL); + f = PyFrame_New(tstate, co, globals, NULL); + if (f == NULL) { + return NULL; + } + fastlocals = __Pyx_PyFrame_GetLocalsplus(f); + for (i = 0; i < na; i++) { + Py_INCREF(*args); + fastlocals[i] = *args++; + } + result = PyEval_EvalFrameEx(f,0); + ++tstate->recursion_depth; + Py_DECREF(f); + --tstate->recursion_depth; + return result; +} +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) { + PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); + PyObject *globals = PyFunction_GET_GLOBALS(func); + PyObject *argdefs = PyFunction_GET_DEFAULTS(func); + PyObject *closure; +#if PY_MAJOR_VERSION >= 3 + PyObject *kwdefs; +#endif + PyObject *kwtuple, **k; + PyObject **d; + Py_ssize_t nd; + Py_ssize_t nk; + PyObject *result; + assert(kwargs == NULL || PyDict_Check(kwargs)); + nk = kwargs ? PyDict_Size(kwargs) : 0; + if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { + return NULL; + } + if ( +#if PY_MAJOR_VERSION >= 3 + co->co_kwonlyargcount == 0 && +#endif + likely(kwargs == NULL || nk == 0) && + co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { + if (argdefs == NULL && co->co_argcount == nargs) { + result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); + goto done; + } + else if (nargs == 0 && argdefs != NULL + && co->co_argcount == Py_SIZE(argdefs)) { + /* function called with no arguments, but all parameters have + a default value: use default values as arguments .*/ + args = &PyTuple_GET_ITEM(argdefs, 0); + result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); + goto done; + } + } + if (kwargs != NULL) { + Py_ssize_t pos, i; + kwtuple = PyTuple_New(2 * nk); + if (kwtuple == NULL) { + result = NULL; + goto done; + } + k = &PyTuple_GET_ITEM(kwtuple, 0); + pos = i = 0; + while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { + Py_INCREF(k[i]); + Py_INCREF(k[i+1]); + i += 2; + } + nk = i / 2; + } + else { + kwtuple = NULL; + k = NULL; + } + closure = PyFunction_GET_CLOSURE(func); +#if PY_MAJOR_VERSION >= 3 + kwdefs = PyFunction_GET_KW_DEFAULTS(func); +#endif + if (argdefs != NULL) { + d = &PyTuple_GET_ITEM(argdefs, 0); + nd = Py_SIZE(argdefs); + } + else { + d = NULL; + nd = 0; + } +#if PY_MAJOR_VERSION >= 3 + result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, + args, (int)nargs, + k, (int)nk, + d, (int)nd, kwdefs, closure); +#else + result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, + args, (int)nargs, + k, (int)nk, + d, (int)nd, closure); +#endif + Py_XDECREF(kwtuple); +done: + Py_LeaveRecursiveCall(); + return result; +} +#endif +#endif + +/* PyObjectCall */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { + PyObject *result; + ternaryfunc call = func->ob_type->tp_call; + if (unlikely(!call)) + return PyObject_Call(func, arg, kw); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = (*call)(func, arg, kw); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* PyObjectCall2Args */ +static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2) { + PyObject *args, *result = NULL; + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(function)) { + PyObject *args[2] = {arg1, arg2}; + return __Pyx_PyFunction_FastCall(function, args, 2); + } + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(function)) { + PyObject *args[2] = {arg1, arg2}; + return __Pyx_PyCFunction_FastCall(function, args, 2); + } + #endif + args = PyTuple_New(2); + if (unlikely(!args)) goto done; + Py_INCREF(arg1); + PyTuple_SET_ITEM(args, 0, arg1); + Py_INCREF(arg2); + PyTuple_SET_ITEM(args, 1, arg2); + Py_INCREF(function); + result = __Pyx_PyObject_Call(function, args, NULL); + Py_DECREF(args); + Py_DECREF(function); +done: + return result; +} + +/* PyObjectCallMethO */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { + PyObject *self, *result; + PyCFunction cfunc; + cfunc = PyCFunction_GET_FUNCTION(func); + self = PyCFunction_GET_SELF(func); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = cfunc(self, arg); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* PyObjectCallOneArg */ +#if CYTHON_COMPILING_IN_CPYTHON +static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_New(1); + if (unlikely(!args)) return NULL; + Py_INCREF(arg); + PyTuple_SET_ITEM(args, 0, arg); + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { +#if CYTHON_FAST_PYCALL + if (PyFunction_Check(func)) { + return __Pyx_PyFunction_FastCall(func, &arg, 1); + } +#endif + if (likely(PyCFunction_Check(func))) { + if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { + return __Pyx_PyObject_CallMethO(func, arg); +#if CYTHON_FAST_PYCCALL + } else if (PyCFunction_GET_FLAGS(func) & METH_FASTCALL) { + return __Pyx_PyCFunction_FastCall(func, &arg, 1); +#endif + } + } + return __Pyx__PyObject_CallOneArg(func, arg); +} +#else +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_Pack(1, arg); + if (unlikely(!args)) return NULL; + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +#endif + +/* ObjectGetItem */ +#if CYTHON_USE_TYPE_SLOTS +static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject* index) { + PyObject *runerr; + Py_ssize_t key_value; + PySequenceMethods *m = Py_TYPE(obj)->tp_as_sequence; + if (unlikely(!(m && m->sq_item))) { + PyErr_Format(PyExc_TypeError, "'%.200s' object is not subscriptable", Py_TYPE(obj)->tp_name); + return NULL; + } + key_value = __Pyx_PyIndex_AsSsize_t(index); + if (likely(key_value != -1 || !(runerr = PyErr_Occurred()))) { + return __Pyx_GetItemInt_Fast(obj, key_value, 0, 1, 1); + } + if (PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) { + PyErr_Clear(); + PyErr_Format(PyExc_IndexError, "cannot fit '%.200s' into an index-sized integer", Py_TYPE(index)->tp_name); + } + return NULL; +} +static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { + PyMappingMethods *m = Py_TYPE(obj)->tp_as_mapping; + if (likely(m && m->mp_subscript)) { + return m->mp_subscript(obj, key); + } + return __Pyx_PyObject_GetIndex(obj, key); +} +#endif + +/* SliceTupleAndList */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE void __Pyx_crop_slice(Py_ssize_t* _start, Py_ssize_t* _stop, Py_ssize_t* _length) { + Py_ssize_t start = *_start, stop = *_stop, length = *_length; + if (start < 0) { + start += length; + if (start < 0) + start = 0; + } + if (stop < 0) + stop += length; + else if (stop > length) + stop = length; + *_length = stop - start; + *_start = start; + *_stop = stop; +} +static CYTHON_INLINE void __Pyx_copy_object_array(PyObject** CYTHON_RESTRICT src, PyObject** CYTHON_RESTRICT dest, Py_ssize_t length) { + PyObject *v; + Py_ssize_t i; + for (i = 0; i < length; i++) { + v = dest[i] = src[i]; + Py_INCREF(v); + } +} +static CYTHON_INLINE PyObject* __Pyx_PyList_GetSlice( + PyObject* src, Py_ssize_t start, Py_ssize_t stop) { + PyObject* dest; + Py_ssize_t length = PyList_GET_SIZE(src); + __Pyx_crop_slice(&start, &stop, &length); + if (unlikely(length <= 0)) + return PyList_New(0); + dest = PyList_New(length); + if (unlikely(!dest)) + return NULL; + __Pyx_copy_object_array( + ((PyListObject*)src)->ob_item + start, + ((PyListObject*)dest)->ob_item, + length); + return dest; +} +static CYTHON_INLINE PyObject* __Pyx_PyTuple_GetSlice( + PyObject* src, Py_ssize_t start, Py_ssize_t stop) { + PyObject* dest; + Py_ssize_t length = PyTuple_GET_SIZE(src); + __Pyx_crop_slice(&start, &stop, &length); + if (unlikely(length <= 0)) + return PyTuple_New(0); + dest = PyTuple_New(length); + if (unlikely(!dest)) + return NULL; + __Pyx_copy_object_array( + ((PyTupleObject*)src)->ob_item + start, + ((PyTupleObject*)dest)->ob_item, + length); + return dest; +} +#endif + +/* PyIntBinop */ +#if !CYTHON_COMPILING_IN_PYPY +static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, int inplace, int zerodivision_check) { + (void)inplace; + (void)zerodivision_check; + #if PY_MAJOR_VERSION < 3 + if (likely(PyInt_CheckExact(op1))) { + const long b = intval; + long x; + long a = PyInt_AS_LONG(op1); + x = (long)((unsigned long)a + b); + if (likely((x^a) >= 0 || (x^b) >= 0)) + return PyInt_FromLong(x); + return PyLong_Type.tp_as_number->nb_add(op1, op2); + } + #endif + #if CYTHON_USE_PYLONG_INTERNALS + if (likely(PyLong_CheckExact(op1))) { + const long b = intval; + long a, x; +#ifdef HAVE_LONG_LONG + const PY_LONG_LONG llb = intval; + PY_LONG_LONG lla, llx; +#endif + const digit* digits = ((PyLongObject*)op1)->ob_digit; + const Py_ssize_t size = Py_SIZE(op1); + if (likely(__Pyx_sst_abs(size) <= 1)) { + a = likely(size) ? digits[0] : 0; + if (size == -1) a = -a; + } else { + switch (size) { + case -2: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { + lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case 2: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { + lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case -3: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { + lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case 3: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { + lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case -4: + if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { + lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case 4: + if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { + lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + default: return PyLong_Type.tp_as_number->nb_add(op1, op2); + } + } + x = a + b; + return PyLong_FromLong(x); +#ifdef HAVE_LONG_LONG + long_long: + llx = lla + llb; + return PyLong_FromLongLong(llx); +#endif + + + } + #endif + if (PyFloat_CheckExact(op1)) { + const long b = intval; + double a = PyFloat_AS_DOUBLE(op1); + double result; + PyFPE_START_PROTECT("add", return NULL) + result = ((double)a) + (double)b; + PyFPE_END_PROTECT(result) + return PyFloat_FromDouble(result); + } + return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); +} +#endif + +/* RaiseArgTupleInvalid */ +static void __Pyx_RaiseArgtupleInvalid( + const char* func_name, + int exact, + Py_ssize_t num_min, + Py_ssize_t num_max, + Py_ssize_t num_found) +{ + Py_ssize_t num_expected; + const char *more_or_less; + if (num_found < num_min) { + num_expected = num_min; + more_or_less = "at least"; + } else { + num_expected = num_max; + more_or_less = "at most"; + } + if (exact) { + more_or_less = "exactly"; + } + PyErr_Format(PyExc_TypeError, + "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", + func_name, more_or_less, num_expected, + (num_expected == 1) ? "" : "s", num_found); +} + +/* RaiseDoubleKeywords */ +static void __Pyx_RaiseDoubleKeywordsError( + const char* func_name, + PyObject* kw_name) +{ + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION >= 3 + "%s() got multiple values for keyword argument '%U'", func_name, kw_name); + #else + "%s() got multiple values for keyword argument '%s'", func_name, + PyString_AsString(kw_name)); + #endif +} + +/* ParseKeywords */ +static int __Pyx_ParseOptionalKeywords( + PyObject *kwds, + PyObject **argnames[], + PyObject *kwds2, + PyObject *values[], + Py_ssize_t num_pos_args, + const char* function_name) +{ + PyObject *key = 0, *value = 0; + Py_ssize_t pos = 0; + PyObject*** name; + PyObject*** first_kw_arg = argnames + num_pos_args; + while (PyDict_Next(kwds, &pos, &key, &value)) { + name = first_kw_arg; + while (*name && (**name != key)) name++; + if (*name) { + values[name-argnames] = value; + continue; + } + name = first_kw_arg; + #if PY_MAJOR_VERSION < 3 + if (likely(PyString_CheckExact(key)) || likely(PyString_Check(key))) { + while (*name) { + if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) + && _PyString_Eq(**name, key)) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + if ((**argname == key) || ( + (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) + && _PyString_Eq(**argname, key))) { + goto arg_passed_twice; + } + argname++; + } + } + } else + #endif + if (likely(PyUnicode_Check(key))) { + while (*name) { + int cmp = (**name == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**name) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**name, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + int cmp = (**argname == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**argname) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**argname, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) goto arg_passed_twice; + argname++; + } + } + } else + goto invalid_keyword_type; + if (kwds2) { + if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; + } else { + goto invalid_keyword; + } + } + return 0; +arg_passed_twice: + __Pyx_RaiseDoubleKeywordsError(function_name, key); + goto bad; +invalid_keyword_type: + PyErr_Format(PyExc_TypeError, + "%.200s() keywords must be strings", function_name); + goto bad; +invalid_keyword: + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION < 3 + "%.200s() got an unexpected keyword argument '%.200s'", + function_name, PyString_AsString(key)); + #else + "%s() got an unexpected keyword argument '%U'", + function_name, key); + #endif +bad: + return -1; +} + +/* RaiseTooManyValuesToUnpack */ +static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { + PyErr_Format(PyExc_ValueError, + "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); +} + +/* RaiseNeedMoreValuesToUnpack */ +static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { + PyErr_Format(PyExc_ValueError, + "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", + index, (index == 1) ? "" : "s"); +} + +/* IterFinish */ +static CYTHON_INLINE int __Pyx_IterFinish(void) { +#if CYTHON_FAST_THREAD_STATE + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject* exc_type = tstate->curexc_type; + if (unlikely(exc_type)) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) { + PyObject *exc_value, *exc_tb; + exc_value = tstate->curexc_value; + exc_tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; + Py_DECREF(exc_type); + Py_XDECREF(exc_value); + Py_XDECREF(exc_tb); + return 0; + } else { + return -1; + } + } + return 0; +#else + if (unlikely(PyErr_Occurred())) { + if (likely(PyErr_ExceptionMatches(PyExc_StopIteration))) { + PyErr_Clear(); + return 0; + } else { + return -1; + } + } + return 0; +#endif +} + +/* UnpackItemEndCheck */ +static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected) { + if (unlikely(retval)) { + Py_DECREF(retval); + __Pyx_RaiseTooManyValuesError(expected); + return -1; + } else { + return __Pyx_IterFinish(); + } + return 0; +} + +/* GetTopmostException */ +#if CYTHON_USE_EXC_INFO_STACK +static _PyErr_StackItem * +__Pyx_PyErr_GetTopmostException(PyThreadState *tstate) +{ + _PyErr_StackItem *exc_info = tstate->exc_info; + while ((exc_info->exc_type == NULL || exc_info->exc_type == Py_None) && + exc_info->previous_item != NULL) + { + exc_info = exc_info->previous_item; + } + return exc_info; +} +#endif + +/* SaveResetException */ +#if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + #if CYTHON_USE_EXC_INFO_STACK + _PyErr_StackItem *exc_info = __Pyx_PyErr_GetTopmostException(tstate); + *type = exc_info->exc_type; + *value = exc_info->exc_value; + *tb = exc_info->exc_traceback; + #else + *type = tstate->exc_type; + *value = tstate->exc_value; + *tb = tstate->exc_traceback; + #endif + Py_XINCREF(*type); + Py_XINCREF(*value); + Py_XINCREF(*tb); +} +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + #if CYTHON_USE_EXC_INFO_STACK + _PyErr_StackItem *exc_info = tstate->exc_info; + tmp_type = exc_info->exc_type; + tmp_value = exc_info->exc_value; + tmp_tb = exc_info->exc_traceback; + exc_info->exc_type = type; + exc_info->exc_value = value; + exc_info->exc_traceback = tb; + #else + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = type; + tstate->exc_value = value; + tstate->exc_traceback = tb; + #endif + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +#endif + +/* PyErrExceptionMatches */ +#if CYTHON_FAST_THREAD_STATE +static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(tuple); +#if PY_MAJOR_VERSION >= 3 + for (i=0; icurexc_type; + if (exc_type == err) return 1; + if (unlikely(!exc_type)) return 0; + if (unlikely(PyTuple_Check(err))) + return __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err); + return __Pyx_PyErr_GivenExceptionMatches(exc_type, err); +} +#endif + +/* GetException */ +#if CYTHON_FAST_THREAD_STATE +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) +#endif +{ + PyObject *local_type, *local_value, *local_tb; +#if CYTHON_FAST_THREAD_STATE + PyObject *tmp_type, *tmp_value, *tmp_tb; + local_type = tstate->curexc_type; + local_value = tstate->curexc_value; + local_tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +#else + PyErr_Fetch(&local_type, &local_value, &local_tb); +#endif + PyErr_NormalizeException(&local_type, &local_value, &local_tb); +#if CYTHON_FAST_THREAD_STATE + if (unlikely(tstate->curexc_type)) +#else + if (unlikely(PyErr_Occurred())) +#endif + goto bad; + #if PY_MAJOR_VERSION >= 3 + if (local_tb) { + if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) + goto bad; + } + #endif + Py_XINCREF(local_tb); + Py_XINCREF(local_type); + Py_XINCREF(local_value); + *type = local_type; + *value = local_value; + *tb = local_tb; +#if CYTHON_FAST_THREAD_STATE + #if CYTHON_USE_EXC_INFO_STACK + { + _PyErr_StackItem *exc_info = tstate->exc_info; + tmp_type = exc_info->exc_type; + tmp_value = exc_info->exc_value; + tmp_tb = exc_info->exc_traceback; + exc_info->exc_type = local_type; + exc_info->exc_value = local_value; + exc_info->exc_traceback = local_tb; + } + #else + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = local_type; + tstate->exc_value = local_value; + tstate->exc_traceback = local_tb; + #endif + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +#else + PyErr_SetExcInfo(local_type, local_value, local_tb); +#endif + return 0; +bad: + *type = 0; + *value = 0; + *tb = 0; + Py_XDECREF(local_type); + Py_XDECREF(local_value); + Py_XDECREF(local_tb); + return -1; +} + +/* PyErrFetchRestore */ +#if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + tmp_type = tstate->curexc_type; + tmp_value = tstate->curexc_value; + tmp_tb = tstate->curexc_traceback; + tstate->curexc_type = type; + tstate->curexc_value = value; + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + *type = tstate->curexc_type; + *value = tstate->curexc_value; + *tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +} +#endif + +/* RaiseException */ +#if PY_MAJOR_VERSION < 3 +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, + CYTHON_UNUSED PyObject *cause) { + __Pyx_PyThreadState_declare + Py_XINCREF(type); + if (!value || value == Py_None) + value = NULL; + else + Py_INCREF(value); + if (!tb || tb == Py_None) + tb = NULL; + else { + Py_INCREF(tb); + if (!PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto raise_error; + } + } + if (PyType_Check(type)) { +#if CYTHON_COMPILING_IN_PYPY + if (!value) { + Py_INCREF(Py_None); + value = Py_None; + } +#endif + PyErr_NormalizeException(&type, &value, &tb); + } else { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto raise_error; + } + value = type; + type = (PyObject*) Py_TYPE(type); + Py_INCREF(type); + if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto raise_error; + } + } + __Pyx_PyThreadState_assign + __Pyx_ErrRestore(type, value, tb); + return; +raise_error: + Py_XDECREF(value); + Py_XDECREF(type); + Py_XDECREF(tb); + return; +} +#else +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { + PyObject* owned_instance = NULL; + if (tb == Py_None) { + tb = 0; + } else if (tb && !PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto bad; + } + if (value == Py_None) + value = 0; + if (PyExceptionInstance_Check(type)) { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto bad; + } + value = type; + type = (PyObject*) Py_TYPE(value); + } else if (PyExceptionClass_Check(type)) { + PyObject *instance_class = NULL; + if (value && PyExceptionInstance_Check(value)) { + instance_class = (PyObject*) Py_TYPE(value); + if (instance_class != type) { + int is_subclass = PyObject_IsSubclass(instance_class, type); + if (!is_subclass) { + instance_class = NULL; + } else if (unlikely(is_subclass == -1)) { + goto bad; + } else { + type = instance_class; + } + } + } + if (!instance_class) { + PyObject *args; + if (!value) + args = PyTuple_New(0); + else if (PyTuple_Check(value)) { + Py_INCREF(value); + args = value; + } else + args = PyTuple_Pack(1, value); + if (!args) + goto bad; + owned_instance = PyObject_Call(type, args, NULL); + Py_DECREF(args); + if (!owned_instance) + goto bad; + value = owned_instance; + if (!PyExceptionInstance_Check(value)) { + PyErr_Format(PyExc_TypeError, + "calling %R should have returned an instance of " + "BaseException, not %R", + type, Py_TYPE(value)); + goto bad; + } + } + } else { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto bad; + } + if (cause) { + PyObject *fixed_cause; + if (cause == Py_None) { + fixed_cause = NULL; + } else if (PyExceptionClass_Check(cause)) { + fixed_cause = PyObject_CallObject(cause, NULL); + if (fixed_cause == NULL) + goto bad; + } else if (PyExceptionInstance_Check(cause)) { + fixed_cause = cause; + Py_INCREF(fixed_cause); + } else { + PyErr_SetString(PyExc_TypeError, + "exception causes must derive from " + "BaseException"); + goto bad; + } + PyException_SetCause(value, fixed_cause); + } + PyErr_SetObject(type, value); + if (tb) { +#if CYTHON_COMPILING_IN_PYPY + PyObject *tmp_type, *tmp_value, *tmp_tb; + PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); + Py_INCREF(tb); + PyErr_Restore(tmp_type, tmp_value, tb); + Py_XDECREF(tmp_tb); +#else + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject* tmp_tb = tstate->curexc_traceback; + if (tb != tmp_tb) { + Py_INCREF(tb); + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_tb); + } +#endif + } +bad: + Py_XDECREF(owned_instance); + return; +} +#endif + +/* TypeImport */ +#ifndef __PYX_HAVE_RT_ImportType +#define __PYX_HAVE_RT_ImportType +static PyTypeObject *__Pyx_ImportType(PyObject *module, const char *module_name, const char *class_name, + size_t size, enum __Pyx_ImportType_CheckSize check_size) +{ + PyObject *result = 0; + char warning[200]; + Py_ssize_t basicsize; +#ifdef Py_LIMITED_API + PyObject *py_basicsize; +#endif + result = PyObject_GetAttrString(module, class_name); + if (!result) + goto bad; + if (!PyType_Check(result)) { + PyErr_Format(PyExc_TypeError, + "%.200s.%.200s is not a type object", + module_name, class_name); + goto bad; + } +#ifndef Py_LIMITED_API + basicsize = ((PyTypeObject *)result)->tp_basicsize; +#else + py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); + if (!py_basicsize) + goto bad; + basicsize = PyLong_AsSsize_t(py_basicsize); + Py_DECREF(py_basicsize); + py_basicsize = 0; + if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) + goto bad; +#endif + if ((size_t)basicsize < size) { + PyErr_Format(PyExc_ValueError, + "%.200s.%.200s size changed, may indicate binary incompatibility. " + "Expected %zd from C header, got %zd from PyObject", + module_name, class_name, size, basicsize); + goto bad; + } + if (check_size == __Pyx_ImportType_CheckSize_Error && (size_t)basicsize != size) { + PyErr_Format(PyExc_ValueError, + "%.200s.%.200s size changed, may indicate binary incompatibility. " + "Expected %zd from C header, got %zd from PyObject", + module_name, class_name, size, basicsize); + goto bad; + } + else if (check_size == __Pyx_ImportType_CheckSize_Warn && (size_t)basicsize > size) { + PyOS_snprintf(warning, sizeof(warning), + "%s.%s size changed, may indicate binary incompatibility. " + "Expected %zd from C header, got %zd from PyObject", + module_name, class_name, size, basicsize); + if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; + } + return (PyTypeObject *)result; +bad: + Py_XDECREF(result); + return NULL; +} +#endif + +/* Import */ +static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { + PyObject *empty_list = 0; + PyObject *module = 0; + PyObject *global_dict = 0; + PyObject *empty_dict = 0; + PyObject *list; + #if PY_MAJOR_VERSION < 3 + PyObject *py_import; + py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); + if (!py_import) + goto bad; + #endif + if (from_list) + list = from_list; + else { + empty_list = PyList_New(0); + if (!empty_list) + goto bad; + list = empty_list; + } + global_dict = PyModule_GetDict(__pyx_m); + if (!global_dict) + goto bad; + empty_dict = PyDict_New(); + if (!empty_dict) + goto bad; + { + #if PY_MAJOR_VERSION >= 3 + if (level == -1) { + if (strchr(__Pyx_MODULE_NAME, '.')) { + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, 1); + if (!module) { + if (!PyErr_ExceptionMatches(PyExc_ImportError)) + goto bad; + PyErr_Clear(); + } + } + level = 0; + } + #endif + if (!module) { + #if PY_MAJOR_VERSION < 3 + PyObject *py_level = PyInt_FromLong(level); + if (!py_level) + goto bad; + module = PyObject_CallFunctionObjArgs(py_import, + name, global_dict, empty_dict, list, py_level, (PyObject *)NULL); + Py_DECREF(py_level); + #else + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, level); + #endif + } + } +bad: + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(py_import); + #endif + Py_XDECREF(empty_list); + Py_XDECREF(empty_dict); + return module; +} + +/* ImportFrom */ +static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) { + PyObject* value = __Pyx_PyObject_GetAttrStr(module, name); + if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Format(PyExc_ImportError, + #if PY_MAJOR_VERSION < 3 + "cannot import name %.230s", PyString_AS_STRING(name)); + #else + "cannot import name %S", name); + #endif + } + return value; +} + +/* PyObjectCallNoArg */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func) { +#if CYTHON_FAST_PYCALL + if (PyFunction_Check(func)) { + return __Pyx_PyFunction_FastCall(func, NULL, 0); + } +#endif +#ifdef __Pyx_CyFunction_USED + if (likely(PyCFunction_Check(func) || __Pyx_CyFunction_Check(func))) +#else + if (likely(PyCFunction_Check(func))) +#endif + { + if (likely(PyCFunction_GET_FLAGS(func) & METH_NOARGS)) { + return __Pyx_PyObject_CallMethO(func, NULL); + } + } + return __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL); +} +#endif + +/* CLineInTraceback */ +#ifndef CYTHON_CLINE_IN_TRACEBACK +static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line) { + PyObject *use_cline; + PyObject *ptype, *pvalue, *ptraceback; +#if CYTHON_COMPILING_IN_CPYTHON + PyObject **cython_runtime_dict; +#endif + if (unlikely(!