-
Notifications
You must be signed in to change notification settings - Fork 9
/
mosc.c
646 lines (567 loc) · 19.7 KB
/
mosc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "mosc.h"
//#define DEBUG//
#define elec (0)
#define muon (1)
#define tau (2)
#define re (0)
#define im (1)
//#define ZERO_CP
static int matrixtype = standard_type;
/* Flag to tell us if we're doing nu_e or nu_sterile matter effects */
static NuType matterFlavor = nue_type;
static double putMix[3][3][2];
/* 2*sqrt(2)*Gfermi in (eV^2-cm^3)/(mole-GeV) - for e<->[mu,tau] */
static const double tworttwoGf = 1.52588e-4;
/***********************************************************************
moscerr
Error handler
***********************************************************************/
void moscerr(char* error) {
static int nerr=10;
fprintf(stderr, "mosc.c: %s\n", error);
if (--nerr==0) abort();
}
/***********************************************************************
setmass
Initialize the mass matrices. Values are in eV^2. Pass in the
differences between the 1st and 2nd eigenvalues and the 2nd and 3rd
eigenvalues.
***********************************************************************/
void setmass(double dms21, double dms23, double dmVacVac[][3]) {
double delta=5.0e-9;
double mVac[3];
mVac[0] = 0.0;
mVac[1] = dms21;
mVac[2] = dms21+dms23;
/* Break any degeneracies */
if (dms21==0.0) mVac[0] -= delta;
if (dms23==0.0) mVac[2] += delta;
dmVacVac[0][0] = dmVacVac[1][1] = dmVacVac[2][2] = 0.0;
dmVacVac[0][1] = mVac[0]-mVac[1]; dmVacVac[1][0] = -dmVacVac[0][1];
dmVacVac[0][2] = mVac[0]-mVac[2]; dmVacVac[2][0] = -dmVacVac[0][2];
dmVacVac[1][2] = mVac[1]-mVac[2]; dmVacVac[2][1] = -dmVacVac[1][2];
}
/***********************************************************************
setmix
Initialize the mixing matrix given three mixing angles. CP violation
is ignored (elements are real). This is the standard form given in the
Particle Data booklet
***********************************************************************/
void setmix(double th12, double th13, double th23, double d,
double Mix[][3][2]) {
double s12, s23, s13, c12, c23, c13, sd, cd;
s12 = sin(th12); s23 = sin(th23); s13 = sin(th13);
c12 = cos(th12); c23 = cos(th23); c13 = cos(th13);
sd = sin(d); cd = cos(d);
#ifndef ZERO_CP
Mix[0][0][re] = c12*c13;
Mix[0][0][im] = 0.0;
Mix[0][1][re] = s12*c13;
Mix[0][1][im] = 0.0;
Mix[0][2][re] = s13*cd;
Mix[0][2][im] = -s13*sd;
Mix[1][0][re] = -s12*c23-c12*s23*s13*cd;
Mix[1][0][im] = -c12*s23*s13*sd;
Mix[1][1][re] = c12*c23-s12*s23*s13*cd;
Mix[1][1][im] = -s12*s23*s13*sd;
Mix[1][2][re] = s23*c13;
Mix[1][2][im] = 0.0;
Mix[2][0][re] = s12*s23-c12*c23*s13*cd;
Mix[2][0][im] = -c12*c23*s13*sd;
Mix[2][1][re] = -c12*s23-s12*c23*s13*cd;
Mix[2][1][im] = -s12*c23*s13*sd;
Mix[2][2][re] = c23*c13;
Mix[2][2][im] = 0.0;
#else
Mix[0][0][re] = c12*c13;
Mix[0][1][re] = s12*c13;
Mix[0][2][re] = s13;
Mix[1][0][re] = -s12*c23-c12*s23*s13;
Mix[1][1][re] = c12*c23-s12*s23*s13;
Mix[1][2][re] = s23*c13;
Mix[2][0][re] = s12*s23-c12*c23*s13;
