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Abstract. Automatic description of multimedia content heavily relies
on the ability to discover a structure in such data. As our current focus
is given to efficient multimedia indexing, we are mainly interested in
discovery and segmentation of foreground objects from the background
and their respective description or classification.
Although many approaches based on Convolution Neural Networks have
emerged lately, they are usually executed on all frames from the me-
dia separately which is, to our belief, wasteful and poorly scalable. On
the other hand, methods based on visual Simultaneous Localisation and
Mapping (visual SLAM) utilise the temporal structure of the motion
picture to extract at first a model of the environment and objects in the
scene and later pass these models to methods for object description.
In this paper, we will discuss the first two parts of the visual SLAM –
motion tracking and segmentation. While many approaches impose strict
restrictions in the segmentation phase to filter motion tracking outliers,
we introduce restrictions to the motion tracking itself. Such approach
enables us to use off-the-shelf semi-supervised classification methods in
the motion segmentation phase without explicit outlier filtering.
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1 Introduction

With the ever-increasing amount of multimedia content, higher resolution and
framerate, the requirement for faster multimedia description approaches is more
significant than ever. Although the CPU power is more readily available and
the image processing tools utilise GPUs much better, these advances are com-
monly used in favour of devising more complex processing methods rather than
improving the existing approaches.

The Simultaneous Localisation and Mapping (SLAM) approach, originating
from the computer vision and robotics research [15], is on the other hand aimed
at rapid scene reconstruction that allows using high-level scene and object in-
formation for successive description. Also, such object description does not have
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to be carried out on each frame, opposed to the approach of convolutional neu-
ral networks, such as [26]. In an ideal case, the reconstructed objects can be
described once and simply tracked throughout the following frames.

To this end, SLAM proposes a pipeline consisting of a motion tracking, mo-
tion segmentation and 3D reconstruction to obtain the visual representation of
individual objects from consecutive frames and map them into a 3D space. In
this paper, we will focus on the first two phases of the SLAM pipeline, as 2D
reconstruction is currently sufficient for our goal, whereas 3D reconstruction of
static objects [13, 19, 20, 21, 22, 33] and 3D tracking of dynamic objects [2, 11,
24, 25, 34] is extensively studied.

The major challenge is that we deploy visual SLAM in dynamic environments.
Therefore, in the motion segmentation step, we need to account for the fact,
that not only is the camera moving through the environment, but also that
the individual objects are moving independently. As a result, nor the approach
based on 8-point correspondency under epipolar geometry discussed in [16] nor
the 5-point relative pose resolver [23] can be used directly. They may be utilised
to derive the motion of camera (ego-motion) once we know that the segmented
objects are static, but we have not segmented the objects yet.

Moreover, the objects may not be rigid. In such cases, the movement of
individual objects cannot be modelled by a simple homography from one frame
to another. On the other hand, interest point matching based solely on the
similarity of their description tends to produce many outliers that would need
to be filtered.

In our approach, we propose a method that circumvents the outliers directly
in the interest point matching. To this end, we still depend heavily on the sim-
ilarity of interest point descriptions, but we propose a limitation on a position
of the point of interest in the incoming frame. The proposed point matching is,
therefore, expected to be faster as well. Consequently, this allows much higher
flexibility in selection of the motion segmenter. In our approach, we picked a
semi-supervised classifier with cluster regularisation [31].

In the next section, we discuss motion tracking algorithms and propose a
significant improvement of our motion tracking algorithm in Section 3. Semi-
supervised classifier for motion segmentation is discussed in Section 4. Finally,
preliminary results of the motion segmentation based on our motion tracker are
presented in Section 5.

2 Motion Tracking

As RGB video content provides no additional information than colour intensities
of the individual pixels, motion tracking is estimated by tracking of small pixel
patches from one frame to another. The comparison is carried out on a single
channel representing luminance of the pixel (as defined in [10]) to simplify the
search for a corresponding patch in the consecutive frame. If the similarity of the
patches is based directly on the luminance values from the pictures, the detected
apparent motion of these patches is known as optical flow.
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The optical flow can be then detected on all pixels and their corresponding
patches. This results in a dense optical flow [8], which may be unstable on larger
areas without visible structure and is rather expensive to compute.

To increase the stability of optical flow approaches, Shi and Tomasi proposed
in [30] a method of selecting only the points from the first considered frame that
are supposed to be easily traceable – for example surrounded by significant lu-
minance changes. In combination with an iterative image registration technique
proposed by Lucas and Kanade [18] that utilises an image pyramid and an it-
erative gradient search method, correspondences of individual proposed points
of interest are gathered even if the spatial distance of the new patch is greater
than one pixel.

