-
Notifications
You must be signed in to change notification settings - Fork 1
/
torch_msbg.py
686 lines (607 loc) · 24.8 KB
/
torch_msbg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
"""
An FIR-based torch implementation of approximated MSBG hearing loss model
"""
import json
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from scipy.fftpack import fft
from scipy.interpolate import interp1d
from scipy.signal import ellip, firwin, firwin2, freqz
from clarity.evaluator.msbg.msbg_utils import (
DF_ED,
FF_ED,
HZ,
ITU_ERP_DRP,
ITU_HZ,
MIDEAR,
)
EPS = 1e-8
# old msbg matlab
# set RMS so that peak of output file so that no clipping occurs, set so that
# equiv0dBfileSPL > 100dB for LOUD input files
ref_RMSdB = -31.2
calib_dBSPL = (
65 # what RMS of INPUT speech file translates to in real world (unweighted)
)
equiv0dBfileSPL = (
calib_dBSPL - ref_RMSdB
) # what 0dB file signal would translate to in dB SPL: constant for cochlear_simulate function
# clarity msbg
equiv0dBSPL = 100
ahr = 20
equiv_0dB_SPL = equiv0dBSPL + ahr
def generate_key_percent(signal, thr_dB, winlen):
if winlen != np.floor(winlen):
winlen = np.int(np.floor(winlen))
print("\nGenerate_key_percent: \t Window length must be integer")
siglen = len(signal)
expected = thr_dB.copy() # expected threshold
non_zero = 10.0 ** ((expected - 30) / 10) # put floor into histogram distribution
nframes = 0
totframes = np.int(np.floor(siglen / winlen))
every_dB = np.zeros(totframes)
for ix in range(totframes):
start = ix * winlen
this_sum = np.sum(signal[start : start + winlen] ** 2) # sum of squares
every_dB[nframes] = 10 * np.log10(non_zero + this_sum / winlen)
nframes += 1
used_thr_dB = expected.copy()
# histogram should produce a two-peaked curve: thresh should be set in valley
# between the two peaks, and set a bit above that, as it heads for main peak
frame_idx = np.where(every_dB >= expected)[0]
valid_frames = len(frame_idx)
key = np.zeros(valid_frames * winlen, dtype=np.int)
# convert frame numbers into indices for signal
for ix in range(valid_frames):
key[ix * winlen : ix * winlen + winlen] = np.arange(
frame_idx[ix] * winlen, frame_idx[ix] * winlen + winlen, dtype=np.int
)
return key, used_thr_dB
def measure_rms(signal, sr, dB_rel_rms):
"""Measures toatal power of all 10 msec frams that are above a user-specified threshold
Args:
signal: input signal
sr: sampling rate
dB_rel_rms: threshold relative to first-stage rms (if it is made of a 2*1 array, second value over rules.)
