-
Notifications
You must be signed in to change notification settings - Fork 6
/
README.Rmd
70 lines (49 loc) · 3.76 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
output: github_document
---
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "##",
fig.path = "man/images/"
)
```
```{r echo=FALSE, results="hide", message=FALSE}
library("badger")
```
# quanteda.textmodels
<!-- badges: start -->
`r badge_cran_release("quanteda.textmodels", "green")`
`r badge_devel("quanteda/quanteda.textmodels", "royalblue")`
[![Downloads](https://cranlogs.r-pkg.org/badges/quanteda.textmodels)](https://CRAN.R-project.org/package=quanteda.textmodels)
[![Total Downloads](https://cranlogs.r-pkg.org/badges/grand-total/quanteda.textmodels?color=orange)](https://CRAN.R-project.org/package=quanteda.textmodels)
[![R-CMD-check](https://github.com/quanteda/quanteda.textmodels/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/quanteda/quanteda.textmodels/actions/workflows/R-CMD-check.yaml)
[![Codecov test coverage](https://codecov.io/gh/quanteda/quanteda.textmodels/branch/master/graph/badge.svg)](https://app.codecov.io/gh/quanteda/quanteda.textmodels?branch=master)
<!-- badges: end -->
## About
An R package adding text scaling models and classifiers for [**quanteda**](https://quanteda.io). Prior to **quanteda** v2, many of these were part of that package. Early development was supported by the European Research Council grant ERC-2011-StG 283794-QUANTESS.
For more details, see https://quanteda.io.
## How to Install
You can install it via the normal way from CRAN, using your R GUI or
```{r eval = FALSE}
install.packages("quanteda.textmodels")
```
Or for the latest development version:
```{r eval = FALSE}
# devtools package required to install quanteda from Github
remotes::install_github("quanteda/quanteda.textmodels")
```
Because this compiles some C++ and Fortran source code, you will need to have installed the appropriate compilers. **On Windows platform**, this means the [Rtools](https://CRAN.R-project.org/bin/windows/Rtools/) software available from CRAN, or the macOS tools from
[macOS tools](https://cran.r-project.org/bin/macosx/tools/), including
namely the Clang 6.x compiler and the GNU Fortran compiler (as **quanteda** requires gfortran to build). If you are still getting errors related to gfortran, follow the fixes [here](https://thecoatlessprofessor.com/programming/rcpp-rcpparmadillo-and-os-x-mavericks--lgfortran-and--lquadmath-error/).
## How to cite
Benoit, Kenneth, Kohei Watanabe, Haiyan Wang, Paul Nulty, Adam Obeng, Stefan Müller, and Akitaka Matsuo. (2018) "[quanteda: An R package for the quantitative analysis of textual data](https://www.theoj.org/joss-papers/joss.00774/10.21105.joss.00774.pdf)". _Journal of Open Source Software_. 3(30), 774. [https://doi.org/10.21105/joss.00774](https://doi.org/10.21105/joss.00774).
For a BibTeX entry, use the output from `citation(package = "quanteda")`.
## Leaving Feedback
If you like **quanteda**, please consider leaving [feedback or a testimonial here](https://github.com/quanteda/quanteda/issues/461).
## Contributing
Contributions in the form of feedback, comments, code, and bug reports are most welcome. How to contribute:
* Fork the source code, modify, and issue a [pull request](https://help.github.com/articles/creating-a-pull-request-from-a-fork/) through the [project GitHub page](https://github.com/quanteda/quanteda). See our [Contributor Code of Conduct](https://github.com/quanteda/quanteda/blob/master/CONDUCT.md) and the all-important **quanteda** [Style Guide](https://github.com/quanteda/quanteda/wiki/Style-guide).
* Issues, bug reports, and wish lists: [File a GitHub issue](https://github.com/quanteda/quanteda.textmodels/issues).
* Usage questions: Submit a question on the [**quanteda** channel on StackOverflow](https://stackoverflow.com/questions/tagged/quanteda).
* Contact [the maintainer](mailto:kbenoit@lse.ac.uk) by email.