Mix[2][1][re] = -c12*s23-s12*c23*s13;
Mix[2][2][re] = c23*c13;
#endif
}
/***********************************************************************
putmix
Let the user set any kind mixing matrix they want
***********************************************************************/
void putmix(double Mix[][3][2]) {
memcpy(putMix, Mix, 3*3*2*sizeof(double));
}
/***********************************************************************
Set the mixing matrix used by Barger et. al. This form is not
"standard" advocated by the Particle Data group but is needed if you
want to reproduce the plots in the Barger et al. paper
***********************************************************************/
void setmix_barger(double th1, double th2, double th3, double d,
double Mix[][3][2]) {
double s1, s2, s3, c1, c2, c3, sd, cd;
s1 = sin(th1); s2 = sin(th2); s3 = sin(th3);
c1 = cos(th1); c2 = cos(th2); c3 = cos(th3);
sd = sin(d); cd = cos(d);
#ifndef ZERO_CP
Mix[0][0][re] = c1;
Mix[0][0][im] = 0.0;
Mix[0][1][re] = s1*c3;
Mix[0][1][im] = 0.0;
Mix[0][2][re] = s1*s3;
Mix[0][2][im] = 0.0;
Mix[1][0][re] = -s1*c2;
Mix[1][0][im] = 0.0;
Mix[1][1][re] = c1*c2*c3+s2*s3*cd;
Mix[1][1][im] = s2*s3*sd;
Mix[1][2][re] = c1*c2*s3-s2*c3*cd;
Mix[1][2][im] = -s2*c3*sd;
Mix[2][0][re] = -s1*s2;
Mix[2][0][im] = 0.0;
Mix[2][1][re] = c1*s2*c3-c2*s3*cd;
Mix[2][1][im] = -c2*s3*sd;
Mix[2][2][re] = c1*s2*s3+c2*c3*cd;
Mix[2][2][im] = c2*c3*sd;
#else
Mix[0][0][re] = c1;
Mix[0][1][re] = s1*c3;
Mix[0][2][re] = s1*s3;
Mix[1][0][re] = -s1*c2;
Mix[1][1][re] = c1*c2*c3+s2*s3;
Mix[1][2][re] = c1*c2*s3-s2*c3;
Mix[2][0][re] = -s1*s2;
Mix[2][1][re] = c1*s2*c3-c2*s3;
Mix[2][2][re] = c1*s2*s3+c2*c3;
#endif
}
/***********************************************************************
setMatterFlavor
Allow the user to set the flavor used in matter effects (nue or
nusterile)
***********************************************************************/
void setMatterFlavor(int flavor) {
if (flavor == nue_type) matterFlavor = nue_type;
else if (flavor == sterile_type) matterFlavor = sterile_type;
else {
fprintf(stderr, "setMatterFlavor: flavor=%d", flavor);
moscerr("setMatterFlavor: Illegal flavor.");
}
}
/***********************************************************************
trans2p
Convert a transition matirx A to transition probabilities
***********************************************************************/
void trans2p(double A[][3][2], double P[][3]) {
int i, j;
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
P[i][j] = A[i][j][re]*A[i][j][re] + A[i][j][im]*A[i][j][im];
}
}
}
/*********************************************************************
propagate_vac
Compute the transition matrix after traveling a distance L through the
vaccum
**********************************************************************/
void propagate_vac(double Ain[][3][2], double L, double E,
double Mix[][3][2], double dmVacVac[][3],
double Aout[][3][2]) {
int a, b, i, j, k;
double LoverE = 2.534*L/E;
double X[3][3][2], A[3][3][2], q;
/* Make the X matrix (eq. 11 simplified since we're in vaccuum) */