only single value supported currently
Returns:
tuple: The percentage of frames that are required to be tracked for measuring RMS (useful when DR compression
changes histogram shape)
"""
win_secs = 0.01
# first RMS is of all signal
first_stage_rms = np.sqrt(np.mean(signal**2))
# use this RMS to generate key threshold to more accurate RMS
key_thr_dB = np.max([20 * np.log10(first_stage_rms) + dB_rel_rms, -80])
key, used_thr_dB = generate_key_percent(
signal, key_thr_dB, np.int(np.round(win_secs * sr))
)
# active = 100.0 * len(key) / len(signal)
rms = np.sqrt(np.mean(signal[key] ** 2))
rel_dB_thresh = used_thr_dB - 20 * np.log10(rms)
return rms, key, rel_dB_thresh
def makesmearmat3(rl, ru, sr):
fftsize = 512
nyquist = np.int(fftsize // 2)
fnor = audfilt(1, 1, nyquist, sr)
fwid = audfilt(rl, ru, nyquist, sr)
fnext = np.hstack([fnor, np.zeros([nyquist, nyquist // 2])])
for i in np.arange(nyquist // 2 + 1, nyquist + 1, dtype=np.int):
fnext[i - 1, nyquist : np.min([2 * i - 1, 3 * nyquist // 2])] = np.flip(
fnor[
i - 1, np.max([1, 2 * i - 3 * nyquist // 2]) - 1 : (2 * i - nyquist - 1)
]
)
fsmear = np.linalg.lstsq(fnext, fwid)[
0
] # https://stackoverflow.com/questions/33559946/numpy-vs-mldivide-matlab-operator
fsmear = fsmear[:nyquist, :]
return fsmear
def audfilt(rl, ru, size, sr):
"""Calculate an auditory filter array
Args:
rl: broadening factor on the lower side
ru: broadening factor on the upper side
size:
sr:
Returns:
np.ndarray
"""
aud_filter = np.zeros([size, size])
aud_filter[0, 0] = 1.0
aud_filter[0, 0] = aud_filter[0, 0] / ((rl + ru) / 2)
g = np.zeros(size)
for i in np.arange(2, size + 1, 1, dtype=np.int):
fhz = (i - 1) * sr / (2 * size)
erbhz = 24.7 * ((fhz * 0.00437) + 1)
pl = 4 * fhz / (erbhz * rl)
pu = 4 * fhz / (erbhz * ru)
j = np.arange(1, i, dtype=np.int)
g[j - 1] = np.abs((i - j) / (i - 1))
aud_filter[i - 1, j - 1] = (1 + (pl * g[j - 1])) * np.exp(-pl * g[j - 1])
j = np.arange(i, size + 1, dtype=np.int)
g[j - 1] = np.abs((i - j) / (i - 1))
aud_filter[i - 1, j - 1] = (1 + (pu * g[j - 1])) * np.exp(-pu * g[j - 1])
aud_filter[i - 1, :] = aud_filter[i - 1, :] / (erbhz * (rl + ru) / (2 * 24.7))
return aud_filter
class MSBGHearingModel(nn.Module):
def __init__(
self,
audiogram,
audiometric,
sr=44100,
spl_cali=True,
src_posn="ff",
kernel_size=1025,
device=None,
):
super().__init__()
self.sr = sr
self.spl_cali = spl_cali
self.src_posn = src_posn
self.kernel_size = kernel_size
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
# settings for audiogram
audiogram = np.array(audiogram)
# audiometric = np.array([250, 500, 1000, 2000, 4000, 6000])
audiometric = np.array(audiometric)
audiogram = np.append(audiogram, audiogram[-1])
audiometric = np.append(audiometric, 16000)
audiogram = np.append(audiogram[0], audiogram)
audiometric = np.append(125, audiometric)
audiogram_cfs = (
np.array([0.125, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 14, 16])
* 1000
)
interpf = interp1d(audiometric, audiogram)
audiogram = interpf(audiogram_cfs)
# settings for src_to_cochlea_filt
if src_posn == "ff":
src_corrn = FF_ED
elif src_posn == "df":
src_corrn = DF_ED
elif src_posn == "ITU":
interf_itu = interp1d(ITU_HZ, ITU_ERP_DRP)
src_corrn = interf_itu(HZ)
nyquist = sr / 2
ixf_useful = np.where(HZ < nyquist)[0]
hz_used = np.append(HZ[ixf_useful], nyquist)
corrn = src_corrn - MIDEAR
interf_corrn = interp1d(HZ, corrn)
last_corrn = interf_corrn(nyquist)
corrn_used = np.append(corrn[ixf_useful], last_corrn)
corrn_forward = 10 ** (0.05 * corrn_used)
corrn_backward = 10 ** (0.05 * -1 * corrn_used)
n_wdw = np.int(2 * np.floor((sr / 16e3) * 368 / 2))
coch_filter_forward = firwin2(
n_wdw + 1, hz_used / nyquist, corrn_forward, window=("kaiser", 4)
)
coch_filter_backward = firwin2(
n_wdw + 1, hz_used / nyquist, corrn_backward, window=("kaiser", 4)
)
self.coch_padding = len(coch_filter_forward) // 2
self.coch_filter_forward = (
torch.tensor(coch_filter_forward, dtype=torch.float32, device=self.device)
.unsqueeze(0)
.unsqueeze(1)
)
self.coch_filter_backward = (
torch.tensor(coch_filter_backward, dtype=torch.float32, device=self.device)
.unsqueeze(0)
.unsqueeze(1)
)
