Skip to content

Latest commit

 

History

History
54 lines (39 loc) · 2.42 KB

Codebook.md

File metadata and controls

54 lines (39 loc) · 2.42 KB

#Codebook

##Variables

As specified by the features_info on the dataset used.

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern:
'-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

  • tBodyAcc-XYZ
  • tGravityAcc-XYZ
  • tBodyAccJerk-XYZ
  • tBodyGyro-XYZ
  • tBodyGyroJerk-XYZ
  • tBodyAccMag
  • tGravityAccMag
  • tBodyAccJerkMag
  • tBodyGyroMag
  • tBodyGyroJerkMag
  • fBodyAcc-XYZ
  • fBodyAccJerk-XYZ
  • fBodyGyro-XYZ
  • fBodyAccMag
  • fBodyAccJerkMag
  • fBodyGyroMag
  • fBodyGyroJerkMag

The set of variables that were estimated from these signals are:

  • mean(): Mean value
  • std(): Standard deviation

Additional vectors obtained by averaging the signals in a signal window sample. These are used on the angle() variable:

  • gravityMean
  • tBodyAccMean
  • tBodyAccJerkMean
  • tBodyGyroMean
  • tBodyGyroJerkMean

Additionally to that we have the variables:

  • Subject : An integer number from 1 to 30 that identifies the subject responsible for those measures.
  • Activity : The name of the activity from where the measures were taken

Note: I did not use the full set of variables available, part of the script goes through subsetting and using only the mean and standard deviation sets.

In the final, tidy, dataset we have the average for each measure that was subsetted, by Subject and Activity.