-
Notifications
You must be signed in to change notification settings - Fork 221
/
Copy patheda_caribou.Rmd
352 lines (273 loc) · 9.55 KB
/
eda_caribou.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# 探索性数据分析-驯鹿迁移 {#eda-caribou}
```{r, include=FALSE}
knitr::opts_chunk$set(
echo = TRUE,
warning = FALSE,
message = FALSE,
fig.showtext = TRUE
)
```
本章我们分析加拿大哥伦比亚林地**驯鹿追踪数据**,数据包含了从1988年到2016年期间260只驯鹿,近250000个位置标签。
## 驯鹿位置跟踪
```{r eda-caribou-1, out.width='85%', fig.align='left', echo=FALSE}
knitr::include_graphics("images/caribou_location.png")
```
大家可以在[这里](https://github.com/tacookson/data/tree/master/caribou-location-tracking)了解数据集的信息,它包含了两个数据集
```{r eda-caribou-2, eval=FALSE}
# devtools::install_github("thebioengineer/tidytuesdayR")
library(tidytuesdayR)
tuesdata <- tidytuesdayR::tt_load("2020-06-23")
# or
# tuesdata <- tidytuesdayR::tt_load(2020, week = 26)
```
```{r eda-caribou-3, message=FALSE, warning=FALSE}
library(tidyverse)
library(lubridate)
library(gganimate)
individuals <- readr::read_csv("./demo_data/caribou/individuals.csv")
locations <- readr::read_csv("./demo_data/caribou/locations.csv")
```
## 驯鹿的身份信息
```{r eda-caribou-4}
individuals %>% glimpse()
```
```{r eda-caribou-5}
individuals %>% count(animal_id)
```
我们发现有重复id的,怎么办?
```{r eda-caribou-6}
individuals %>% janitor::get_dupes(animal_id)
```
```{r eda-caribou-7}
individuals %>%
filter(deploy_on_latitude > 50) %>%
ggplot(aes(x = deploy_on_longitude, y = deploy_on_latitude)) +
geom_point(aes(color = study_site)) #+
# borders("world", regions = "china")
```
## 性别比例
## 每个站点运动最频繁的前10的驯鹿
## 驯鹿的活动信息
简单点说,就是哪个驯鹿在什么时间出现在什么地方
```{r eda-caribou-8}
locations %>%
ggplot(aes(x = longitude, y = latitude)) +
geom_point(aes(color = study_site))
```
## 被追踪最多次的驯鹿的轨迹
```{r eda-caribou-9}
top_animal_ids <-
count(locations, animal_id, sort = TRUE) %>%
slice(1:10) %>%
pull(animal_id)
locations %>%
filter(animal_id %in% top_animal_ids) %>%
arrange(animal_id, timestamp) %>%
group_by(animal_id) %>%
mutate(measurement_n = row_number()) %>%
ggplot(aes(
x = longitude,
y = latitude,
color = animal_id,
alpha = measurement_n
)) +
geom_point(show.legend = FALSE, size = 1) +
geom_path(show.legend = FALSE, size = 1) +
# scale_color_manual(values = ) +
theme_minimal() +
theme(
plot.title = element_text(size = 20, face = "bold"),
plot.subtitle = element_text(size = 10),
text = element_text(color = "White"),
panel.grid.minor = element_blank(),
panel.grid.major = element_line(color = "gray60", size = 0.05),
plot.background = element_rect(fill = "gray10"),
axis.text = element_text(color = "white")
) +
labs(
x = "\nLongitude", y = "Latitude\n",
title = "Caribou movement tracking",
subtitle = "Latitude and longitude locations of the animals with the highest number of measurements\n",
caption = "Tidy Tuesday: Caribou Location Tracking"
)
```
## 某一只驯鹿的轨迹
```{r eda-caribou-10}
locations %>%
dplyr::filter(animal_id %in% c("QU_car143")) %>%
dplyr::arrange(animal_id, timestamp) %>%
dplyr::group_by(animal_id) %>%
dplyr::mutate(measurement_n = row_number()) %>%
ggplot(aes(
x = longitude,
y = latitude,
color = measurement_n,
alpha = measurement_n
)) +
geom_point(show.legend = FALSE, size = 1) +
geom_path(show.legend = FALSE, size = 1) +
scale_color_gradient(low = "white", high = "firebrick3") +
theme_minimal() +
theme(
plot.title = element_text(size = 20, face = "bold"),
plot.subtitle = element_text(size = 10),
text = element_text(color = "White"),
panel.grid.minor = element_blank(),
panel.grid.major = element_line(color = "gray60", size = 0.05),
plot.background = element_rect(fill = "gray10"),
axis.text = element_text(color = "white")
) +
labs(
x = "\nLongitude", y = "Latitude\n",
title = "QU_car143 movement tracking",
subtitle = "Latitude and longitude locations of the animals with the highest number of measurements\n Ligher colors indicate earlier measurements",
caption = "Tidy Tuesday: Caribou Location Tracking"
)
```
## 选择某个驯鹿,查看他的活动轨迹
```{r eda-caribou-11}
example_animal <- locations %>%
dplyr::filter(animal_id == sample(animal_id, 1)) %>%
dplyr::arrange(timestamp)
example_animal
```
```{r eda-caribou-12, eval=FALSE}
"2010-03-28 21:00:44" %>% lubridate::as_date()
"2010-03-28 21:00:44" %>% lubridate::as_datetime()
"2010-03-28 21:00:44" %>% lubridate::quarter()
```
```{r eda-caribou-13}
example_animal %>%
dplyr::mutate(date = lubridate::as_date(timestamp)) %>%
ggplot(aes(x = longitude, y = latitude, color = date)) +
geom_path()
```
```{r eda-caribou-14}
