-
Notifications
You must be signed in to change notification settings - Fork 7
/
run_sts.py
564 lines (542 loc) · 20.9 KB
/
run_sts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
"""
Adapted code from HuggingFace run_glue.py
Author: Ameet Deshpande, Carlos E. Jimenez
"""
import json
import logging
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import transformers
from datasets import load_dataset
from scipy.stats import pearsonr, spearmanr
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PrinterCallback,
Trainer,
)
from transformers import TrainingArguments as HFTrainingArguments
from transformers import default_data_collator, set_seed
from transformers.trainer_utils import get_last_checkpoint
from utils.progress_logger import LogCallback
from utils.sts.dataset_preprocessing import get_preprocessing_function
from utils.sts.modeling_utils import DataCollatorWithPadding, get_model
from utils.sts.triplet_trainer import TripletTrainer
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s: %(message)s"
)
logger = logging.getLogger(__name__)
@dataclass
class TrainingArguments(HFTrainingArguments):
log_time_interval: int = field(
default=15,
metadata={
"help": (
"Log at each `log_time_interval` seconds. "
"Default will be to log every 15 seconds."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached preprocessed datasets or not."},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
train_file: Optional[str] = field(
default=None,
metadata={"help": "A csv or a json file containing the training data."},
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "A csv or a json file containing the validation data."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "A csv or a json file containing the test data."},
)
# Dataset specific arguments
max_similarity: Optional[float] = field(
default=None, metadata={"help": "Maximum similarity score."}
)
min_similarity: Optional[float] = field(
default=None, metadata={"help": "Minimum similarity score."}
)
condition_only: Optional[bool] = field(
default=False, metadata={"help": "Only use condition column."}
)
sentences_only: Optional[bool] = field(
default=False, metadata={"help": "Only use sentences column."}
)
def __post_init__(self):
validation_extension = self.validation_file.split(".")[-1]
if self.train_file is not None:
train_extension = self.train_file.split(".")[-1]
assert train_extension in [
"csv",
"json",
], "`train_file` should be a csv or a json file."
assert (
train_extension == validation_extension
), "`train_file` and `validation_file` should have the same extension."
if self.test_file is not None:
test_extension = self.test_file.split(".")[-1]
assert test_extension in [
"csv",
"json",
], "`test_file` should be a csv or a json file."
assert (
test_extension == validation_extension
), "`test_file` and `validation_file` should have the same extension."
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={
"help": "Path to pretrained model or model identifier from huggingface.co/models"
}
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where do you want to store the pretrained models downloaded from huggingface.co"
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
model_revision: str = field(
default="main",
metadata={
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
objective: Optional[str] = field(
default="mse",
metadata={
"help": "Objective function for training. Options:\
1) regression: Regression task (uses MSELoss).\
2) classification: Classification task (uses CrossEntropyLoss).\
3) triplet: Regression task (uses QuadrupletLoss).\
4) triplet_mse: Regression task uses QuadrupletLoss with MSE loss."
},
)
# What type of modeling
encoding_type: Optional[str] = field(
default="cross_encoder",
metadata={
"help": "What kind of model to choose. Options:\
1) cross_encoder: Full encoder model.\
2) bi_encoder: Bi-encoder model.\
3) tri_encoder: Tri-encoder model."
},
)
# Pooler for bi-encoder
pooler_type: Optional[str] = field(
default="cls",
metadata={
"help": "Pooler type: Options:\
1) cls: Use [CLS] token.\
2) avg: Mean pooling."
},
)
freeze_encoder: Optional[bool] = field(
default=False, metadata={"help": "Freeze encoder weights."}
)
transform: Optional[bool] = field(
default=False,
metadata={"help": "Use a linear transformation on the encoder output"},
)
triencoder_head: Optional[str] = field(
default="hadamard",
metadata={
"help": "Tri-encoder head type: Options:\
1) hadamard: Hadamard product.\
2) transformer: Transformer."
},
)
def main():
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1]),
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
training_args.log_level = "info"
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
if model_args.objective in {"triplet", "triplet_mse"}:
training_args.dataloader_drop_last = True
training_args.per_device_eval_batch_size = 2
logger.info("Training/evaluation parameters %s" % training_args)
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.warning(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
set_seed(training_args.seed)
data_files = {"validation": data_args.validation_file}
if training_args.do_train:
data_files["train"] = data_args.train_file
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
elif training_args.do_predict:
raise ValueError("test_file argument is missing. required for do_predict.")
for key, name in data_files.items():
logger.info(f"load a local file for {key}: {name}")
if data_args.validation_file.endswith(".csv") or data_args.validation_file.endswith(
".tsv"
):
# Loading a dataset from local csv files
raw_datasets = load_dataset(
"csv",
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
elif data_args.validation_file.endswith(".json"):
# Loading a dataset from local json files
raw_datasets = load_dataset(
"json",
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
raise ValueError("validation_file should be a csv or a json file.")
labels = set()
for key in set(raw_datasets.keys()) - {"test"}:
labels.update(raw_datasets[key]["label"])
if data_args.min_similarity is None:
data_args.min_similarity = min(labels)
logger.warning(
f"Setting min_similarity: {data_args.min_similarity}. Override by setting --min_similarity."