memset(X, 0, 3*3*2*sizeof(double));
for (i=0; i<3; i++) {
q = -LoverE*dmVacVac[i][0];
X[i][i][re] = cos(q);
X[i][i][im] = sin(q);
}
/* Use this to compute A (eq. 10) */
memset(A, 0, 3*3*2*sizeof(double));
for (a=0; a<3; a++) {
for (b=0; b<3; b++) {
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
#ifndef ZERO_CP
A[a][b][re] +=
Mix[a][i][re]*X[i][j][re]*Mix[b][j][re] +
Mix[a][i][re]*X[i][j][im]*Mix[b][j][im] +
Mix[a][i][im]*X[i][j][re]*Mix[b][j][im] -
Mix[a][i][im]*X[i][j][im]*Mix[b][j][re];
A[a][b][im] +=
Mix[a][i][im]*X[i][j][im]*Mix[b][j][im] +
Mix[a][i][im]*X[i][j][re]*Mix[b][j][re] +
Mix[a][i][re]*X[i][j][im]*Mix[b][j][re] -
Mix[a][i][re]*X[i][j][re]*Mix[b][j][im];
#else
A[a][b][re] +=
Mix[a][i][re]*X[i][j][re]*Mix[b][j][re];
A[a][b][im] +=
Mix[a][i][re]*X[i][j][im]*Mix[b][j][re];
#endif
}
}
}
}
/* Compute product with input transition matrix */
memset(Aout, 0, 3*3*2*sizeof(double));
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
for (k=0; k<3; k++) {
Aout[i][j][re] += Ain[i][k][re]*A[k][j][re]-Ain[i][k][im]*A[k][j][im];
Aout[i][j][im] += Ain[i][k][im]*A[k][j][re]+Ain[i][k][re]*A[k][j][im];
}
}
}
}
/***********************************************************************
getM
Compute the matter-mass vector M, dM = M_i-M_j and
and dMimj. type<0 means anti-neutrinos type>0 means "real" neutrinos
***********************************************************************/
void getM(double Enu, double rho,
double Mix[][3][2], double dmVacVac[][3], int antitype,
double dmMatMat[][3], double dmMatVac[][3]) {
int i, j, k;
double alpha, beta, gamma, fac=0.0, arg, tmp;
double alphaV, betaV, gammaV, argV, tmpV;
double theta0, theta1, theta2;
double theta0V, theta1V, theta2V;
double mMatU[3], mMatV[3], mMat[3];
/* Equations (22) fro Barger et.al.*/
/* Reverse the sign of the potential depending on neutrino type */
if (matterFlavor == nue_type) {
/* If we're doing matter effects for electron neutrinos */
if (antitype<0) fac = tworttwoGf*Enu*rho; /* Anti-neutrinos */
else fac = -tworttwoGf*Enu*rho; /* Real-neutrinos */
}
else if (matterFlavor == sterile_type) {
/* If we're doing matter effects for sterile neutrinos */
if (antitype<0) fac = -0.5*tworttwoGf*Enu*rho; /* Anti-neutrinos */
else fac = 0.5*tworttwoGf*Enu*rho; /* Real-neutrinos */
}
/* The strategy to sort out the three roots is to compute the vacuum
* mass the same way as the "matter" masses are computed then to sort
* the results according to the input vacuum masses
*/
alpha = fac + dmVacVac[0][1] + dmVacVac[0][2];
alphaV = dmVacVac[0][1] + dmVacVac[0][2];
#ifndef ZERO_CP
beta = dmVacVac[0][1]*dmVacVac[0][2] +
fac*(dmVacVac[0][1]*(1.0 -
Mix[elec][1][re]*Mix[elec][1][re] -
Mix[elec][1][im]*Mix[elec][1][im]) +
dmVacVac[0][2]*(1.0-
Mix[elec][2][re]*Mix[elec][2][re] -
Mix[elec][2][im]*Mix[elec][2][im]));
betaV = dmVacVac[0][1]*dmVacVac[0][2];
#else
beta = dmVacVac[0][1]*dmVacVac[0][2] +
fac*(dmVacVac[0][1]*(1.0 -
Mix[elec][1][re]*Mix[elec][1][re]) +
dmVacVac[0][2]*(1.0-
Mix[elec][2][re]*Mix[elec][2][re]));