example_animal %>%
dplyr::mutate(quarter = lubridate::quarter(timestamp) %>% as.factor()) %>%
ggplot(aes(x = longitude, y = latitude, color = quarter)) +
geom_path() +
facet_wrap(vars(quarter)) +
labs(title = "A little reindeer ran around")
```
## 季节模式
看看驯鹿夏季和冬季运动模式,这段代码来自gkaramanis
```{r eda-caribou-15}
movement <- locations %>%
filter(study_site != "Hart Ranges") %>%
mutate(
season = fct_rev(season),
longitude = round(longitude, 2),
latitude = round(latitude, 2)
) %>%
distinct(season, study_site, longitude, latitude)
ggplot(movement) +
geom_point(aes(longitude, latitude,
group = study_site,
colour = study_site
), size = 0.1) +
gghighlight::gghighlight(
unhighlighted_params = list(colour = "grey70"), use_direct_label = FALSE
) +
scale_colour_manual(
values = c("#ffe119", "#4363d8", "#f58231", "#e6194B", "#800000", "#000075", "#f032e6", "#3cb44b"),
breaks = c("Graham", "Scott", "Moberly", "Burnt Pine", "Kennedy", "Quintette", "Narraway")
) +
guides(colour = guide_legend(title = "Herd", override.aes = list(size = 3))) +
coord_fixed(ratio = 1.5) +
facet_wrap(vars(season), ncol = 2) +
# labs(
# title = "Migration patterns of Northern Caribou\nin the South Peace of British Columbia",
# subtitle = str_wrap("In summer, most caribou migrate towards the central core of the Rocky Mountains where they use alpine and subalpine habitat. The result of this movement to the central core of the Rocky Mountains is that some of the east side herds can overlap with west side herds during the summer.", 100),
# caption = str_wrap("Source: Seip DR, Price E (2019) Data from: Science update for the South Peace Northern Caribou (Rangifer tarandus caribou pop. 15) in British Columbia. Movebank Data Repository. https://doi.org/10.5441/001/1.p5bn656k | Graphic: Georgios Karamanis", 70)
# ) +
theme_void() +
theme(
legend.position = c(0.5, 0.6),
legend.text = element_text(size = 11, colour = "#F9EED9"),
legend.title = element_text(size = 16, hjust = 0.5, colour = "#F9EED9"),
panel.spacing.x = unit(3, "lines"),
plot.margin = margin(20, 20, 20, 20),
plot.background = element_rect(fill = "#7A6A4F", colour = NA),
strip.text = element_text(colour = "#F9EED9", size = 18),
plot.title = element_text(colour = "white", size = 20, hjust = 0, lineheight = 1),
plot.subtitle = element_text(colour = "white", size = 12, hjust = 0, lineheight = 1, margin = margin(10, 0, 50, 0)),
plot.caption = element_text(colour = "grey80", size = 7, hjust = 1, margin = margin(30, 0, 10, 0))
)
```
## 迁移速度
```{r eda-caribou-16}
location_with_speed <- locations %>%
dplyr::group_by(animal_id) %>%
dplyr::mutate(
last_longitude = lag(longitude),
last_latitude = lag(latitude),
hours = as.numeric(difftime(timestamp, lag(timestamp), units = "hours")),
km = geosphere::distHaversine(
cbind(longitude, latitude), cbind(last_longitude, last_latitude)
) / 1000,
speed = km / hours
) %>%
dplyr::ungroup()
location_with_speed
```
```{r eda-caribou-17}
location_with_speed %>%
ggplot(aes(x = speed)) +
geom_histogram() +
scale_x_log10()
```
## 动态展示
```{r eda-caribou-18, eval=FALSE}
library(gganimate)
example_animal %>%
ggplot(aes(x = longitude, y = latitude)) +
geom_point() +
transition_time(time = timestamp) +
shadow_mark(past = TRUE) +
labs(title = "date is {frame_time}")
```
## 更多
```{r eda-caribou-19, eval=FALSE}
df <- locations %>%
dplyr::filter(
study_site == "Graham",
year(timestamp) == 2002
) %>%
dplyr::group_by(animal_id) %>%
dplyr::filter(
as_date(min(timestamp)) == "2002-01-01",
as_date(max(timestamp)) == "2002-12-31"
) %>%
dplyr::ungroup() %>%
dplyr::mutate(date = as_date(timestamp)) %>%
dplyr::group_by(animal_id, date) %>%
dplyr::summarise(
longitude_centroid = mean(longitude),
latitude_centroid = mean(latitude)
) %>%
dplyr::ungroup() %>%
tidyr::complete(animal_id, date) %>%
dplyr::arrange(animal_id, date) %>%
tidyr::fill(longitude_centroid, latitude_centroid, .direction = "down")
```
```{r eda-caribou-20, eval=FALSE}
p <- df %>%
ggplot(aes(longitude_centroid, latitude_centroid, colour = animal_id)) +
geom_point(size = 2) +
coord_map() +
theme_void() +
theme(legend.position = "none") +
transition_time(time = date) +
shadow_mark(alpha = 0.2, size = 0.8) +
ggtitle("Caribou location on {frame_time}")
p
```
```{r eda-caribou-21, echo = F}
# remove the objects
# rm(list=ls())
rm(example_animal, individuals, location_with_speed, locations, movement, top_animal_ids)
```
```{r eda-caribou-22, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```