# Settings for smearing
catch_up = 105.0 # dBHL where impaired catches up with normal
# recruitment simulation comes with 3 degrees of broadening of auditory filters:
# different set of centre freqs between simulations.
# check and categorise audiogram: currently ALWAYS recruit with x2 broadening:
# it's the smearing that changes
impaired_freqs = np.where((audiogram_cfs >= 2000) & (audiogram_cfs <= 8000))[0]
impaired_degree = np.mean(audiogram[impaired_freqs])
# impairment degree affects smearing simulation, and now recruitment,
# (assuming we do not have too much SEVERE losses present)
current_dir = os.path.dirname(os.path.abspath(__file__))
gtf_dir = os.path.join(current_dir, "../evaluator/msbg/msbg_hparams")
if impaired_degree > 56:
severe_not_moderate = 1
GT4Bankfile = os.path.join(
gtf_dir, "GT4FBank_Brd3.0E_Spaced2.3E_44100Fs.json"
)
bw_broaden_coef = 3
elif impaired_degree > 35:
severe_not_moderate = 0
GT4Bankfile = os.path.join(
gtf_dir, "GT4FBank_Brd2.0E_Spaced1.5E_44100Fs.json"
)
bw_broaden_coef = 2
elif impaired_degree > 15:
severe_not_moderate = -1
GT4Bankfile = os.path.join(
gtf_dir, "GT4FBank_Brd1.5E_Spaced1.1E_44100Fs.json"
)
bw_broaden_coef = 1
else:
severe_not_moderate = -2
GT4Bankfile = os.path.join(
gtf_dir, "GT4FBank_Brd1.5E_Spaced1.1E_44100Fs.json"
)
bw_broaden_coef = 1
# GT4Bank = loadmat(GT4Bankfile)
with open(GT4Bankfile, "r", encoding="utf-8") as fp:
GT4Bank = json.load(fp)
if severe_not_moderate > 0:
fsmear = makesmearmat3(4, 2, sr)
elif severe_not_moderate == 0:
fsmear = makesmearmat3(2.4, 1.6, sr)
elif severe_not_moderate == -1:
fsmear = makesmearmat3(1.6, 1.1, sr)
elif severe_not_moderate == -2:
fsmear = makesmearmat3(1.001, 1.001, sr)
self.smear_nfft = 512
self.smear_win_len = 256
self.smear_hop_len = 64
smear_window = (
0.5
- 0.5
* np.cos(
2
* np.pi
* (np.arange(1, self.smear_win_len + 1) - 0.5)
/ self.smear_win_len
)
) / np.sqrt(1.5)
self.smear_window = torch.tensor(
smear_window, dtype=torch.float32, device=self.device
)
self.fsmear = torch.tensor(fsmear, dtype=torch.float32, device=self.device)
""" settings for recruitment"""
cf_expnsn = 0 * np.array(GT4Bank["GTn_CentFrq"])
eq_loud_db = 0 * np.array(GT4Bank["GTn_CentFrq"])
for ix_cfreq in range(len(GT4Bank["GTn_CentFrq"])):
if GT4Bank["GTn_CentFrq"][ix_cfreq] < audiogram_cfs[0]:
cf_expnsn[ix_cfreq] = catch_up / (catch_up - audiogram[0])
elif GT4Bank["GTn_CentFrq"][ix_cfreq] > audiogram_cfs[-1]:
cf_expnsn[ix_cfreq] = catch_up / (catch_up - audiogram[-1])
else:
interp_audiog = interp1d(audiogram_cfs, audiogram)
audiog_cf = interp_audiog(GT4Bank["GTn_CentFrq"][ix_cfreq])
cf_expnsn[ix_cfreq] = catch_up / (catch_up - audiog_cf)
eq_loud_db[ix_cfreq] = catch_up
self.nchans = GT4Bank["NChans"]