__pyx_cython_runtime)) { + return c_line; + } + __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); +#if CYTHON_COMPILING_IN_CPYTHON + cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); + if (likely(cython_runtime_dict)) { + __PYX_PY_DICT_LOOKUP_IF_MODIFIED( + use_cline, *cython_runtime_dict, + __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback)) + } else +#endif + { + PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); + if (use_cline_obj) { + use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; + Py_DECREF(use_cline_obj); + } else { + PyErr_Clear(); + use_cline = NULL; + } + } + if (!use_cline) { + c_line = 0; + PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); + } + else if (use_cline == Py_False || (use_cline != Py_True && PyObject_Not(use_cline) != 0)) { + c_line = 0; + } + __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); + return c_line; +} +#endif + +/* CodeObjectCache */ +static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { + int start = 0, mid = 0, end = count - 1; + if (end >= 0 && code_line > entries[end].code_line) { + return count; + } + while (start < end) { + mid = start + (end - start) / 2; + if (code_line < entries[mid].code_line) { + end = mid; + } else if (code_line > entries[mid].code_line) { + start = mid + 1; + } else { + return mid; + } + } + if (code_line <= entries[mid].code_line) { + return mid; + } else { + return mid + 1; + } +} +static PyCodeObject *__pyx_find_code_object(int code_line) { + PyCodeObject* code_object; + int pos; + if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { + return NULL; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { + return NULL; + } + code_object = __pyx_code_cache.entries[pos].code_object; + Py_INCREF(code_object); + return code_object; +} +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { + int pos, i; + __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; + if (unlikely(!code_line)) { + return; + } + if (unlikely(!entries)) { + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); + if (likely(entries)) { + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = 64; + __pyx_code_cache.count = 1; + entries[0].code_line = code_line; + entries[0].code_object = code_object; + Py_INCREF(code_object); + } + return; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { + PyCodeObject* tmp = entries[pos].code_object; + entries[pos].code_object = code_object; + Py_DECREF(tmp); + return; + } + if (__pyx_code_cache.count == __pyx_code_cache.max_count) { + int new_max = __pyx_code_cache.max_count + 64; + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( + __pyx_code_cache.entries, (size_t)new_max*sizeof(__Pyx_CodeObjectCacheEntry)); + if (unlikely(!entries)) { + return; + } + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = new_max; + } + for (i=__pyx_code_cache.count; i>pos; i--) { + entries[i] = entries[i-1]; + } + entries[pos].code_line = code_line; + entries[pos].code_object = code_object; + __pyx_code_cache.count++; + Py_INCREF(code_object); +} + +/* AddTraceback */ +#include "compile.h" +#include "frameobject.h" +#include "traceback.h" +static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( + const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyObject *py_srcfile = 0; + PyObject *py_funcname = 0; + #if PY_MAJOR_VERSION < 3 + py_srcfile = PyString_FromString(filename); + #else + py_srcfile = PyUnicode_FromString(filename); + #endif + if (!py_srcfile) goto bad; + if (c_line) { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #else + py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #endif + } + else { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromString(funcname); + #else + py_funcname = PyUnicode_FromString(funcname); + #endif + } + if (!py_funcname) goto bad; + py_code = __Pyx_PyCode_New( + 0, + 0, + 0, + 0, + 0, + __pyx_empty_bytes, /*PyObject *code,*/ + __pyx_empty_tuple, /*PyObject *consts,*/ + __pyx_empty_tuple, /*PyObject *names,*/ + __pyx_empty_tuple, /*PyObject *varnames,*/ + __pyx_empty_tuple, /*PyObject *freevars,*/ + __pyx_empty_tuple, /*PyObject *cellvars,*/ + py_srcfile, /*PyObject *filename,*/ + py_funcname, /*PyObject *name,*/ + py_line, + __pyx_empty_bytes /*PyObject *lnotab*/ + ); + Py_DECREF(py_srcfile); + Py_DECREF(py_funcname); + return py_code; +bad: + Py_XDECREF(py_srcfile); + Py_XDECREF(py_funcname); + return NULL; +} +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyFrameObject *py_frame = 0; + PyThreadState *tstate = __Pyx_PyThreadState_Current; + if (c_line) { + c_line = __Pyx_CLineForTraceback(tstate, c_line); + } + py_code = __pyx_find_code_object(c_line ? -c_line : py_line); + if (!py_code) { + py_code = __Pyx_CreateCodeObjectForTraceback( + funcname, c_line, py_line, filename); + if (!py_code) goto bad; + __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); + } + py_frame = PyFrame_New( + tstate, /*PyThreadState *tstate,*/ + py_code, /*PyCodeObject *code,*/ + __pyx_d, /*PyObject *globals,*/ + 0 /*PyObject *locals*/ + ); + if (!py_frame) goto bad; + __Pyx_PyFrame_SetLineNumber(py_frame, py_line); + PyTraceBack_Here(py_frame); +bad: + Py_XDECREF(py_code); + Py_XDECREF(py_frame); +} + +/* CIntFromPyVerify */ +#define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) +#define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) +#define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ + {\ + func_type value = func_value;\ + if (sizeof(target_type) < sizeof(func_type)) {\ + if (unlikely(value != (func_type) (target_type) value)) {\ + func_type zero = 0;\ + if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ + return (target_type) -1;\ + if (is_unsigned && unlikely(value < zero))\ + goto raise_neg_overflow;\ + else\ + goto raise_overflow;\ + }\ + }\ + return (target_type) value;\ + } + +/* CIntToPy */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { + const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(long) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(long) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(long) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(long), + little, !is_unsigned); + } +} + +/* CIntToPy */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { + const int neg_one = (int) ((int) 0 - (int) 1), const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(int) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(int) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(int) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(int), + little, !is_unsigned); + } +} + +/* CIntToPy */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_npy_uint32(npy_uint32 value) { + const npy_uint32 neg_one = (npy_uint32) ((npy_uint32) 0 - (npy_uint32) 1), const_zero = (npy_uint32) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(npy_uint32) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(npy_uint32) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(npy_uint32) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(npy_uint32) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(npy_uint32) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(npy_uint32), + little, !is_unsigned); + } +} + +/* Declarations */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + return ::std::complex< float >(x, y); + } + #else + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + return x + y*(__pyx_t_float_complex)_Complex_I; + } + #endif +#else + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + __pyx_t_float_complex z; + z.real = x; + z.imag = y; + return z; + } +#endif + +/* Arithmetic */ +#if CYTHON_CCOMPLEX +#else + static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + return (a.real == b.real) && (a.imag == b.imag); + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real + b.real; + z.imag = a.imag + b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real - b.real; + z.imag = a.imag - b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real * b.real - a.imag * b.imag; + z.imag = a.real * b.imag + a.imag * b.real; + return z; + } + #if 1 + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + if (b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); + } else if (fabsf(b.real) >= fabsf(b.imag)) { + if (b.real == 0 && b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.imag); + } else { + float r = b.imag / b.real; + float s = (float)(1.0) / (b.real + b.imag * r); + return __pyx_t_float_complex_from_parts( + (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); + } + } else { + float r = b.real / b.imag; + float s = (float)(1.0) / (b.imag + b.real * r); + return __pyx_t_float_complex_from_parts( + (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); + } + } + #else + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + if (b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); + } else { + float denom = b.real * b.real + b.imag * b.imag; + return __pyx_t_float_complex_from_parts( + (a.real * b.real + a.imag * b.imag) / denom, + (a.imag * b.real - a.real * b.imag) / denom); + } + } + #endif + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex a) { + __pyx_t_float_complex z; + z.real = -a.real; + z.imag = -a.imag; + return z; + } + static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex a) { + return (a.real == 0) && (a.imag == 0); + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex a) { + __pyx_t_float_complex z; + z.real = a.real; + z.imag = -a.imag; + return z; + } + #if 1 + static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex z) { + #if !defined(HAVE_HYPOT) || defined(_MSC_VER) + return sqrtf(z.real*z.real + z.imag*z.imag); + #else + return hypotf(z.real, z.imag); + #endif + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + float r, lnr, theta, z_r, z_theta; + if (b.imag == 0 && b.real == (int)b.real) { + if (b.real < 0) { + float denom = a.real * a.real + a.imag * a.imag; + a.real = a.real / denom; + a.imag = -a.imag / denom; + b.real = -b.real; + } + switch ((int)b.real) { + case 0: + z.real = 1; + z.imag = 0; + return z; + case 1: + return a; + case 2: + return __Pyx_c_prod_float(a, a); + case 3: + z = __Pyx_c_prod_float(a, a); + return __Pyx_c_prod_float(z, a); + case 4: + z = __Pyx_c_prod_float(a, a); + return __Pyx_c_prod_float(z, z); + } + } + if (a.imag == 0) { + if (a.real == 0) { + return a; + } else if (b.imag == 0) { + z.real = powf(a.real, b.real); + z.imag = 0; + return z; + } else if (a.real > 0) { + r = a.real; + theta = 0; + } else { + r = -a.real; + theta = atan2f(0.0, -1.0); + } + } else { + r = __Pyx_c_abs_float(a); + theta = atan2f(a.imag, a.real); + } + lnr = logf(r); + z_r = expf(lnr * b.real - theta * b.imag); + z_theta = theta * b.real + lnr * b.imag; + z.real = z_r * cosf(z_theta); + z.imag = z_r * sinf(z_theta); + return z; + } + #endif +#endif + +/* Declarations */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + return ::std::complex< double >(x, y); + } + #else + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + return x + y*(__pyx_t_double_complex)_Complex_I; + } + #endif +#else + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + __pyx_t_double_complex z; + z.real = x; + z.imag = y; + return z; + } +#endif + +/* Arithmetic */ +#if CYTHON_CCOMPLEX +#else + static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + return (a.real == b.real) && (a.imag == b.imag); + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real + b.real; + z.imag = a.imag + b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real - b.real; + z.imag = a.imag - b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real * b.real - a.imag * b.imag; + z.imag = a.real * b.imag + a.imag * b.real; + return z; + } + #if 1 + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + if (b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); + } else if (fabs(b.real) >= fabs(b.imag)) { + if (b.real == 0 && b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.imag); + } else { + double r = b.imag / b.real; + double s = (double)(1.0) / (b.real + b.imag * r); + return __pyx_t_double_complex_from_parts( + (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); + } + } else { + double r = b.real / b.imag; + double s = (double)(1.0) / (b.imag + b.real * r); + return __pyx_t_double_complex_from_parts( + (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); + } + } + #else + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + if (b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); + } else { + double denom = b.real * b.real + b.imag * b.imag; + return __pyx_t_double_complex_from_parts( + (a.real * b.real + a.imag * b.imag) / denom, + (a.imag * b.real - a.real * b.imag) / denom); + } + } + #endif + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex a) { + __pyx_t_double_complex z; + z.real = -a.real; + z.imag = -a.imag; + return z; + } + static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex a) { + return (a.real == 0) && (a.imag == 0); + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex a) { + __pyx_t_double_complex z; + z.real = a.real; + z.imag = -a.imag; + return z; + } + #if 1 + static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex z) { + #if !defined(HAVE_HYPOT) || defined(_MSC_VER) + return sqrt(z.real*z.real + z.imag*z.imag); + #else + return hypot(z.real, z.imag); + #endif + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + double r, lnr, theta, z_r, z_theta; + if (b.imag == 0 && b.real == (int)b.real) { + if (b.real < 0) { + double denom = a.real * a.real + a.imag * a.imag; + a.real = a.real / denom; + a.imag = -a.imag / denom; + b.real = -b.real; + } + switch ((int)b.real) { + case 0: + z.real = 1; + z.imag = 0; + return z; + case 1: + return a; + case 2: + return __Pyx_c_prod_double(a, a); + case 3: + z = __Pyx_c_prod_double(a, a); + return __Pyx_c_prod_double(z, a); + case 4: + z = __Pyx_c_prod_double(a, a); + return __Pyx_c_prod_double(z, z); + } + } + if (a.imag == 0) { + if (a.real == 0) { + return a; + } else if (b.imag == 0) { + z.real = pow(a.real, b.real); + z.imag = 0; + return z; + } else if (a.real > 0) { + r = a.real; + theta = 0; + } else { + r = -a.real; + theta = atan2(0.0, -1.0); + } + } else { + r = __Pyx_c_abs_double(a); + theta = atan2(a.imag, a.real); + } + lnr = log(r); + z_r = exp(lnr * b.real - theta * b.imag); + z_theta = theta * b.real + lnr * b.imag; + z.real = z_r * cos(z_theta); + z.imag = z_r * sin(z_theta); + return z; + } + #endif +#endif + +/* CIntFromPy */ +static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { + const int neg_one = (int) ((int) 0 - (int) 1), const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(int) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (int) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { + return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { + return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { + return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (int) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(int) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) + case -2: + if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + } +#endif + if (sizeof(int) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + int val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (int) -1; + } + } else { + int val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (int) -1; + val = __Pyx_PyInt_As_int(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to int"); + return (int) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to int"); + return (int) -1; +} + +/* CIntFromPy */ +static CYTHON_INLINE npy_uint32 __Pyx_PyInt_As_npy_uint32(PyObject *x) { + const npy_uint32 neg_one = (npy_uint32) ((npy_uint32) 0 - (npy_uint32) 1), const_zero = (npy_uint32) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(npy_uint32) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(npy_uint32, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (npy_uint32) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (npy_uint32) 0; + case 1: __PYX_VERIFY_RETURN_INT(npy_uint32, digit, digits[0]) + case 2: + if (8 * sizeof(npy_uint32) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(npy_uint32, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(npy_uint32) >= 2 * PyLong_SHIFT) { + return (npy_uint32) (((((npy_uint32)digits[1]) << PyLong_SHIFT) | (npy_uint32)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(npy_uint32) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(npy_uint32, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(npy_uint32) >= 3 * PyLong_SHIFT) { + return (npy_uint32) (((((((npy_uint32)digits[2]) << PyLong_SHIFT) | (npy_uint32)digits[1]) << PyLong_SHIFT) | (npy_uint32)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(npy_uint32) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(npy_uint32, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(npy_uint32) >= 4 * PyLong_SHIFT) { + return (npy_uint32) (((((((((npy_uint32)digits[3]) << PyLong_SHIFT) | (npy_uint32)digits[2]) << PyLong_SHIFT) | (npy_uint32)digits[1]) << PyLong_SHIFT) | (npy_uint32)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (npy_uint32) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(npy_uint32) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(npy_uint32, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(npy_uint32) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(npy_uint32, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (npy_uint32) 0; + case -1: __PYX_VERIFY_RETURN_INT(npy_uint32, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(npy_uint32, digit, +digits[0]) + case -2: + if (8 * sizeof(npy_uint32) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(npy_uint32, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(npy_uint32) - 1 > 2 * PyLong_SHIFT) { + return (npy_uint32) (((npy_uint32)-1)*(((((npy_uint32)digits[1]) << PyLong_SHIFT) | (npy_uint32)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(npy_uint32) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(npy_uint32, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(npy_uint32) - 1 > 2 * PyLong_SHIFT) { + return (npy_uint32) ((((((npy_uint32)digits[1]) << PyLong_SHIFT) | (npy_uint32)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(npy_uint32) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(npy_uint32, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(npy_uint32) - 1 > 3 * PyLong_SHIFT) { + return (npy_uint32) (((npy_uint32)-1)*(((((((npy_uint32)digits[2]) << PyLong_SHIFT) | (npy_uint32)digits[1]) << PyLong_SHIFT) | (npy_uint32)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(npy_uint32) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(npy_uint32, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(npy_uint32) - 1 > 3 * PyLong_SHIFT) { + return (npy_uint32) ((((((((npy_uint32)digits[2]) << PyLong_SHIFT) | (npy_uint32)digits[1]) << PyLong_SHIFT) | (npy_uint32)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(npy_uint32) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(npy_uint32, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(npy_uint32) - 1 > 4 * PyLong_SHIFT) { + return (npy_uint32) (((npy_uint32)-1)*(((((((((npy_uint32)digits[3]) << PyLong_SHIFT) | (npy_uint32)digits[2]) << PyLong_SHIFT) | (npy_uint32)digits[1]) << PyLong_SHIFT) | (npy_uint32)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(npy_uint32) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(npy_uint32, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(npy_uint32) - 1 > 4 * PyLong_SHIFT) { + return (npy_uint32) ((((((((((npy_uint32)digits[3]) << PyLong_SHIFT) | (npy_uint32)digits[2]) << PyLong_SHIFT) | (npy_uint32)digits[1]) << PyLong_SHIFT) | (npy_uint32)digits[0]))); + } + } + break; + } +#endif + if (sizeof(npy_uint32) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(npy_uint32, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(npy_uint32) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(npy_uint32, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + npy_uint32 val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (npy_uint32) -1; + } + } else { + npy_uint32 val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (npy_uint32) -1; + val = __Pyx_PyInt_As_npy_uint32(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to npy_uint32"); + return (npy_uint32) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to npy_uint32"); + return (npy_uint32) -1; +} + +/* CIntFromPy */ +static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { + const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(long) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (long) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { + return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { + return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { + return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (long) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(long) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) + case -2: + if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + } +#endif + if (sizeof(long) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + long val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (long) -1; + } + } else { + long val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (long) -1; + val = __Pyx_PyInt_As_long(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to long"); + return (long) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to long"); + return (long) -1; +} + +/* FastTypeChecks */ +#if CYTHON_COMPILING_IN_CPYTHON +static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { + while (a) { + a = a->tp_base; + if (a == b) + return 1; + } + return b == &PyBaseObject_Type; +} +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { + PyObject *mro; + if (a == b) return 1; + mro = a->tp_mro; + if (likely(mro)) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(mro); + for (i = 0; i < n; i++) { + if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) + return 1; + } + return 0; + } + return __Pyx_InBases(a, b); +} +#if PY_MAJOR_VERSION == 2 +static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { + PyObject *exception, *value, *tb; + int res; + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ErrFetch(&exception, &value, &tb); + res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; + } + if (!res) { + res = PyObject_IsSubclass(err, exc_type2); + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; + } + } + __Pyx_ErrRestore(exception, value, tb); + return res; +} +#else +static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { + int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; + if (!res) { + res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); + } + return res; +} +#endif +static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { + Py_ssize_t i, n; + assert(PyExceptionClass_Check(exc_type)); + n = PyTuple_GET_SIZE(tuple); +#if PY_MAJOR_VERSION >= 3 + for (i=0; itp_setattro)) + return tp->tp_setattro(obj, attr_name, value); +#if PY_MAJOR_VERSION < 3 + if (likely(tp->tp_setattr)) + return tp->tp_setattr(obj, PyString_AS_STRING(attr_name), value); +#endif + return PyObject_SetAttr(obj, attr_name, value); +} +#endif + +/* VoidPtrExport */ +static int __Pyx_ExportVoidPtr(PyObject *name, void *p, const char *sig) { + PyObject *d; + PyObject *cobj = 0; + d = PyDict_GetItem(__pyx_d, __pyx_n_s_pyx_capi); + Py_XINCREF(d); + if (!d) { + d = PyDict_New(); + if (!d) + goto bad; + if (__Pyx_PyObject_SetAttrStr(__pyx_m, __pyx_n_s_pyx_capi, d) < 0) + goto bad; + } +#if PY_VERSION_HEX >= 0x02070000 + cobj = PyCapsule_New(p, sig, 0); +#else + cobj = PyCObject_FromVoidPtrAndDesc(p, (void *)sig, 0); +#endif + if (!cobj) + goto bad; + if (PyDict_SetItem(d, name, cobj) < 0) + goto bad; + Py_DECREF(cobj); + Py_DECREF(d); + return 0; +bad: + Py_XDECREF(cobj); + Py_XDECREF(d); + return -1; +} + +/* FunctionExport */ +static int __Pyx_ExportFunction(const char *name, void (*f)(void), const char *sig) { + PyObject *d = 0; + PyObject *cobj = 0; + union { + void (*fp)(void); + void *p; + } tmp; + d = PyObject_GetAttrString(__pyx_m, (char *)"__pyx_capi__"); + if (!d) { + PyErr_Clear(); + d = PyDict_New(); + if (!d) + goto bad; + Py_INCREF(d); + if (PyModule_AddObject(__pyx_m, (char *)"__pyx_capi__", d) < 0) + goto bad; + } + tmp.fp = f; +#if PY_VERSION_HEX >= 0x02070000 + cobj = PyCapsule_New(tmp.p, sig, 0); +#else + cobj = PyCObject_FromVoidPtrAndDesc(tmp.p, (void *)sig, 0); +#endif + if (!cobj) + goto bad; + if (PyDict_SetItemString(d, name, cobj) < 0) + goto bad; + Py_DECREF(cobj); + Py_DECREF(d); + return 0; +bad: + Py_XDECREF(cobj); + Py_XDECREF(d); + return -1; +} + +/* InitStrings */ +static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { + while (t->p) { + #if PY_MAJOR_VERSION < 3 + if (t->is_unicode) { + *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); + } else if (t->intern) { + *t->p = PyString_InternFromString(t->s); + } else { + *t->p = PyString_FromStringAndSize(t->s, t->n - 1); + } + #else + if (t->is_unicode | t->is_str) { + if (t->intern) { + *t->p = PyUnicode_InternFromString(t->s); + } else if (t->encoding) { + *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); + } else { + *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); + } + } else { + *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); + } + #endif + if (!*t->p) + return -1; + if (PyObject_Hash(*t->p) == -1) + return -1; + ++t; + } + return 0; +} + +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { + return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); +} +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { + Py_ssize_t ignore; + return __Pyx_PyObject_AsStringAndSize(o, &ignore); +} +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +#if !CYTHON_PEP393_ENABLED +static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + char* defenc_c; + PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); + if (!defenc) return NULL; + defenc_c = PyBytes_AS_STRING(defenc); +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + { + char* end = defenc_c + PyBytes_GET_SIZE(defenc); + char* c; + for (c = defenc_c; c < end; c++) { + if ((unsigned char) (*c) >= 128) { + PyUnicode_AsASCIIString(o); + return NULL; + } + } + } +#endif + *length = PyBytes_GET_SIZE(defenc); + return defenc_c; +} +#else +static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + if (likely(PyUnicode_IS_ASCII(o))) { + *length = PyUnicode_GET_LENGTH(o); + return PyUnicode_AsUTF8(o); + } else { + PyUnicode_AsASCIIString(o); + return NULL; + } +#else + return PyUnicode_AsUTF8AndSize(o, length); +#endif +} +#endif +#endif +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT + if ( +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + __Pyx_sys_getdefaultencoding_not_ascii && +#endif + PyUnicode_Check(o)) { + return __Pyx_PyUnicode_AsStringAndSize(o, length); + } else +#endif +#if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) + if (PyByteArray_Check(o)) { + *length = PyByteArray_GET_SIZE(o); + return PyByteArray_AS_STRING(o); + } else +#endif + { + char* result; + int r = PyBytes_AsStringAndSize(o, &result, length); + if (unlikely(r < 0)) { + return NULL; + } else { + return result; + } + } +} +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { + int is_true = x == Py_True; + if (is_true | (x == Py_False) | (x == Py_None)) return is_true; + else return PyObject_IsTrue(x); +} +static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject* x) { + int retval; + if (unlikely(!x)) return -1; + retval = __Pyx_PyObject_IsTrue(x); + Py_DECREF(x); + return retval; +} +static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { +#if PY_MAJOR_VERSION >= 3 + if (PyLong_Check(result)) { + if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, + "__int__ returned non-int (type %.200s). " + "The ability to return an instance of a strict subclass of int " + "is deprecated, and may be removed in a future version of Python.", + Py_TYPE(result)->tp_name)) { + Py_DECREF(result); + return NULL; + } + return result; + } +#endif + PyErr_Format(PyExc_TypeError, + "__%.4s__ returned non-%.4s (type %.200s)", + type_name, type_name, Py_TYPE(result)->tp_name); + Py_DECREF(result); + return NULL; +} +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { +#if CYTHON_USE_TYPE_SLOTS + PyNumberMethods *m; +#endif + const char *name = NULL; + PyObject *res = NULL; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x) || PyLong_Check(x))) +#else + if (likely(PyLong_Check(x))) +#endif + return __Pyx_NewRef(x); +#if CYTHON_USE_TYPE_SLOTS + m = Py_TYPE(x)->tp_as_number; + #if PY_MAJOR_VERSION < 3 + if (m && m->nb_int) { + name = "int"; + res = m->nb_int(x); + } + else if (m && m->nb_long) { + name = "long"; + res = m->nb_long(x); + } + #else + if (likely(m && m->nb_int)) { + name = "int"; + res = m->nb_int(x); + } + #endif +#else + if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { + res = PyNumber_Int(x); + } +#endif + if (likely(res)) { +#if PY_MAJOR_VERSION < 3 + if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { +#else + if (unlikely(!PyLong_CheckExact(res))) { +#endif + return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); + } + } + else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + } + return res; +} +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { + Py_ssize_t ival; + PyObject *x; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_CheckExact(b))) { + if (sizeof(Py_ssize_t) >= sizeof(long)) + return PyInt_AS_LONG(b); + else + return PyInt_AsSsize_t(b); + } +#endif + if (likely(PyLong_CheckExact(b))) { + #if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)b)->ob_digit; + const Py_ssize_t size = Py_SIZE(b); + if (likely(__Pyx_sst_abs(size) <= 1)) { + ival = likely(size) ? digits[0] : 0; + if (size == -1) ival = -ival; + return ival; + } else { + switch (size) { + case 2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + } + } + #endif + return PyLong_AsSsize_t(b); + } + x = PyNumber_Index(b); + if (!x) return -1; + ival = PyInt_AsSsize_t(x); + Py_DECREF(x); + return ival; +} +static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) { + return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False); +} +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { + return PyInt_FromSize_t(ival); +} + + +#endif /* Py_PYTHON_H */ diff --git a/fse/models/average_inner.pxd b/fse/models/average_inner.pxd index c725ea4..c6450a6 100644 --- a/fse/models/average_inner.pxd +++ b/fse/models/average_inner.pxd @@ -4,8 +4,8 @@ # cython: embedsignature=True # coding: utf-8 -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers cimport numpy as np diff --git a/fse/models/average_inner.pyx b/fse/models/average_inner.pyx index 28589ad..75946ab 100644 --- a/fse/models/average_inner.pyx +++ b/fse/models/average_inner.pyx @@ -5,8 +5,8 @@ # cython: embedsignature=True # coding: utf-8 -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers """Optimized cython functions for computing sentence embeddings""" diff --git a/fse/models/base_s2v.py b/fse/models/base_s2v.py index 1846db8..c0f1ca6 100644 --- a/fse/models/base_s2v.py +++ b/fse/models/base_s2v.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers # Licensed under GNU General Public License v3.0 """Base class containing common methods for training, using & evaluating sentence embeddings. @@ -91,7 +91,7 @@ def __init__( batch_ngrams: int = 40, **kwargs, ): - """ Base class for all Sentence2Vec Models. Provides core functionality, such as + """Base class for all Sentence2Vec Models. Provides core functionality, such as save, load, sanity checking, frequency induction, data checking, scanning, etc. Parameters @@ -190,7 +190,7 @@ def __init__( self.word_weights = ones(len(self.wv.vocab), REAL) def __str__(self) -> str: - """ Human readable representation of the model's state. + """Human readable representation of the model's state. Returns ------- @@ -201,8 +201,8 @@ def __str__(self) -> str: return f"{self.__class__.__name__} based on {self.wv.__class__.__name__}, size={len(self.sv)}" def _check_and_include_model(self, model: BaseKeyedVectors): - """ Check if the supplied model is a compatible model. Performs all kinds of checks and small optimizations. - + """Check if the supplied model is a compatible model. Performs all kinds of checks and small optimizations. + Parameters ---------- model : :class:`~gensim.models.keyedvectors.BaseKeyedVectors` or :class:`~gensim.models.base_any2vec.BaseWordEmbeddingsModel` @@ -244,8 +244,8 @@ def _check_and_include_model(self, model: BaseKeyedVectors): raise RuntimeError("Vocab required for sentence embeddings not found.") def _check_language_settings(self, lang_freq: str): - """ Check if the supplied language is a compatible with the wordfreq package - + """Check if the supplied language is a compatible with the wordfreq package + Parameters ---------- lang_freq : str @@ -262,8 +262,8 @@ def _check_language_settings(self, lang_freq: str): raise ValueError(f"Language {lang_freq} is not available in wordfreq") def _induce_frequencies(self, domain: int = 2 ** 31 - 1): - """ Induce frequencies for a pretrained model, as not all pretrained models come with frequencies. - + """Induce frequencies for a pretrained model, as not all pretrained models come with frequencies. + Parameters ---------- domain : int @@ -278,8 +278,8 @@ def _induce_frequencies(self, domain: int = 2 ** 31 - 1): self.wv.vocab[word].count = int(1e-8 * domain) def _check_input_data_sanity(self, data_iterable: tuple): - """ Check if the input data complies with the required formats - + """Check if the input data complies with the required formats + Parameters ---------- data_iterable : tuple @@ -296,7 +296,7 @@ def _check_input_data_sanity(self, data_iterable: tuple): raise TypeError("Iterable must provide __iter__ function") def _log_train_end(self, eff_sentences: int, eff_words: int, overall_time: float): - """ Log the end of training. + """Log the end of training. Parameters ---------- @@ -316,7 +316,7 @@ def _log_train_end(self, eff_sentences: int, eff_words: int, overall_time: float def _check_pre_training_sanity( self, total_sentences: int, total_words: int, average_length: int, **kwargs ): - """ Check if all available objects for training are available and compliant + """Check if all available objects for training are available and compliant Parameters ---------- @@ -379,7 +379,7 @@ def _check_pre_training_sanity( ) def _check_post_training_sanity(self, eff_sentences: int, eff_words: int): - """ Check if the training results make sense + """Check if the training results make sense Parameters ---------- @@ -387,7 +387,7 @@ def _check_post_training_sanity(self, eff_sentences: int, eff_words: int): Number of effective sentences encountered during training eff_words : int Number of effective words encountered during training - + """ if eff_sentences == 0 or eff_words == 0: raise ValueError(f"training returned invalid values. Check the input.") @@ -395,7 +395,7 @@ def _check_post_training_sanity(self, eff_sentences: int, eff_words: int): def _check_indexed_sent_valid( self, iterPos: int, obj: tuple, checked: int = False ) -> [int, List[str]]: - """ Performs a check if the passed object contains valid data + """Performs a check if the passed object contains valid data Parameters ---------- @@ -403,7 +403,7 @@ def _check_indexed_sent_valid( Position in file/iterable obj : tuple An tuple object containing the index and sentence - + Returns ------- int @@ -433,7 +433,7 @@ def _check_indexed_sent_valid( return index, sent def _map_all_vectors_to_disk(self, mapfile_path: Path): - """ Maps all vectors to disk + """Maps all vectors to disk Parameters ---------- @@ -458,7 +458,7 @@ def _map_all_vectors_to_disk(self, mapfile_path: Path): ) def _load_all_vectors_from_disk(self, mapfile_path: Path): - """ Reads all vectors from disk + """Reads all vectors from disk Parameters ---------- @@ -491,7 +491,7 @@ def _load_all_vectors_from_disk(self, mapfile_path: Path): def _move_ndarray_to_disk( self, vector: ndarray, mapfile_path: str, name: str = "" ) -> ndarray: - """ Moves a numpy ndarray to disk via memmap + """Moves a numpy ndarray to disk via memmap Parameters ---------- @@ -551,7 +551,7 @@ def _post_train_calls(self, **kwargs): raise NotImplementedError() def _post_inference_calls(self, **kwargs): - """ Function calls to perform after training & inference + """Function calls to perform after training & inference Examples include the removal of components """ raise NotImplementedError() @@ -566,7 +566,7 @@ def _check_dtype_santiy(self, **kwargs): @classmethod def load(cls, *args, **kwargs): - """ Load a previously saved :class:`~fse.models.base_s2v.BaseSentence2VecModel`. + """Load a previously saved :class:`~fse.models.base_s2v.BaseSentence2VecModel`. Parameters ---------- @@ -592,7 +592,7 @@ def load(cls, *args, **kwargs): return model def save(self, *args, **kwargs): - """ Save the model. + """Save the model. This saved model can be loaded again using :func:`~fse.models.base_s2v.BaseSentence2VecModel.load` Parameters @@ -612,7 +612,7 @@ def save(self, *args, **kwargs): def scan_sentences( self, sentences: List[tuple] = None, progress_per: int = 5 ) -> Dict[str, int]: - """ Performs an initial scan of the data and reports all corresponding statistics + """Performs an initial scan of the data and reports all corresponding statistics Parameters ---------- @@ -625,7 +625,7 @@ def scan_sentences( ------- dict Dictionary containing the scan statistics - + """ logger.info("scanning all indexed sentences and their word counts") @@ -682,7 +682,7 @@ def scan_sentences( def estimate_memory( self, max_index: int, report: dict = None, **kwargs ) -> Dict[str, int]: - """ Estimate the size of the sentence embedding + """Estimate the size of the sentence embedding Parameters ---------- @@ -734,7 +734,7 @@ def train( queue_factor: int = 2, report_delay: int = 5, ) -> [int, int]: - """ Main routine to train an embedding. This method writes all sentences vectors into sv.vectors and is + """Main routine to train an embedding. This method writes all sentences vectors into sv.vectors and is used for computing embeddings for large chunks of data. This method also handles post-training transformations, such as computing the SVD of the sentence vectors. @@ -796,7 +796,7 @@ def train( return eff_sentences, eff_words def infer(self, sentences: List[tuple] = None, use_norm=False) -> ndarray: - """ Secondary routine to train an embedding. This method is essential for small batches of sentences, + """Secondary routine to train an embedding. This method is essential for small batches of sentences, which require little computation. Note: This method does not apply post-training transformations, only post inference calls (such as removing principal components). @@ -845,8 +845,8 @@ def _train_manager( queue_factor: int = 2, report_delay: int = 5, ): - """ Manager for the multi-core implementation. Directly adapted from gensim - + """Manager for the multi-core implementation. Directly adapted from gensim + Parameters ---------- data_iterable : (list, iterable) @@ -882,7 +882,7 @@ def _train_manager( return jobs, eff_sentences, eff_words def _worker_loop(self, job_queue, progress_queue): - """ Train the model, lifting batches of data from the queue. + """Train the model, lifting batches of data from the queue. This function will be called in parallel by multiple workers (threads or processes) to make optimal use of multicore machines. @@ -915,7 +915,7 @@ def _worker_loop(self, job_queue, progress_queue): logger.debug(f"worker exiting, processed {jobs_processed} jobs") def _job_producer(self, data_iterable: List[tuple], job_queue: Queue): - """ Fill the jobs queue using the data found in the input stream. + """Fill the jobs queue using the data found in the input stream. Each job is represented as a batch of tuple @@ -953,7 +953,7 @@ def _job_producer(self, data_iterable: List[tuple], job_queue: Queue): def _log_train_progress( self, progress_queue: Queue, total_sentences: int = None, report_delay: int = 5 ): - """ Log the training process after a couple of seconds. + """Log the training process after a couple of seconds. Parameters ---------- diff --git a/fse/models/sentencevectors.py b/fse/models/sentencevectors.py index aa5fd95..e8f3299 100644 --- a/fse/models/sentencevectors.py +++ b/fse/models/sentencevectors.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers from __future__ import division @@ -65,13 +65,25 @@ def __getitem__(self, entities: int) -> ndarray: """ - if isinstance(entities, (int, integer,)): + if isinstance( + entities, + ( + int, + integer, + ), + ): return self.get_vector(entities) return vstack([self.get_vector(e) for e in entities]) def __contains__(self, index: int) -> bool: - if isinstance(index, (int, integer,)): + if isinstance( + index, + ( + int, + integer, + ), + ): return index < len(self) else: raise KeyError(f"index {index} is not a valid index") @@ -175,9 +187,9 @@ def similarity(self, d1: int, d2: int) -> float: Parameters ---------- d1 : int - index of sentence + index of sentence d2 : int - index of sentence + index of sentence Returns ------- @@ -193,9 +205,9 @@ def distance(self, d1: int, d2: int) -> float: Parameters ---------- d1 : int - index of sentence + index of sentence d2 : int - index of sentence + index of sentence Returns ------- diff --git a/fse/models/sif.py b/fse/models/sif.py index c97bd63..bd13d77 100644 --- a/fse/models/sif.py +++ b/fse/models/sif.