-
Notifications
You must be signed in to change notification settings - Fork 0
/
backyard_flyer.py
243 lines (206 loc) · 8.04 KB
/
backyard_flyer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import argparse
import time
from enum import Enum
import numpy as np
from udacidrone import Drone
from udacidrone.connection import MavlinkConnection, WebSocketConnection # noqa: F401
from udacidrone.messaging import MsgID
class States(Enum):
MANUAL = 0
ARMING = 1
TAKEOFF = 2
WAYPOINT = 3
LANDING = 4
DISARMING = 5
class BackyardFlyer(Drone):
def __init__(self, connection):
super().__init__(connection)
self.target_position = np.array([0.0, 0.0, 0.0])
self.all_waypoints = []
self.in_mission = True
self.check_state = {}
# initial state
self.flight_state = States.MANUAL
# initialize waypoints to navigate
self.all_waypoints = self.calculate_box()
# TODO: Register all your callbacks here
self.register_callback(MsgID.LOCAL_POSITION,
self.local_position_callback)
self.register_callback(MsgID.LOCAL_VELOCITY, self.velocity_callback)
self.register_callback(MsgID.STATE, self.state_callback)
def local_position_callback(self):
"""
TODO: Implement this method
This triggers when `MsgID.LOCAL_POSITION` is received and self.local_position contains new data
"""
if self.flight_state == States.TAKEOFF:
altitude = -1 * self.local_position[2]
if altitude > 0.95 * self.target_position[2]:
# Transition to WAYPOINT state after reaching
# certain altitude after takeoff
self.waypoint_transition()
if self.flight_state == States.WAYPOINT:
# My solution: Working fine
# north_diff = abs(self.local_position[0] - self.target_position[0])
# east_diff = abs(self.local_position[1] - self.target_position[1])
# altitude = -1.0 * self.target_position[2]
# alt_diff = abs(altitude - self.local_position[2])
# # check if a waypoint is reached
# if (north_diff < 0.2 and east_diff < 0.2 and alt_diff < 0.2):
# # once at a waypoint, treat as if the
# # quad rotor just took off from ground
# self.flight_state = States.TAKEOFF
# Solution
if self.flight_state == States.WAYPOINT:
if np.linalg.norm(self.target_position[:2] - self.local_position[:2]) < 1.0:
self.flight_state = States.TAKEOFF
def velocity_callback(self):
"""
TODO: Implement this method
This triggers when `MsgID.LOCAL_VELOCITY` is received and self.local_velocity contains new data
"""
if self.flight_state == States.LANDING:
if abs(self.local_position[2]) < 0.1:
self.disarming_transition()
def state_callback(self):
"""
TODO: Implement this method
This triggers when `MsgID.STATE` is received and self.armed and self.guided contain new data
"""
if not self.in_mission:
return
if self.flight_state == States.MANUAL:
self.arming_transition()
if self.flight_state == States.ARMING:
self.takeoff_transition()
if self.flight_state == States.DISARMING:
self.manual_transition()
def calculate_box(self):
"""TODO: Fill out this method
1. Return waypoints to fly following vertices of a square
1--------2
| |
| |
0--------3
"""
box = []
# add first visted point last since pop() is
# LIFO -- Last In First Out
box.append([0, 0, 3]) # 0 (last waypoint)
box.append([0, 10, 3]) # 3
box.append([10, 10, 3]) # 2
box.append([10, 0, 3]) # 1 (first waypoint)
return box
def arming_transition(self):
"""TODO: Fill out this method
1. Take control of the drone
2. Pass an arming command
3. Set the home location to current position
4. Transition to the ARMING state
"""
print("arming transition")
self.take_control()
self.arm()
# set home
global_pos = self.global_position
# Check if a valid global_position attribute is returned.
# If not, print out a message and transition to manual so that
# the invoker can run the script again. This happends sometimes
# and it's a known bug in the FCND quad rotor simulator
if np.sum(global_pos) == 0:
print("Could not set home position since "
"call to self.global_position() returned [0, 0, 0]."
"Please re-run the script.")
self.manual_transition()
print("Setting home postion.")
self.set_home_position(self.global_position[0],
self.global_position[1],
self.global_position[2])
print("Home postion set to (GPS):")
print(self.global_position)
print("Home postion set to (local):")
print(self.local_position)
# set appropriate state
self.flight_state = States.ARMING
def takeoff_transition(self):
"""TODO: Fill out this method
1. Set target_position altitude to 3.0m
2. Command a takeoff to 3.0m
3. Transition to the TAKEOFF state
"""
print("takeoff transition")
target_altitude = 3.0
self.target_position[2] = target_altitude
self.takeoff(target_altitude)
# set appropriate state
self.flight_state = States.TAKEOFF
def waypoint_transition(self):
"""TODO: Fill out this method
1. Command the next waypoint position
2. Transition to WAYPOINT state
"""
print("waypoint transition")
if self.all_waypoints:
waypoint = self.all_waypoints.pop()
print(f'next waypoint: {waypoint}')
north, east, altitude = waypoint
print(north, east, altitude)
self.target_position[0] = north
self.target_position[1] = east
self.target_position[2] = altitude
self.cmd_position(north, east, altitude, 0)
self.flight_state = States.WAYPOINT
else:
self.landing_transition()
def landing_transition(self):
"""TODO: Fill out this method
1. Command the drone to land
2. Transition to the LANDING state
"""
print("landing transition")
self.land()
self.flight_state = States.LANDING
def disarming_transition(self):
"""TODO: Fill out this method
1. Command the drone to disarm
2. Transition to the DISARMING state
"""
print("disarm transition")
self.disarm()
self.flight_state = States.DISARMING
def manual_transition(self):
"""This method is provided
1. Release control of the drone
2. Stop the connection (and telemetry log)
3. End the mission
4. Transition to the MANUAL state
"""
print("manual transition")
self.release_control()
self.stop()
self.in_mission = False
self.flight_state = States.MANUAL
def start(self):
"""This method is provided
1. Open a log file
2. Start the drone connection
3. Close the log file
"""
print("Creating log file")
self.start_log("Logs", "NavLog.txt")
print("starting connection")
self.connection.start()
print("Closing log file")
self.stop_log()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=5760, help='Port number')
parser.add_argument('--host', type=str, default='127.0.0.1',
help="host address, i.e. '127.0.0.1'")
args = parser.parse_args()
conn = MavlinkConnection('tcp:{0}:{1}'.format(
args.host, args.port), threaded=False, PX4=False)
#conn = WebSocketConnection('ws://{0}:{1}'.format(args.host, args.port))
drone = BackyardFlyer(conn)
time.sleep(2)
drone.start()