)
if data_args.max_similarity is None:
data_args.max_similarity = max(labels)
logger.warning(
f"Setting max_similarity: {data_args.max_similarity}. Override by setting --max_similarity."
)
config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name
else model_args.model_name_or_path,
num_labels=1,
# finetuning_task=None,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model_cls = get_model(model_args)
config.update(
{
"use_auth_token": model_args.use_auth_token,
"model_revision": model_args.model_revision,
"cache_dir": model_args.cache_dir,
"model_name_or_path": model_args.model_name_or_path,
"objective": model_args.objective,
"pooler_type": model_args.pooler_type,
"transform": model_args.transform,
"triencoder_head": model_args.triencoder_head,
}
)
model = model_cls(config=config)
if model_args.freeze_encoder:
for param in model.backbone.parameters():
param.requires_grad = False
sentence1_key, sentence2_key, condition_key, similarity_key = (
"sentence1",
"sentence2",
"condition",
"label",
)
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
padding = False
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
"The max_seq_length passed (%d) is larger than the maximum length for the "
"model (%d). Using max_seq_length=%d."
% (
data_args.max_seq_length,
tokenizer.model_max_length,
tokenizer.model_max_length,
)
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
preprocess_function = get_preprocessing_function(
tokenizer,
sentence1_key,
sentence2_key,
condition_key,
similarity_key,
padding,
max_seq_length,
model_args,
scale=(data_args.min_similarity, data_args.max_similarity)
if model_args.objective in {"mse", "triplet", "triplet_mse"}
else None,
condition_only=data_args.condition_only,
sentences_only=data_args.sentences_only,
)
with training_args.main_process_first(desc="dataset map pre-processing"):
raw_datasets = raw_datasets.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
remove_columns=raw_datasets["train"].column_names,
)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if (
"validation" not in raw_datasets
and "validation_matched" not in raw_datasets
):
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(
len(predict_dataset), data_args.max_predict_samples
)
predict_dataset = predict_dataset.select(range(max_predict_samples))
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(train_dataset)), 3):
input_ids = train_dataset[index]["input_ids"]
logger.info(f"tokens: {tokenizer.decode(input_ids)}")
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
def compute_metrics(output: EvalPrediction):
preds = (
output.predictions[0]
if isinstance(output.predictions, tuple)
else output.predictions
)
preds = np.squeeze(preds)
return {
"mse": ((preds - output.label_ids) ** 2).mean().item(),
"pearsonr": pearsonr(preds, output.label_ids)[0],
"spearmanr": spearmanr(preds, output.label_ids)[0],
}
if data_args.pad_to_max_length:
data_collator = default_data_collator
else:
data_collator = DataCollatorWithPadding(
pad_token_id=tokenizer.pad_token_id,
pad_token_type_id=tokenizer.pad_token_type_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Initialize our Trainer
trainer_cls = (
TripletTrainer
if model_args.objective in {"triplet", "triplet_mse"}
else Trainer
)
trainer = trainer_cls(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
)
trainer.remove_callback(PrinterCallback)
trainer.add_callback(LogCallback)
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
combined = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(eval_dataset=eval_dataset)
max_eval_samples = (
data_args.max_eval_samples
if data_args.max_eval_samples is not None
else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
combined.update(metrics)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", combined)
if training_args.do_train:
metrics = trainer.evaluate(
eval_dataset=train_dataset, metric_key_prefix="train"
)
max_eval_samples = (
data_args.max_eval_samples
if data_args.max_eval_samples is not None
else len(eval_dataset)
)
metrics["train_samples"] = min(max_eval_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", combined)
if training_args.do_predict:
logger.info("*** Predict ***")
# Removing the `label` columns because it contains -1 and Trainer won't like that.
predict_dataset = predict_dataset.remove_columns("labels")
predictions = trainer.predict(
predict_dataset, metric_key_prefix="predict"
).predictions
predictions = (
np.squeeze(predictions)
if model_args.objective in {"mse", "triplet", "triplet_mse"}
else np.argmax(predictions, axis=1)
)
predictions = dict(enumerate(predictions.tolist()))
output_predict_file = os.path.join(
training_args.output_dir, f"test_predictions.json"
)
if trainer.is_world_process_zero():
with open(output_predict_file, "w", encoding="utf-8") as outfile:
json.dump(predictions, outfile)
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "CSTS"}
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
if __name__ == "__main__":
main()