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers from fse.models.average import Average from fse.models.utils import compute_principal_components, remove_principal_components @@ -28,7 +28,7 @@ def __init__( workers: int = 1, lang_freq: str = None, ): - """ Smooth-inverse frequency (SIF) weighted sentence embeddings model. Performs a weighted averaging operation over all + """Smooth-inverse frequency (SIF) weighted sentence embeddings model. Performs a weighted averaging operation over all words in a sentences. After training, the model removes a number of singular vectors. The implementation is based on Arora et al. (2017): A Simple but Tough-to-Beat Baseline for Sentence Embeddings. @@ -59,7 +59,7 @@ def __init__( frequencies into the wv.vocab.count based on :class:`~wordfreq` If no frequency information is available, you can choose the language to estimate the frequency. See https://github.com/LuminosoInsight/wordfreq - + """ self.alpha = float(alpha) diff --git a/fse/models/usif.py b/fse/models/usif.py index bb9fa7a..18992df 100644 --- a/fse/models/usif.py +++ b/fse/models/usif.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers from fse.models.average import Average from fse.models.utils import compute_principal_components, remove_principal_components @@ -28,7 +28,7 @@ def __init__( workers: int = 1, lang_freq: str = None, ): - """ Unsupervised smooth-inverse frequency (uSIF) weighted sentence embeddings model. Performs a weighted averaging operation over all + """Unsupervised smooth-inverse frequency (uSIF) weighted sentence embeddings model. Performs a weighted averaging operation over all words in a sentences. After training, the model removes a number of weighted singular vectors. The implementation is based on Ethayarajh (2018): Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline. @@ -63,7 +63,7 @@ def __init__( frequencies into the wv.vocab.count based on :class:`~wordfreq` If no frequency information is available, you can choose the language to estimate the frequency. See https://github.com/LuminosoInsight/wordfreq - + """ self.length = length diff --git a/fse/models/utils.py b/fse/models/utils.py index 6ef137e..7729247 100644 --- a/fse/models/utils.py +++ b/fse/models/utils.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers from sklearn.decomposition import TruncatedSVD @@ -21,7 +21,7 @@ def set_madvise_for_mmap(return_madvise: bool = False) -> object: - """ Method used to set madvise parameters. + """Method used to set madvise parameters. This problem adresses the memmap issue raised in https://github.com/numpy/numpy/issues/13172 The issue is not applicable for windows @@ -53,7 +53,7 @@ def set_madvise_for_mmap(return_madvise: bool = False) -> object: def compute_principal_components( vectors: ndarray, components: int = 1, cache_size_gb: float = 1.0 ) -> [ndarray, ndarray]: - """ Method used to compute the first singular vectors of a given (sub)matrix + """Method used to compute the first singular vectors of a given (sub)matrix Parameters ---------- @@ -75,7 +75,9 @@ def compute_principal_components( n_components=components, n_iter=7, random_state=42, algorithm="randomized" ) - sample_size = int(1024**3 * cache_size_gb / (vectors.shape[1] * dtype(REAL).itemsize)) + sample_size = int( + 1024 ** 3 * cache_size_gb / (vectors.shape[1] * dtype(REAL).itemsize) + ) if sample_size > num_vectors: svd.fit(vectors) @@ -97,7 +99,7 @@ def remove_principal_components( weights: ndarray = None, inplace: bool = True, ) -> ndarray: - """ Method used to remove the first singular vectors of a given matrix + """Method used to remove the first singular vectors of a given matrix Parameters ---------- diff --git a/fse/test/test_average.py b/fse/test/test_average.py index 35e8e9a..27c5338 100644 --- a/fse/test/test_average.py +++ b/fse/test/test_average.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers """ Automated tests for checking the average model. @@ -27,7 +27,9 @@ W2V = Word2Vec(min_count=1, size=DIM) SENTENCES = [l.split() for i, l in enumerate(open(CORPUS, "r"))] W2V.build_vocab(SENTENCES) -W2V.wv.vectors[:,] = np.arange(len(W2V.wv.vectors), dtype=np.float32)[:, None] +W2V.wv.vectors[:,] = np.arange( + len(W2V.wv.vectors), dtype=np.float32 +)[:, None] class TestAverageFunctions(unittest.TestCase): diff --git a/fse/test/test_base_s2v.py b/fse/test/test_base_s2v.py index d9265ff..59943cc 100644 --- a/fse/test/test_base_s2v.py +++ b/fse/test/test_base_s2v.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers """ Automated tests for checking the base_s2v class. diff --git a/fse/test/test_inputs.py b/fse/test/test_inputs.py index 259806c..20f3bc1 100644 --- a/fse/test/test_inputs.py +++ b/fse/test/test_inputs.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers """ diff --git a/fse/test/test_sentencevectors.py b/fse/test/test_sentencevectors.py index 00b7ba4..5070729 100644 --- a/fse/test/test_sentencevectors.py +++ b/fse/test/test_sentencevectors.py @@ -1,8 +1,8 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- -# Author: Oliver Borchers -# Copyright (C) 2019 Oliver Borchers +# Author: Oliver Borchers +# Copyright (C) Oliver Borchers Oliver Borchers """ diff --git a/fse/test/test_utils.py b/fse/test/test_utils.py index a836246..d149f05 100644 --- a/fse/test/test_utils.py +++ b/fse/test/test_utils.py @@ -38,7 +38,6 @@ def test_remove_components_inplace(self): with assert_raises(AssertionError): assert_allclose(m, c) - def test_remove_components(self): m = np.ones((500, 10), dtype=np.float32) c = np.copy(m) @@ -60,7 +59,9 @@ def test_remove_weighted_components(self): m = np.ones((500, 10), dtype=np.float32) c = np.copy(m) out = compute_principal_components(vectors=m) - res = remove_principal_components(m, svd_res=out, weights=np.array([0.5]), inplace=False) + res = remove_principal_components( + m, svd_res=out, weights=np.array([0.5]), inplace=False + ) assert_allclose(res, 0.75, atol=1e-5) assert_allclose(m, c) diff --git a/notebooks/STS-Benchmarks.ipynb b/notebooks/STS-Benchmarks.ipynb index 13bb3bc..654cc45 100644 --- a/notebooks/STS-Benchmarks.ipynb +++ b/notebooks/STS-Benchmarks.ipynb @@ -228,11 +228,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:38:54,395 : MainThread : INFO : loading Word2VecKeyedVectors object from /Volumes/Ext_HDD/Models/Static/glove.840B.300d.model\n", - "2019-09-11 10:38:59,173 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/glove.840B.300d.model.vectors.npy with mmap=None\n", - "2019-09-11 10:39:05,118 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", - "2019-09-11 10:39:05,130 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/glove.840B.300d.model\n", - "2019-09-11 10:39:05,138 : MainThread : INFO : loading pre-existing wv from /Users/oliverborchers/Library/Mobile Documents/com~apple~CloudDocs/Diss/Medium/Fast_Sentence_Embeddings/notebooks/data/glove_wv.vectors\n" + "Oliver Borchers-09-11 10:38:54,395 : MainThread : INFO : loading Word2VecKeyedVectors object from /Volumes/Ext_HDD/Models/Static/glove.840B.300d.model\n", + "Oliver Borchers-09-11 10:38:59,173 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/glove.840B.300d.model.vectors.npy with mmap=None\n", + "Oliver Borchers-09-11 10:39:05,118 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", + "Oliver Borchers-09-11 10:39:05,130 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/glove.840B.300d.model\n", + "Oliver Borchers-09-11 10:39:05,138 : MainThread : INFO : loading pre-existing wv from /Users/oliverborchers/Library/Mobile Documents/com~apple~CloudDocs/Diss/Medium/Fast_Sentence_Embeddings/notebooks/data/glove_wv.vectors\n" ] }, { @@ -246,7 +246,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:05,544 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" + "Oliver Borchers-09-11 10:39:05,544 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" ] }, { @@ -307,11 +307,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:16,246 : MainThread : INFO : loading Word2VecKeyedVectors object from /Volumes/Ext_HDD/Models/Static/google_news.model\n", - "2019-09-11 10:39:22,918 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/google_news.model.vectors.npy with mmap=r\n", - "2019-09-11 10:39:22,929 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", - "2019-09-11 10:39:22,929 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/google_news.model\n", - "2019-09-11 10:39:22,932 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" + "Oliver Borchers-09-11 10:39:16,246 : MainThread : INFO : loading Word2VecKeyedVectors object from /Volumes/Ext_HDD/Models/Static/google_news.model\n", + "Oliver Borchers-09-11 10:39:22,918 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/google_news.model.vectors.npy with mmap=r\n", + "Oliver Borchers-09-11 10:39:22,929 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", + "Oliver Borchers-09-11 10:39:22,929 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/google_news.model\n", + "Oliver Borchers-09-11 10:39:22,932 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" ] } ], @@ -332,16 +332,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:25,448 : MainThread : INFO : loading FastTextKeyedVectors object from /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model\n", - "2019-09-11 10:39:32,132 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model.vectors.npy with mmap=r\n", - "2019-09-11 10:39:32,142 : MainThread : INFO : loading vectors_vocab from /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model.vectors_vocab.npy with mmap=r\n", - "2019-09-11 10:39:32,154 : MainThread : INFO : loading vectors_ngrams from /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model.vectors_ngrams.npy with mmap=r\n", - "2019-09-11 10:39:32,161 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", - "2019-09-11 10:39:32,162 : MainThread : INFO : setting ignored attribute vectors_vocab_norm to None\n", - "2019-09-11 10:39:32,163 : MainThread : INFO : setting ignored attribute vectors_ngrams_norm to None\n", - "2019-09-11 10:39:32,164 : MainThread : INFO : setting ignored attribute buckets_word to None\n", - "2019-09-11 10:39:32,165 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model\n", - "2019-09-11 10:39:32,168 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" + "Oliver Borchers-09-11 10:39:25,448 : MainThread : INFO : loading FastTextKeyedVectors object from /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model\n", + "Oliver Borchers-09-11 10:39:32,132 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model.vectors.npy with mmap=r\n", + "Oliver Borchers-09-11 10:39:32,142 : MainThread : INFO : loading vectors_vocab from /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model.vectors_vocab.npy with mmap=r\n", + "Oliver Borchers-09-11 10:39:32,154 : MainThread : INFO : loading vectors_ngrams from /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model.vectors_ngrams.npy with mmap=r\n", + "Oliver Borchers-09-11 10:39:32,161 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", + "Oliver Borchers-09-11 10:39:32,162 : MainThread : INFO : setting ignored attribute vectors_vocab_norm to None\n", + "Oliver Borchers-09-11 10:39:32,163 : MainThread : INFO : setting ignored attribute vectors_ngrams_norm to None\n", + "Oliver Borchers-09-11 10:39:32,164 : MainThread : INFO : setting ignored attribute buckets_word to None\n", + "Oliver Borchers-09-11 10:39:32,165 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/ft_crawl_300d_2m.model\n", + "Oliver Borchers-09-11 10:39:32,168 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" ] } ], @@ -361,11 +361,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:34,534 : MainThread : INFO : loading Word2VecKeyedVectors object from /Volumes/Ext_HDD/Models/Static/paranmt.model\n", - "2019-09-11 10:39:34,800 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/paranmt.model.vectors.npy with mmap=r\n", - "2019-09-11 10:39:34,811 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", - "2019-09-11 10:39:34,812 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/paranmt.model\n", - "2019-09-11 10:39:34,814 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" + "Oliver Borchers-09-11 10:39:34,534 : MainThread : INFO : loading Word2VecKeyedVectors object from /Volumes/Ext_HDD/Models/Static/paranmt.model\n", + "Oliver Borchers-09-11 10:39:34,800 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/paranmt.model.vectors.npy with mmap=r\n", + "Oliver Borchers-09-11 10:39:34,811 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", + "Oliver Borchers-09-11 10:39:34,812 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/paranmt.model\n", + "Oliver Borchers-09-11 10:39:34,814 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" ] } ], @@ -386,11 +386,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:34,941 : MainThread : INFO : loading Word2VecKeyedVectors object from /Volumes/Ext_HDD/Models/Static/paragram_sl999_czeng.model\n", - "2019-09-11 10:39:35,099 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/paragram_sl999_czeng.model.vectors.npy with mmap=r\n", - "2019-09-11 10:39:35,108 