This combination of feature detector and optical flow detector is commonly
referred to as a Kanade-Lucas-Tomasi feature tracker and present a viable al-
ternative for image sequences with subtle motion and, therefore, short motion
vectors as a result. The key issue with this tracker is, however, that the algo-
rithm tries to get correspondences for all points of interest, although these points
may disappear from the frame or be occluded. Such misdetections need to be
filtered by executing the feature tracker backwards and checking the stability of
the proposed motion vector, which slows down the whole process.

In the report by Torr and Zisserman [32], an alternative approach to feature
tracking is discussed. Instead of discovering matches based on correspondences
of brightness values, they advocate the use of a robust feature descriptor to
capture the local structure around the point of interest in both frames. Matching
the points of interest from one picture to another is then based solely on the
similarity of the interest point descriptions.

Scale-Invariant Feature Transform (SIFT) [17] and Speeded-Up Robust Fea-
tures (SURF) [3] are the two most widely used feature descriptors that include
their own interest point detectors. However, even the improved algorithm is still
computationally expensive. For time-critical applications, points of interest de-
tected by Features from Accelerated Segment Test (FAST) [27] combined with
a Binary Robust Independent Elementary Features (BRIEF) [5] or Binary Ro-
bust Invariant Scalable Keypoints (BRISK) [14] is considered more appropriate.
One such combination is the ORB: Oriented FAST and Rotated BRIEF [28]
which presents a decent alternative to SIFT and SURF with significantly lower
computational requirements. As the GPU accelerated implementation of ORB
is already available in the OpenCV library [4], it represents a perfect feature
extractor for use in real-time applications and also for our research.

To find out corresponding pairs of extracted features, a distance between the
feature descriptions has to be found. SIFT and SURF descriptors are real-valued
and, therefore, Euclidean or Mahalanobis distance is used. Binary descriptors
(BRIEF and BRISK) simplify the distance measurement to a Hamming distance
that can be computed directly with xor and popcnt CPU instructions.

The most serious issue with the matching based solely on the distance of
feature descriptor is that similar points of interest on unrelated positions may be
mistaken with each other, which results in false correspondences. Visual SLAM in
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static environments, therefore, uses robust position estimators based on sample
consensus (such as Random Sample Consensus, RANSAC [9]) to reject matches
not following the picture homography.

Unfortunately, this approach is not viable in dynamic environments, as the
objects moving in the foreground would also violate the homography estimated
from the background and all matches on the foreground objects will be thus
eliminated as outliers.

3 Hierarchical Tracking of Smooth Motion

Taking into account the limitations mentioned in the previous section and the
requirement to process 4K video in real-time, our approach to the extraction of
points of interest and their matching is based on the following concepts:

– Speed is crucial. Therefore GPU accelerated ORB is used for interest point
detection and description. Other operations can be executed on a CPU.

– Matching of the interest points needs to be based on both the point descrip-
tion and the estimation of new feature position in the next frame.

To this end, our current algorithm of real-time interest point matching, mak-
ing an assumption of smooth object motion, consists of following steps:

1. ORB features are computed on three level scale pyramid for the new frame.
2. A fourth virtual level containing a global homography is constructed using

the RANSAC from a top-most layer on the current and the new frame.
3. Matching of interest points from the current frame (filled circles in Fig. 1)

to the new one (dashed circles) is carried out for the three pyramid layers
from the coarsest to the finest:

a) For each feature from the current layer (point a)
an estimation of new position (an) is computed
with respect to the motion of the nearest point
in the layer above (An) and relative previous
motion of the feature (an−1−An−1). Thus, an =
An+an−1−An−1. If the information on previous
motion is not available, an = An.

b) Matching based on the Hamming distance of
the feature descriptors (represented by colour
of circles) is then limited only to neighbourhood
of the estimated position (grey dashed circle).
Considering the situation from Fig. 1, point d
would be selected as the best match, although
point e has smaller Hamming distance (more
similar colour) and point c is closer to expected
position.
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Fig. 1: Feature matching

This algorithm allows us to track motion in complex scenes with many moving
objects without a need to derive the optical flow and with minimal risk of severe
errors in the motion tracking.
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4 Motion Segmentation based on Semi-supervised
Learning

Traditionally used methods for motion segmentation in SLAM classify the gath-
ered points of interest into two groups – static and dynamic – to base the approx-
imation of ego-motion only on the static features. Although we need to allow
more clusters in the data to segment individual objects, the basic principles
of the motion segmentation are the same: to discover a mapping of individual
features to the objects in considered scene and background, respectively.