self.gtn_denoms = torch.tensor(
GT4Bank["GTn_denoms"], dtype=torch.float32, device=self.device
)
self.gtn_nums = torch.tensor(
GT4Bank["GTn_nums"], dtype=torch.float32, device=self.device
)
self.hp_denoms = torch.tensor(
GT4Bank["HP_denoms"], dtype=torch.float32, device=self.device
)
self.hp_nums = torch.tensor(
GT4Bank["HP_nums"], dtype=torch.float32, device=self.device
)
self.ngamma = int(GT4Bank["NGAMMA"])
self.gtn_delays = GT4Bank["GTnDelays"]
self.start2polehp = GT4Bank["Start2PoleHP"]
erbn_centfrq = GT4Bank["ERBn_CentFrq"]
chan_lpfB = []
chan_lpfA = []
fir_lpf = []
for ixch in range(self.nchans):
fc_envlp = (30 / 40) * np.min([100, erbn_centfrq[ixch]])
chan_lpfB_ch, chan_lpfA_ch = ellip(2, 0.25, 35, fc_envlp / (self.sr / 2))
chan_lpfB.append(chan_lpfB_ch)
chan_lpfA.append(chan_lpfA_ch)
fir_lpf_ch = firwin(
self.kernel_size, fc_envlp / (self.sr / 2), pass_zero="lowpass"
) / np.sqrt(
2
) # sqrt(2) is for the consistency with IIR
fir_lpf.append(fir_lpf_ch)
self.chan_lpfB = torch.tensor(
np.array(chan_lpfB), dtype=torch.float32, device=self.device
)
self.chan_lpfA = torch.tensor(
np.array(chan_lpfA), dtype=torch.float32, device=self.device
)
self.fir_lpf = torch.tensor(
np.array(fir_lpf), dtype=torch.float32, device=self.device
).unsqueeze(1)
self.expnsn_m1 = torch.tensor(
cf_expnsn - 1, dtype=torch.float32, device=self.device
)
# self.envlp_max = torch.tensor(10 ** (0.05 * (eq_loud_db - equiv0dBfileSPL)),
# dtype=torch.float32, device=self.device)
self.envlp_max = torch.tensor(
10 ** (0.05 * (eq_loud_db - equiv_0dB_SPL)),
dtype=torch.float32,
device=self.device,
)
recombination_dB = GT4Bank["Recombination_dB"]
self.recruitmnet_out_coef = torch.tensor(
10 ** (-0.05 * recombination_dB), dtype=torch.float32, device=self.device
)
"settings for FIR Gammatone Filters"
gt_cfreq = np.array(GT4Bank["GTn_CentFrq"])
gt_bw = np.array(GT4Bank["ERBn_CentFrq"]) * 1.1019 * bw_broaden_coef
self.padding = (self.kernel_size - 1) // 2
n_lin = torch.linspace(
0, self.kernel_size - 1, self.kernel_size, device=self.device
)
window_ = 0.54 - 0.46 * torch.cos(2 * np.pi * n_lin / self.kernel_size)
n_ = (
torch.arange(
0, self.kernel_size, dtype=torch.float32, device=self.device
).view(1, -1)
/ self.sr
)
center_hz = (
torch.tensor(
gt_cfreq / self.sr, dtype=torch.float32, device=self.device
).view(-1, 1)
* self.sr
)
f_times_t = torch.matmul(center_hz, n_)
carrier = torch.cos(2 * np.pi * f_times_t)
carrier_sin = torch.sin(2 * np.pi * f_times_t)
band_hz = (
torch.tensor(gt_bw / self.sr, dtype=torch.float32, device=self.device).view(
-1, 1
)
* self.sr
)
b_times_t = torch.matmul(band_hz, n_)
kernel = torch.pow(n_, 4 - 1) * torch.exp(-2 * np.pi * b_times_t)
gammatone = kernel * carrier
