-
Notifications
You must be signed in to change notification settings - Fork 0
/
problem_unittests.py
312 lines (231 loc) · 12.7 KB
/
problem_unittests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import numpy as np
import tensorflow as tf
from tensorflow.contrib import rnn
def _print_success_message():
print('Tests Passed')
def test_create_lookup_tables(create_lookup_tables):
with tf.Graph().as_default():
test_text = '''
Moe_Szyslak Moe's Tavern Where the elite meet to drink
Bart_Simpson Eh yeah hello is Mike there Last name Rotch
Moe_Szyslak Hold on I'll check Mike Rotch Mike Rotch Hey has anybody seen Mike Rotch lately
Moe_Szyslak Listen you little puke One of these days I'm gonna catch you and I'm gonna carve my name on your back with an ice pick
Moe_Szyslak Whats the matter Homer You're not your normal effervescent self
Homer_Simpson I got my problems Moe Give me another one
Moe_Szyslak Homer hey you should not drink to forget your problems
Barney_Gumble Yeah you should only drink to enhance your social skills'''
test_text = test_text.lower()
test_text = test_text.split()
vocab_to_int, int_to_vocab = create_lookup_tables(test_text)
# Check types
assert isinstance(vocab_to_int, dict),\
'vocab_to_int is not a dictionary.'
assert isinstance(int_to_vocab, dict),\
'int_to_vocab is not a dictionary.'
# Compare lengths of dicts
assert len(vocab_to_int) == len(int_to_vocab),\
'Length of vocab_to_int and int_to_vocab don\'t match. ' \
'vocab_to_int is length {}. int_to_vocab is length {}'.format(len(vocab_to_int), len(int_to_vocab))
# Make sure the dicts have the same words
vocab_to_int_word_set = set(vocab_to_int.keys())
int_to_vocab_word_set = set(int_to_vocab.values())
assert not (vocab_to_int_word_set - int_to_vocab_word_set),\
'vocab_to_int and int_to_vocab don\'t have the same words.' \
'{} found in vocab_to_int, but not in int_to_vocab'.format(vocab_to_int_word_set - int_to_vocab_word_set)
assert not (int_to_vocab_word_set - vocab_to_int_word_set),\
'vocab_to_int and int_to_vocab don\'t have the same words.' \
'{} found in int_to_vocab, but not in vocab_to_int'.format(int_to_vocab_word_set - vocab_to_int_word_set)
# Make sure the dicts have the same word ids
vocab_to_int_word_id_set = set(vocab_to_int.values())
int_to_vocab_word_id_set = set(int_to_vocab.keys())
assert not (vocab_to_int_word_id_set - int_to_vocab_word_id_set),\
'vocab_to_int and int_to_vocab don\'t contain the same word ids.' \
'{} found in vocab_to_int, but not in int_to_vocab'.format(vocab_to_int_word_id_set - int_to_vocab_word_id_set)
assert not (int_to_vocab_word_id_set - vocab_to_int_word_id_set),\
'vocab_to_int and int_to_vocab don\'t contain the same word ids.' \
'{} found in int_to_vocab, but not in vocab_to_int'.format(int_to_vocab_word_id_set - vocab_to_int_word_id_set)
# Make sure the dicts make the same lookup
missmatches = [(word, id, id, int_to_vocab[id]) for word, id in vocab_to_int.items() if int_to_vocab[id] != word]
assert not missmatches,\
'Found {} missmatche(s). First missmatch: vocab_to_int[{}] = {} and int_to_vocab[{}] = {}'.format(
len(missmatches),
*missmatches[0])
assert len(vocab_to_int) > len(set(test_text))/2,\
'The length of vocab seems too small. Found a length of {}'.format(len(vocab_to_int))
_print_success_message()
def test_get_batches(get_batches):
with tf.Graph().as_default():
test_batch_size = 128
test_seq_length = 5
test_int_text = list(range(1000*test_seq_length))
batches = get_batches(test_int_text, test_batch_size, test_seq_length)
# Check type
assert isinstance(batches, np.ndarray),\
'Batches is not a Numpy array'
# Check shape
assert batches.shape == (7, 2, 128, 5),\
'Batches returned wrong shape. Found {}'.format(batches.shape)