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", - "2019-09-11 10:39:35,109 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/paragram_sl999_czeng.model\n", - "2019-09-11 10:39:35,111 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" + "Oliver Borchers-09-11 10:39:34,941 : MainThread : INFO : loading Word2VecKeyedVectors object from /Volumes/Ext_HDD/Models/Static/paragram_sl999_czeng.model\n", + "Oliver Borchers-09-11 10:39:35,099 : MainThread : INFO : loading vectors from /Volumes/Ext_HDD/Models/Static/paragram_sl999_czeng.model.vectors.npy with mmap=r\n", + "Oliver Borchers-09-11 10:39:35,108 : MainThread : INFO : setting ignored attribute vectors_norm to None\n", + "Oliver Borchers-09-11 10:39:35,109 : MainThread : INFO : loaded /Volumes/Ext_HDD/Models/Static/paragram_sl999_czeng.model\n", + "Oliver Borchers-09-11 10:39:35,111 : MainThread : INFO : no frequency mode: using wordfreq for estimation of frequency for language: en\n" ] } ], @@ -440,14 +440,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:35,222 : MainThread : INFO : scanning all indexed sentences and their word counts\n", - "2019-09-11 10:39:35,727 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:39:36,788 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2195875 vocabulary: 2524 MB (2 GB)\n", - "2019-09-11 10:39:36,789 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:39:36,846 : MainThread : INFO : begin training\n", - "2019-09-11 10:39:37,353 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:39:37,354 : MainThread : INFO : training on 2758 effective sentences with 27351 effective words took 0s with 5430 sentences/s\n", - "2019-09-11 10:39:37,385 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:39:35,222 : MainThread : INFO : scanning all indexed sentences and their word counts\n", + "Oliver Borchers-09-11 10:39:35,727 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:39:36,788 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2195875 vocabulary: 2524 MB (2 GB)\n", + "Oliver Borchers-09-11 10:39:36,789 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:39:36,846 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:39:37,353 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:39:37,354 : MainThread : INFO : training on 2758 effective sentences with 27351 effective words took 0s with 5430 sentences/s\n", + "Oliver Borchers-09-11 10:39:37,385 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -461,16 +461,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:37,798 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:39:38,648 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2195875 vocabulary: 2524 MB (2 GB)\n", - "2019-09-11 10:39:38,649 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:39:38,662 : MainThread : INFO : pre-computing SIF weights for 2195875 words\n", - "2019-09-11 10:39:40,394 : MainThread : INFO : begin training\n", - "2019-09-11 10:39:40,830 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:39:40,887 : MainThread : INFO : computing 15 principal components took 0s\n", - "2019-09-11 10:39:40,889 : MainThread : INFO : removing 15 principal components took 0s\n", - "2019-09-11 10:39:40,890 : MainThread : INFO : training on 2758 effective sentences with 27351 effective words took 0s with 6316 sentences/s\n", - "2019-09-11 10:39:40,926 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:39:37,798 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:39:38,648 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2195875 vocabulary: 2524 MB (2 GB)\n", + "Oliver Borchers-09-11 10:39:38,649 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:39:38,662 : MainThread : INFO : pre-computing SIF weights for 2195875 words\n", + "Oliver Borchers-09-11 10:39:40,394 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:39:40,830 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:39:40,887 : MainThread : INFO : computing 15 principal components took 0s\n", + "Oliver Borchers-09-11 10:39:40,889 : MainThread : INFO : removing 15 principal components took 0s\n", + "Oliver Borchers-09-11 10:39:40,890 : MainThread : INFO : training on 2758 effective sentences with 27351 effective words took 0s with 6316 sentences/s\n", + "Oliver Borchers-09-11 10:39:40,926 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -484,16 +484,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:41,411 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:39:42,249 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2195875 vocabulary: 2524 MB (2 GB)\n", - "2019-09-11 10:39:42,249 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:39:42,264 : MainThread : INFO : pre-computing uSIF weights for 2195875 words\n", - "2019-09-11 10:39:50,589 : MainThread : INFO : begin training\n", - "2019-09-11 10:39:51,119 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:39:51,138 : MainThread : INFO : computing 5 principal components took 0s\n", - "2019-09-11 10:39:51,141 : MainThread : INFO : removing 5 principal components took 0s\n", - "2019-09-11 10:39:51,142 : MainThread : INFO : training on 2758 effective sentences with 27351 effective words took 0s with 5197 sentences/s\n", - "2019-09-11 10:39:51,186 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:39:41,411 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:39:42,249 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2195875 vocabulary: 2524 MB (2 GB)\n", + "Oliver Borchers-09-11 10:39:42,249 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:39:42,264 : MainThread : INFO : pre-computing uSIF weights for 2195875 words\n", + "Oliver Borchers-09-11 10:39:50,589 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:39:51,119 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:39:51,138 : MainThread : INFO : computing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:39:51,141 : MainThread : INFO : removing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:39:51,142 : MainThread : INFO : training on 2758 effective sentences with 27351 effective words took 0s with 5197 sentences/s\n", + "Oliver Borchers-09-11 10:39:51,186 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -507,13 +507,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:51,643 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:39:53,870 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 3000000 vocabulary: 3447 MB (3 GB)\n", - "2019-09-11 10:39:53,871 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:39:53,952 : MainThread : INFO : begin training\n", - "2019-09-11 10:39:54,566 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:39:54,567 : MainThread : INFO : training on 2758 effective sentences with 23116 effective words took 0s with 4482 sentences/s\n", - "2019-09-11 10:39:54,606 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:39:51,643 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:39:53,870 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 3000000 vocabulary: 3447 MB (3 GB)\n", + "Oliver Borchers-09-11 10:39:53,871 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:39:53,952 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:39:54,566 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:39:54,567 : MainThread : INFO : training on 2758 effective sentences with 23116 effective words took 0s with 4482 sentences/s\n", + "Oliver Borchers-09-11 10:39:54,606 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -527,16 +527,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:39:55,064 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:39:56,280 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 3000000 vocabulary: 3447 MB (3 GB)\n", - "2019-09-11 10:39:56,280 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:39:56,294 : MainThread : INFO : pre-computing SIF weights for 3000000 words\n", - "2019-09-11 10:39:59,084 : MainThread : INFO : begin training\n", - "2019-09-11 10:39:59,549 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:39:59,570 : MainThread : INFO : computing 10 principal components took 0s\n", - "2019-09-11 10:39:59,573 : MainThread : INFO : removing 10 principal components took 0s\n", - "2019-09-11 10:39:59,574 : MainThread : INFO : training on 2758 effective sentences with 23116 effective words took 0s with 5922 sentences/s\n", - "2019-09-11 10:39:59,617 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:39:55,064 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:39:56,280 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 3000000 vocabulary: 3447 MB (3 GB)\n", + "Oliver Borchers-09-11 10:39:56,280 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:39:56,294 : MainThread : INFO : pre-computing SIF weights for 3000000 words\n", + "Oliver Borchers-09-11 10:39:59,084 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:39:59,549 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:39:59,570 : MainThread : INFO : computing 10 principal components took 0s\n", + "Oliver Borchers-09-11 10:39:59,573 : MainThread : INFO : removing 10 principal components took 0s\n", + "Oliver Borchers-09-11 10:39:59,574 : MainThread : INFO : training on 2758 effective sentences with 23116 effective words took 0s with 5922 sentences/s\n", + "Oliver Borchers-09-11 10:39:59,617 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -550,16 +550,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:00,087 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:01,227 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 3000000 vocabulary: 3447 MB (3 GB)\n", - "2019-09-11 10:40:01,228 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:01,246 : MainThread : INFO : pre-computing uSIF weights for 3000000 words\n", - "2019-09-11 10:40:12,911 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:13,382 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:13,403 : MainThread : INFO : computing 5 principal components took 0s\n", - "2019-09-11 10:40:13,407 : MainThread : INFO : removing 5 principal components took 0s\n", - "2019-09-11 10:40:13,408 : MainThread : INFO : training on 2758 effective sentences with 23116 effective words took 0s with 5839 sentences/s\n", - "2019-09-11 10:40:13,445 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:40:00,087 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:01,227 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 3000000 vocabulary: 3447 MB (3 GB)\n", + "Oliver Borchers-09-11 10:40:01,228 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:01,246 : MainThread : INFO : pre-computing uSIF weights for 3000000 words\n", + "Oliver Borchers-09-11 10:40:12,911 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:13,382 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:13,403 : MainThread : INFO : computing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:13,407 : MainThread : INFO : removing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:13,408 : MainThread : INFO : training on 2758 effective sentences with 23116 effective words took 0s with 5839 sentences/s\n", + "Oliver Borchers-09-11 10:40:13,445 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -573,14 +573,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:13,890 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:15,745 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2000000 vocabulary: 6877 MB (6 GB)\n", - "2019-09-11 10:40:15,746 : MainThread : WARNING : The embeddings will likely not fit into RAM. Consider to use mapfile_path\n", - "2019-09-11 10:40:15,747 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:15,804 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:16,861 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:16,862 : MainThread : INFO : training on 2758 effective sentences with 27528 effective words took 1s with 2605 sentences/s\n", - "2019-09-11 10:40:16,894 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:40:13,890 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:15,745 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2000000 vocabulary: 6877 MB (6 GB)\n", + "Oliver Borchers-09-11 10:40:15,746 : MainThread : WARNING : The embeddings will likely not fit into RAM. Consider to use mapfile_path\n", + "Oliver Borchers-09-11 10:40:15,747 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:15,804 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:16,861 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:16,862 : MainThread : INFO : training on 2758 effective sentences with 27528 effective words took 1s with 2605 sentences/s\n", + "Oliver Borchers-09-11 10:40:16,894 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -594,17 +594,17 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:17,317 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:18,202 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2000000 vocabulary: 6877 MB (6 GB)\n", - "2019-09-11 10:40:18,203 : MainThread : WARNING : The embeddings will likely not fit into RAM. Consider to use mapfile_path\n", - "2019-09-11 10:40:18,204 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:18,221 : MainThread : INFO : pre-computing SIF weights for 2000000 words\n", - "2019-09-11 10:40:20,197 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:20,713 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:20,735 : MainThread : INFO : computing 10 principal components took 0s\n", - "2019-09-11 10:40:20,737 : MainThread : INFO : removing 10 principal components took 0s\n", - "2019-09-11 10:40:20,738 : MainThread : INFO : training