self.peaks = torch.argmax(gammatone, dim=1) # for gammatone delay calibration
gammatone_sin = kernel * carrier_sin
filters = (gammatone * window_).view(self.nchans, 1, self.kernel_size)
# To get the normalised amplitude
filters = filters.squeeze(1).cpu().numpy()
fr_max = np.zeros(self.nchans)
for i in range(self.nchans):
fr = np.abs(fft(filters[i]))
fr_ = fr[: int(self.kernel_size / 2)]
fr_max[i] = np.max(fr_)
amp = torch.tensor(fr_max, dtype=torch.float32, device=self.device)
gammatone = gammatone / amp.unsqueeze(1)
gammatone_sin = gammatone_sin / amp.unsqueeze(1)
self.gt_fir = (gammatone * window_).view(self.nchans, 1, self.kernel_size)
self.gt_fir_sin = (gammatone_sin * window_).view(
self.nchans, 1, self.kernel_size
)
"settings for spl calibration"
win_sec = 0.01
self.db_relative_rms = -12
self.win_len = int(self.sr * win_sec)
def measure_rms(self, wav):
bs = wav.shape[0]
ave_rms = torch.sqrt(torch.mean(wav**2, dim=1) + EPS)
thr_db = 20 * torch.log10(ave_rms + EPS) + self.db_relative_rms
num_frames = wav.shape[1] // self.win_len
wav_reshaped = torch.reshape(
wav[:, : num_frames * self.win_len], [bs, num_frames, self.win_len]
)
db_frames = 10 * torch.log10(torch.mean(wav_reshaped**2, dim=2) + EPS)
key_frames = (
torch.where(
db_frames > thr_db.unsqueeze(1),
torch.tensor(1, dtype=torch.float32, device=self.device),
torch.tensor(0, dtype=torch.float32, device=self.device),
)
.unsqueeze(-1)
.repeat([1, 1, self.win_len])
.reshape([bs, num_frames * self.win_len])
)
key_rms = torch.sqrt(
torch.sum((wav[:, : num_frames * self.win_len] * key_frames) ** 2, dim=1)
/ (torch.sum(key_frames, dim=1) + EPS)
+ EPS
)
return key_rms.unsqueeze(1)
def calibrate_spl(self, x):
if self.spl_cali:
levelreFS = 10 * torch.log10(torch.mean(x**2, dim=1, keepdim=True) + EPS)
leveldBSPL = equiv_0dB_SPL + levelreFS
rms = self.measure_rms(x)
change_dB = leveldBSPL - (equiv_0dB_SPL + 20 * torch.log10(rms + EPS))
x = x * 10 ** (0.05 * change_dB)
return x
def src_to_cochlea_filt(self, x, coch_filter):
return F.conv1d(x, coch_filter, padding=self.coch_padding)
def smear(self, x):
"""Padding issue needs to be worked out"""
length = x.shape[2]
x = x.view(x.shape[0], x.shape[2])
spec = torch.stft(
x,
n_fft=self.smear_nfft,
hop_length=self.smear_hop_len,
win_length=self.smear_win_len,
window=self.smear_window,
)
power = torch.square(spec[:, : self.smear_nfft // 2, :, 0]) + torch.square(
spec[:, : self.smear_nfft // 2, :, 1]
)
mag = torch.sqrt(power + EPS).unsqueeze(-1)
phasor = spec[:, : self.smear_nfft // 2, :, :] / (mag + EPS)
smeared_power = (
torch.matmul(power.transpose(-1, -2), self.fsmear.transpose(0, 1))
.transpose(-1, -2)
.unsqueeze(-1)
+ EPS
)
smeared_power = torch.clamp(smeared_power, min=0)
smeared_spec_nyquist = torch.sqrt(smeared_power + EPS) * phasor