for x in range(batches.shape[2]):
assert np.array_equal(batches[0,0,x], np.array(range(x * 35, x * 35 + batches.shape[3]))),\
'Batches returned wrong contents. For example, input sequence {} in the first batch was {}'.format(x, batches[0,0,x])
assert np.array_equal(batches[0,1,x], np.array(range(x * 35 + 1, x * 35 + 1 + batches.shape[3]))),\
'Batches returned wrong contents. For example, target sequence {} in the first batch was {}'.format(x, batches[0,1,x])
last_seq_target = (test_batch_size-1) * 35 + 31
last_seq = np.array(range(last_seq_target, last_seq_target+ batches.shape[3]))
last_seq[-1] = batches[0,0,0,0]
assert np.array_equal(batches[-1,1,-1], last_seq),\
'The last target of the last batch should be the first input of the first batch. Found {} but expected {}'.format(batches[-1,1,-1], last_seq)
_print_success_message()
def test_tokenize(token_lookup):
with tf.Graph().as_default():
symbols = set(['.', ',', '"', ';', '!', '?', '(', ')', '--', '\n'])
token_dict = token_lookup()
# Check type
assert isinstance(token_dict, dict), \
'Returned type is {}.'.format(type(token_dict))
# Check symbols
missing_symbols = symbols - set(token_dict.keys())
unknown_symbols = set(token_dict.keys()) - symbols
assert not missing_symbols, \
'Missing symbols: {}'.format(missing_symbols)
assert not unknown_symbols, \
'Unknown symbols: {}'.format(unknown_symbols)
# Check values type
bad_value_type = [type(val) for val in token_dict.values() if not isinstance(val, str)]
assert not bad_value_type,\
'Found token as {} type.'.format(bad_value_type[0])
# Check for spaces
key_has_spaces = [k for k in token_dict.keys() if ' ' in k]
val_has_spaces = [val for val in token_dict.values() if ' ' in val]
assert not key_has_spaces,\
'The key "{}" includes spaces. Remove spaces from keys and values'.format(key_has_spaces[0])
assert not val_has_spaces,\
'The value "{}" includes spaces. Remove spaces from keys and values'.format(val_has_spaces[0])
# Check for symbols in values
symbol_val = ()
for symbol in symbols:
for val in token_dict.values():
if symbol in val:
symbol_val = (symbol, val)
assert not symbol_val,\
'Don\'t use a symbol that will be replaced in your tokens. Found the symbol {} in value {}'.format(*symbol_val)
_print_success_message()
def test_get_inputs(get_inputs):
with tf.Graph().as_default():
input_data, targets, lr = get_inputs()
# Check type
assert input_data.op.type == 'Placeholder',\
'Input not a Placeholder.'
assert targets.op.type == 'Placeholder',\
'Targets not a Placeholder.'
assert lr.op.type == 'Placeholder',\
'Learning Rate not a Placeholder.'
# Check name
assert input_data.name == 'input:0',\
'Input has bad name. Found name {}'.format(input_data.name)
# Check rank
input_rank = 0 if input_data.get_shape() == None else len(input_data.get_shape())
targets_rank = 0 if targets.get_shape() == None else len(targets.get_shape())
lr_rank = 0 if lr.get_shape() == None else len(lr.get_shape())
assert input_rank == 2,\
'Input has wrong rank. Rank {} found.'.format(input_rank)
assert targets_rank == 2,\
'Targets has wrong rank. Rank {} found.'.format(targets_rank)
assert lr_rank == 0,\
'Learning Rate has wrong rank. Rank {} found'.format(lr_rank)
_print_success_message()
def test_get_init_cell(get_init_cell):
with tf.Graph().as_default():
test_batch_size_ph = tf.placeholder(tf.int32)
test_rnn_size = 256
cell, init_state = get_init_cell(test_batch_size_ph, test_rnn_size)
# Check type
assert isinstance(cell, tf.contrib.rnn.MultiRNNCell),\
'Cell is wrong type. Found {} type'.format(type(cell))
# Check for name attribute
assert hasattr(init_state, 'name'),\
'Initial state doesn\'t have the "name" attribute. Try using `tf.identity` to set the name.'