on 2758 effective sentences with 27528 effective words took 0s with 5331 sentences/s\n", - "2019-09-11 10:40:20,779 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:40:17,317 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:18,202 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2000000 vocabulary: 6877 MB (6 GB)\n", + "Oliver Borchers-09-11 10:40:18,203 : MainThread : WARNING : The embeddings will likely not fit into RAM. Consider to use mapfile_path\n", + "Oliver Borchers-09-11 10:40:18,204 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:18,221 : MainThread : INFO : pre-computing SIF weights for 2000000 words\n", + "Oliver Borchers-09-11 10:40:20,197 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:20,713 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:20,735 : MainThread : INFO : computing 10 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:20,737 : MainThread : INFO : removing 10 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:20,738 : MainThread : INFO : training on 2758 effective sentences with 27528 effective words took 0s with 5331 sentences/s\n", + "Oliver Borchers-09-11 10:40:20,779 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -618,17 +618,17 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:21,219 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:22,061 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2000000 vocabulary: 6877 MB (6 GB)\n", - "2019-09-11 10:40:22,062 : MainThread : WARNING : The embeddings will likely not fit into RAM. Consider to use mapfile_path\n", - "2019-09-11 10:40:22,063 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:22,078 : MainThread : INFO : pre-computing uSIF weights for 2000000 words\n", - "2019-09-11 10:40:30,034 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:30,553 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:30,578 : MainThread : INFO : computing 5 principal components took 0s\n", - "2019-09-11 10:40:30,581 : MainThread : INFO : removing 5 principal components took 0s\n", - "2019-09-11 10:40:30,582 : MainThread : INFO : training on 2758 effective sentences with 27528 effective words took 0s with 5309 sentences/s\n", - "2019-09-11 10:40:30,624 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:40:21,219 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:22,061 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 2000000 vocabulary: 6877 MB (6 GB)\n", + "Oliver Borchers-09-11 10:40:22,062 : MainThread : WARNING : The embeddings will likely not fit into RAM. Consider to use mapfile_path\n", + "Oliver Borchers-09-11 10:40:22,063 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:22,078 : MainThread : INFO : pre-computing uSIF weights for 2000000 words\n", + "Oliver Borchers-09-11 10:40:30,034 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:30,553 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:30,578 : MainThread : INFO : computing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:30,581 : MainThread : INFO : removing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:30,582 : MainThread : INFO : training on 2758 effective sentences with 27528 effective words took 0s with 5309 sentences/s\n", + "Oliver Borchers-09-11 10:40:30,624 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -642,13 +642,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:31,120 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:31,190 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", - "2019-09-11 10:40:31,191 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:31,206 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:31,889 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:31,890 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 4030 sentences/s\n", - "2019-09-11 10:40:31,921 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:40:31,120 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:31,190 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", + "Oliver Borchers-09-11 10:40:31,191 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:31,206 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:31,889 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:31,890 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 4030 sentences/s\n", + "Oliver Borchers-09-11 10:40:31,921 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -662,16 +662,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:32,297 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:32,327 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", - "2019-09-11 10:40:32,328 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:32,340 : MainThread : INFO : pre-computing SIF weights for 77224 words\n", - "2019-09-11 10:40:32,396 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:32,772 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:32,792 : MainThread : INFO : computing 10 principal components took 0s\n", - "2019-09-11 10:40:32,794 : MainThread : INFO : removing 10 principal components took 0s\n", - "2019-09-11 10:40:32,795 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 7319 sentences/s\n", - "2019-09-11 10:40:32,832 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:40:32,297 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:32,327 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", + "Oliver Borchers-09-11 10:40:32,328 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:32,340 : MainThread : INFO : pre-computing SIF weights for 77224 words\n", + "Oliver Borchers-09-11 10:40:32,396 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:32,772 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:32,792 : MainThread : INFO : computing 10 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:32,794 : MainThread : INFO : removing 10 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:32,795 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 7319 sentences/s\n", + "Oliver Borchers-09-11 10:40:32,832 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -685,16 +685,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:33,253 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:33,282 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", - "2019-09-11 10:40:33,283 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:33,296 : MainThread : INFO : pre-computing uSIF weights for 77224 words\n", - "2019-09-11 10:40:33,533 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:33,964 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:33,992 : MainThread : INFO : computing 5 principal components took 0s\n", - "2019-09-11 10:40:33,994 : MainThread : INFO : removing 5 principal components took 0s\n", - "2019-09-11 10:40:33,995 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 6374 sentences/s\n", - "2019-09-11 10:40:34,043 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:40:33,253 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:33,282 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", + "Oliver Borchers-09-11 10:40:33,283 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:33,296 : MainThread : INFO : pre-computing uSIF weights for 77224 words\n", + "Oliver Borchers-09-11 10:40:33,533 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:33,964 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:33,992 : MainThread : INFO : computing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:33,994 : MainThread : INFO : removing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:33,995 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 6374 sentences/s\n", + "Oliver Borchers-09-11 10:40:34,043 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -708,13 +708,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:34,572 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:34,650 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", - "2019-09-11 10:40:34,651 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:34,662 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:35,184 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:35,185 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 5270 sentences/s\n", - "2019-09-11 10:40:35,214 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:40:34,572 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:34,650 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", + "Oliver Borchers-09-11 10:40:34,651 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:34,662 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:35,184 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:35,185 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 5270 sentences/s\n", + "Oliver Borchers-09-11 10:40:35,214 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -728,16 +728,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:35,613 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:35,648 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", - "2019-09-11 10:40:35,649 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:35,665 : MainThread : INFO : pre-computing SIF weights for 77224 words\n", - "2019-09-11 10:40:35,724 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:36,294 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:36,319 : MainThread : INFO : computing 10 principal components took 0s\n", - "2019-09-11 10:40:36,322 : MainThread : INFO : removing 10 principal components took 0s\n", - "2019-09-11 10:40:36,323 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 4828 sentences/s\n", - "2019-09-11 10:40:36,364 : MainThread : INFO : scanning all indexed sentences and their word counts\n" + "Oliver Borchers-09-11 10:40:35,613 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:35,648 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", + "Oliver Borchers-09-11 10:40:35,649 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:35,665 : MainThread : INFO : pre-computing SIF weights for 77224 words\n", + "Oliver Borchers-09-11 10:40:35,724 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:36,294 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:36,319 : MainThread : INFO : computing 10 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:36,322 : MainThread : INFO : removing 10 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:36,323 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 4828 sentences/s\n", + "Oliver Borchers-09-11 10:40:36,364 : MainThread : INFO : scanning all indexed sentences and their word counts\n" ] }, { @@ -751,15 +751,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-09-11 10:40:36,831 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", - "2019-09-11 10:40:36,859 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", - "2019-09-11 10:40:36,860 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", - "2019-09-11 10:40:36,871 : MainThread : INFO : pre-computing uSIF weights for 77224 words\n", - "2019-09-11 10:40:37,130 : MainThread : INFO : begin training\n", - "2019-09-11 10:40:37,598 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", - "2019-09-11 10:40:37,626 : MainThread : INFO : computing 5 principal components took 0s\n", - "2019-09-11 10:40:37,628 : MainThread : INFO : removing 5 principal components took 0s\n", - "2019-09-11 10:40:37,629 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 5878 sentences/s\n" + "Oliver Borchers-09-11 10:40:36,831 : MainThread : INFO : finished scanning 2758 sentences with an average length of 9 and 27528 total words\n", + "Oliver Borchers-09-11 10:40:36,859 : MainThread : INFO : estimated memory for 2758 sentences with 300 dimensions and 77224 vocabulary: 91 MB (0 GB)\n", + "Oliver Borchers-09-11 10:40:36,860 : MainThread : INFO : initializing sentence vectors for 2758 sentences\n", + "Oliver Borchers-09-11 10:40:36,871 : MainThread : INFO : pre-computing uSIF weights for 77224 words\n", + "Oliver Borchers-09-11 10:40:37,130 : MainThread : INFO : begin training\n", + "Oliver Borchers-09-11 10:40:37,598 : MainThread : INFO : worker thread finished; awaiting finish of 0 more threads\n", + "Oliver Borchers-09-11 10:40:37,626 : MainThread : INFO : computing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:37,628 : MainThread : INFO : removing 5 principal components took 0s\n", + "Oliver Borchers-09-11 10:40:37,629 : MainThread : INFO : training on 2758 effective sentences with 27441 effective words took 0s with 5878 sentences/s\n" ] }, { diff --git a/setup.py b/setup.py index 0e24d1c..f7d15e3 100755 --- a/setup.py +++ b/setup.py @@ -17,13 +17,13 @@ from setuptools.command.build_ext import build_ext NAME = "fse" -VERSION = "0.1.16" +VERSION = "0.1.17" DESCRIPTION = "Fast Sentence Embeddings for Gensim" -AUTHOR = "Dr. Oliver Borchers" -AUTHOR_EMAIL = "borchers@bwl.uni-mannheim.de" +AUTHOR = "Oliver Borchers" +AUTHOR_EMAIL = "o.borchers@oxolo.com" URL = "https://github.com/oborchers/Fast_Sentence_Embeddings" LICENSE = "GPL-3.0" -REQUIRES_PYTHON = ">=3.8" +REQUIRES_PYTHON = ">=3.6" NUMPY_STR = "numpy >= 1.11.3" CYTHON_STR = "Cython==0.29.14" @@ -32,7 +32,7 @@ "scipy >= 0.18.1", "smart_open >= 1.5.0", "scikit-learn >= 0.19.1", - "gensim >= 3.8.0, < 4.0", + "gensim<4", "wordfreq >= 2.2.1", "psutil", ] @@ -61,7 +61,10 @@ def make_c_ext(use_cython=False): extra_args = [] # extra_args.extend(["-g", "-O0"]) # uncomment if optimization limiting crash info yield Extension( - module, sources=[source], language="c", extra_compile_args=extra_args, + module, + sources=[source], + language="c", + extra_compile_args=extra_args, )