smeared_spec_mid = torch.zeros(
[smeared_power.shape[0], 1, smeared_power.shape[2], 2],
dtype=torch.float32,
device=self.device,
)
smeared_spec = torch.cat([smeared_spec_nyquist, smeared_spec_mid], dim=1)
smeared_wav = torch.istft(
smeared_spec,
n_fft=self.smear_nfft,
hop_length=self.smear_hop_len,
win_length=self.smear_win_len,
window=self.smear_window,
length=length,
)
return smeared_wav.unsqueeze(1)
def recruitment(self, x):
nsamps = x.shape[-1]
ixhp = 0
outputs = []
for ixch in range(self.nchans):
# Gammaton filtering
pass_n = torchaudio.functional.lfilter(
x, self.gtn_denoms[ixch, :], self.gtn_nums[ixch, :]
)
for _ixg in range(self.ngamma - 1):
pass_n = torchaudio.functional.lfilter(
pass_n, self.gtn_denoms[ixch, :], self.gtn_nums[ixch, :]
)
dly = self.gtn_delays[ixch]
pass_n_cali = torch.zeros_like(pass_n)
pass_n_cali[:, :, : nsamps - dly] = pass_n[:, :, dly:nsamps]
# Tail control
if ixch >= self.start2polehp:
ixhp += 1
pass_n_cali = torchaudio.functional.lfilter(
pass_n_cali, self.hp_denoms[ixhp - 1, :], self.hp_nums[ixhp - 1, :]
)
# Get the envelope
envlp_out = torchaudio.functional.lfilter(
torch.abs(pass_n_cali), self.chan_lpfA[ixch, :], self.chan_lpfB[ixch, :]
)
envlp_out = torch.flip(envlp_out, dims=[-1])
envlp_out = torchaudio.functional.lfilter(
envlp_out, self.chan_lpfA[ixch, :], self.chan_lpfB[ixch, :]
)
envlp_out = torch.flip(envlp_out, dims=[-1])
envlp_out = torch.clamp(envlp_out, min=EPS, max=self.envlp_max[ixch])
gain = (envlp_out / self.envlp_max[ixch]) ** self.expnsn_m1[ixch]
outputs.append(gain * pass_n_cali)
y = torch.stack(outputs, dim=-1).sum(dim=-1)
y = y * self.recruitmnet_out_coef
return y
def recruitment_fir(self, x):
nsamps = x.shape[-1]
x = x.repeat([1, self.nchans, 1])
real = F.conv1d(
x, self.gt_fir, bias=None, padding=self.padding, groups=self.nchans
)
imag = F.conv1d(
x, self.gt_fir_sin, bias=None, padding=self.padding, groups=self.nchans
)
real_cali = torch.zeros_like(real)
imag_cali = torch.zeros_like(imag)
for i in range(self.nchans):
real_cali[:, i, : nsamps - self.peaks[i]] = real[
:, i, self.peaks[i] : nsamps
]
imag_cali[:, i, : nsamps - self.peaks[i]] = imag[
:, i, self.peaks[i] : nsamps
]
env = torch.sqrt(real_cali * real_cali + imag_cali * imag_cali + EPS)
env = F.conv1d(
env, self.fir_lpf, bias=None, padding=self.padding, groups=self.nchans
)
env_max = self.envlp_max.unsqueeze(0).unsqueeze(-1).repeat([1, 1, nsamps])
gain = torch.clamp(env / env_max, min=EPS, max=1)
gain = gain ** self.expnsn_m1.unsqueeze(0).unsqueeze(-1).repeat([1, 1, nsamps])
y = torch.sum(gain * real_cali, dim=1, keepdim=True)
y = y * self.recruitmnet_out_coef
return y
def forward(self, x):
x = self.calibrate_spl(x)
x = x.unsqueeze(1)