# Check name
assert init_state.name == 'initial_state:0',\
'Initial state doesn\'t have the correct name. Found the name {}'.format(init_state.name)
_print_success_message()
def test_get_embed(get_embed):
with tf.Graph().as_default():
embed_shape = [50, 5, 256]
test_input_data = tf.placeholder(tf.int32, embed_shape[:2])
test_vocab_size = 27
test_embed_dim = embed_shape[2]
embed = get_embed(test_input_data, test_vocab_size, test_embed_dim)
# Check shape
assert embed.shape == embed_shape,\
'Wrong shape. Found shape {}'.format(embed.shape)
_print_success_message()
def test_build_rnn(build_rnn):
with tf.Graph().as_default():
test_rnn_size = 256
test_rnn_layer_size = 2
test_cell = rnn.MultiRNNCell([rnn.BasicLSTMCell(test_rnn_size) for _ in range(test_rnn_layer_size)])
test_inputs = tf.placeholder(tf.float32, [None, None, test_rnn_size])
outputs, final_state = build_rnn(test_cell, test_inputs)
# Check name
assert hasattr(final_state, 'name'),\
'Final state doesn\'t have the "name" attribute. Try using `tf.identity` to set the name.'
assert final_state.name == 'final_state:0',\
'Final state doesn\'t have the correct name. Found the name {}'.format(final_state.name)
# Check shape
assert outputs.get_shape().as_list() == [None, None, test_rnn_size],\
'Outputs has wrong shape. Found shape {}'.format(outputs.get_shape())
assert final_state.get_shape().as_list() == [test_rnn_layer_size, 2, None, test_rnn_size],\
'Final state wrong shape. Found shape {}'.format(final_state.get_shape())
_print_success_message()
def test_build_nn(build_nn):
with tf.Graph().as_default():
test_input_data_shape = [128, 5]
test_input_data = tf.placeholder(tf.int32, test_input_data_shape)
test_rnn_size = 256
test_embed_dim = 300
test_rnn_layer_size = 2
test_vocab_size = 27
test_cell = rnn.MultiRNNCell([rnn.BasicLSTMCell(test_rnn_size) for _ in range(test_rnn_layer_size)])
logits, final_state = build_nn(test_cell, test_rnn_size, test_input_data, test_vocab_size, test_embed_dim)
# Check name
assert hasattr(final_state, 'name'), \
'Final state doesn\'t have the "name" attribute. Are you using build_rnn?'
assert final_state.name == 'final_state:0', \
'Final state doesn\'t have the correct name. Found the name {}. Are you using build_rnn?'.format(final_state.name)
# Check Shape
assert logits.get_shape().as_list() == test_input_data_shape + [test_vocab_size], \
'Outputs has wrong shape. Found shape {}'.format(logits.get_shape())
assert final_state.get_shape().as_list() == [test_rnn_layer_size, 2, None, test_rnn_size], \
'Final state wrong shape. Found shape {}'.format(final_state.get_shape())
_print_success_message()
def test_get_tensors(get_tensors):
test_graph = tf.Graph()
with test_graph.as_default():
test_input = tf.placeholder(tf.int32, name='input')
test_initial_state = tf.placeholder(tf.int32, name='initial_state')
test_final_state = tf.placeholder(tf.int32, name='final_state')
test_probs = tf.placeholder(tf.float32, name='probs')
input_text, initial_state, final_state, probs = get_tensors(test_graph)
# Check correct tensor
assert input_text == test_input,\
'Test input is wrong tensor'
assert initial_state == test_initial_state, \
'Initial state is wrong tensor'
assert final_state == test_final_state, \
'Final state is wrong tensor'
assert probs == test_probs, \
'Probabilities is wrong tensor'
_print_success_message()
def test_pick_word(pick_word):
with tf.Graph().as_default():
test_probabilities = np.array([0.1, 0.8, 0.05, 0.05])
test_int_to_vocab = {word_i: word for word_i, word in enumerate(['this', 'is', 'a', 'test'])}
pred_word = pick_word(test_probabilities, test_int_to_vocab)
# Check type
assert isinstance(pred_word, str),\
'Predicted word is wrong type. Found {} type.'.format(type(pred_word))
# Check word is from vocab
assert pred_word in test_int_to_vocab.values(),\
'Predicted word not found in int_to_vocab.'
_print_success_message()