Considering the state-of-the-art methods that are based on the features ex-
tracted from optical flow, only the method by Klappstein [12] can segment
monocular camera recording. This method uses a graph-cut algorithm on gath-
ered motion metric and is, therefore, computationally intensive (as outlined in
[29]) but able to account for some uncertainties in the detected optical flow.
Other methods (such as [1, 6, 7]) require a signal from the stereo camera to
partially reconstruct depth and are, therefore, unsuitable for our purpose.

Our method takes the same underlying assumption as [12] that the individual
objects can be segmented by the position and apparent motion of the points
of interest. However, as the motion vectors detected by our approach already
account for the significant uncertainties in the optical flow, more straightforward
methods of feature space segmentation can be used. Also, our feature space has
a low dimensionality (only the x and y feature coordinates, length of the motion
vector and its direction), which allows us to use off-the-shelf methods directly.

When a history of motion is not available for any point of interest, unsu-
pervised hierarchical clustering has to be used to propose segments representing
individual objects in the scene. However, with the approach discussed in the
previous section, such situations should not occur elsewhere than at the process-
ing of the first two frames. During the processing of remaining frames, points
of interest retain their label from frame to frame. Therefore, during the analysis
of the following frame of the media, the labelled data from the previous one are
used for training a semi-supervised classifier.

For motion segmentation, we propose to use the Semi-supervised Classifier
with Cluster Regularisation [31] that provides a good generalisation even for
small sets of labelled training data.

In our setup, we use a k-means clustering algorithm to provide an initial
clustering. Based on these clusters, a pairwise penalty based on correlation is
computed to disallow the boundary of final labels in high-density regions. Next,
the unlabelled interest points are assigned an initial pseudo-label based on the
available labels in the clusters. The computed pairwise penalty is also used to
find the ten nearest neighbours of each point of interest.

For the classification, a neural network with one hidden layer is trained. The
hidden layer consists of as many neurons as is the number of initial clusters, and
output neurons correspond to the considered final labels. The output activation
function is softmax, and the minimised loss function is cross-entropy.
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5 Experimental Evaluation & Future Work

For our experimental evaluation, we prepared a set of RAW 4K videos (previews
available at https://archive.org/details/motion_ds) that contain one or
two objects with distinct colour on a bright background. This allowed us to
extract the ground truth of pixel-to-object correspondence easily. For evaluation,
the video was compressed using the H.264 codec to simulate a real-world scenario.

As our main goal is to validate the approach of motion segmentation based
on our interest point matching approach and a semi-supervised classification, we
devised an experiment concerning the quality of labels proposed by the classifier
depending on the delay between classifier training (based on the ground truth
data) and testing. To eliminate the possible dependency of the measures on the
visual qualities of an individual frame, we repeated the experiment for the first
five frames of the video separately.
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Fig. 2: Accuracy and specificity of the semi-supervised classifier with respect
to the selection of training frame. File available at: https://archive.org/

details/motion_ds/handheld_blurbg.mp4.

Figure 2 indicates that classifiers trained on later frames tend to have higher
accuracy and specificity, but in general, the differences between classifiers trained
in different frames are insignificant, which we have confirmed by the Friedman
test. This behaviour is similar in all considered multimedia files and may be
attributed to the fact, that the used codec introduces significant compression
artefacts on the first frame (that uses only intraframe compression with limited
bandwidth). Later frames have more information available and thus seem to be
more stable for interest point detection.

Although motion detection based on optical flow in multimedia and motion
segmentation are not novel, in this paper, we have presented a new approach in
both areas that ultimately lead to the ability of real-time motion segmentation
on 4K video with promising results. While the detection and tracking of 500
points on a Xeon E3-1230 CPU with the Kanade-Lucas-Tomasi algorithm takes

https://archive.org/details/motion_ds
https://archive.org/details/motion_ds/handheld_blurbg.mp4
https://archive.org/details/motion_ds/handheld_blurbg.mp4
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242 ms per frame, our approach on CPU only takes 95 ms. When nVidia 1050
Ti GPU is utilised, processing of a single 4K frame takes only 35 ms on average,
which is just enough for real-time processing of 25 fps media.

In future, we intend to transfer all data-intensieve operations to a GPU and
more importantly, to validate our approach on nonsynthetic datasets.
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