x = self.src_to_cochlea_filt(x, self.coch_filter_forward)
x = self.smear(x)
# x = self.recruitment(x)
x = self.recruitment_fir(x)
y = self.src_to_cochlea_filt(x, self.coch_filter_backward)
return y.squeeze(1)
class torchloudnorm(nn.Module):
def __init__(
self,
sr=44100,
norm_lufs=-36,
kernel_size=1025,
block_size=0.4,
overlap=0.75,
gamma_a=-70,
):
super().__init__()
self.sr = sr
self.norm_lufs = norm_lufs
self.kernel_size = kernel_size
self.padding = kernel_size // 2
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# for frequency weighting filters - account for the acoustic respose
# of the head and auditory system
pyln_high_shelf_b = np.array([1.53090959, -2.65116903, 1.16916686])
pyln_high_shelf_a = np.array([1.0, -1.66375011, 0.71265753])
# fir high_shelf
w_high_shelf, h_high_shelf = freqz(pyln_high_shelf_b, pyln_high_shelf_a, fs=sr)
freq_high_shelf = np.append(w_high_shelf, sr / 2)
gain_high_shelf = np.append(np.abs(h_high_shelf), np.abs(h_high_shelf)[-1])
fir_high_shelf = firwin2(kernel_size, freq_high_shelf, gain_high_shelf, fs=sr)
# fir high_pass
fc_high_pass = 38.0
fir_high_pass = firwin(kernel_size, fc_high_pass, pass_zero="highpass", fs=sr)
self.high_shelf = (
torch.tensor(fir_high_shelf, dtype=torch.float32, device=self.device)
.unsqueeze(0)
.unsqueeze(1)
)
self.high_pass = (
torch.tensor(fir_high_pass, dtype=torch.float32, device=self.device)
.unsqueeze(0)
.unsqueeze(1)
)
"rms measurement"
self.frame_size = int(block_size * sr)
self.frame_shift = int(block_size * sr * (1 - overlap))
self.unfold = torch.nn.Unfold(
(1, self.frame_size), stride=(1, self.frame_shift)
)
self.gamma_a = gamma_a
def apply_filter(self, x):
x = F.conv1d(x, self.high_shelf, padding=self.padding)
x = F.conv1d(x, self.high_pass, padding=self.padding)
return x
def integrated_loudness(self, x):
x = self.apply_filter(x)
x_unfold = self.unfold(x.unsqueeze(2))
z = (
torch.sum(x_unfold**2, dim=1) / self.frame_size
) # mean square for each frame
el = -0.691 + 10 * torch.log10(z + EPS)
idx_a = torch.where(el > self.gamma_a, 1, 0)
z_ave_gated_a = torch.sum(z * idx_a, dim=1, keepdim=True) / (
torch.sum(idx_a, dim=1, keepdim=True) + 1e-8
)
gamma_r = -0.691 + 10 * torch.log10(z_ave_gated_a + EPS) - 10
idx_r = torch.where(el > gamma_r, 1, 0)
idx_a_r = idx_a * idx_r
z_ave_gated_a_r = torch.sum(z * idx_a_r, dim=1, keepdim=True) / (
torch.sum(idx_a_r, dim=1, keepdim=True) + 1e-8
)
lufs = -0.691 + 10 * torch.log10(z_ave_gated_a_r + EPS) # loudness
return lufs
def normalize_loudness(self, x, lufs):
delta_loudness = self.norm_lufs - lufs
gain = torch.pow(10, delta_loudness / 20)
return gain * x
def forward(self, x):
loudness = self.integrated_loudness(x.unsqueeze(1))
y = self.normalize_loudness(x, loudness)
return y