betaV = dmVacVac[0][1]*dmVacVac[0][2];
#endif
#ifndef ZERO_CP
gamma = fac*dmVacVac[0][1]*dmVacVac[0][2]*
(Mix[elec][0][re]*Mix[elec][0][re]+Mix[elec][0][im]*Mix[elec][0][im]);
gammaV = 0.0;
#else
gamma = fac*dmVacVac[0][1]*dmVacVac[0][2]*
(Mix[elec][0][re]*Mix[elec][0][re]);
gammaV = 0.0;
#endif
/* Compute the argument of the arc-cosine */
tmp = alpha*alpha-3.0*beta;
tmpV = alphaV*alphaV-3.0*betaV;
if (tmp<0.0) {
fprintf(stderr, "getM: alpha^2-3*beta < 0 !\n");
tmp = 0.0;
}
/* Equation (21) */
arg = (2.0*alpha*alpha*alpha-9.0*alpha*beta+27.0*gamma)/
(2.0*sqrt(tmp*tmp*tmp));
if (fabs(arg)>1.0) arg = arg/fabs(arg);
argV = (2.0*alphaV*alphaV*alphaV-9.0*alphaV*betaV+27.0*gammaV)/
(2.0*sqrt(tmpV*tmpV*tmpV));
if (fabs(argV)>1.0) argV = argV/fabs(argV);
/* These are the three roots the paper refers to */
theta0 = acos(arg)/3.0;
theta1 = theta0-(2.0*M_PI/3.0);
theta2 = theta0+(2.0*M_PI/3.0);
theta0V = acos(argV)/3.0;
theta1V = theta0V-(2.0*M_PI/3.0);
theta2V = theta0V+(2.0*M_PI/3.0);
mMatU[0] = mMatU[1] = mMatU[2] = -(2.0/3.0)*sqrt(tmp);
mMatU[0] *= cos(theta0); mMatU[1] *= cos(theta1); mMatU[2] *= cos(theta2);
tmp = dmVacVac[0][0] - alpha/3.0;
mMatU[0] += tmp; mMatU[1] += tmp; mMatU[2] += tmp;
mMatV[0] = mMatV[1] = mMatV[2] = -(2.0/3.0)*sqrt(tmpV);
mMatV[0] *= cos(theta0V); mMatV[1] *= cos(theta1V); mMatV[2] *= cos(theta2V);
tmpV = dmVacVac[0][0] - alphaV/3.0;
mMatV[0] += tmpV; mMatV[1] += tmpV; mMatV[2] += tmpV;
/* Sort according to which reproduce the vaccum eigenstates */
for (i=0; i<3; i++) {
tmpV = fabs(dmVacVac[i][0]-mMatV[0]);
k = 0;
for (j=1; j<3; j++) {
tmp = fabs(dmVacVac[i][0]-mMatV[j]);
if (tmp<tmpV) {
k = j;
tmpV = tmp;
}
}
mMat[i] = mMatU[k];
}
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
dmMatMat[i][j] = mMat[i] - mMat[j];
dmMatVac[i][j] = mMat[i] - dmVacVac[j][0];
}
}
}
void get_product(double L, double E, double rho,
double Mix[][3][2], double dmMatVac[][3], double dmMatMat[][3],
int antitype, double product[][3][3][2]) {
int n, m, i, j, k;
double fac=0.0 ;
double twoEHmM[3][3][3][2] ;
/* (1/2)*(1/(h_bar*c)) in units of GeV/(eV^2-km) */
/* Reverse the sign of the potential depending on neutrino type */
if (matterFlavor == nue_type) {
/* If we're doing matter effects for electron neutrinos */
if (antitype<0) fac = tworttwoGf*E*rho; /* Anti-neutrinos */
else fac = -tworttwoGf*E*rho; /* Real-neutrinos */
}
else if (matterFlavor == sterile_type) {
/* If we're doing matter effects for sterile neutrinos */
if (antitype<0) fac = -0.5*tworttwoGf*E*rho; /* Anti-neutrinos */
else fac = 0.5*tworttwoGf*E*rho; /* Real-neutrinos */
}
/* Calculate the matrix 2EH-M_j */
for (n=0; n<3; n++) {
for (m=0; m<3; m++) {
#ifndef ZERO_CP
twoEHmM[n][m][0][re] =
-fac*(Mix[0][n][re]*Mix[0][m][re]+Mix[0][n][im]*Mix[0][m][im]);
twoEHmM[n][m][0][im] =
-fac*(Mix[0][n][re]*Mix[0][m][im]-Mix[0][n][im]*Mix[0][m][re]);
twoEHmM[n][m][1][re] = twoEHmM[n][m][2][re] = twoEHmM[n][m][0][re];
twoEHmM[n][m][1][im] = twoEHmM[n][m][2][im] = twoEHmM[n][m][0][im];
#else
twoEHmM[n][m][0][re] =
-fac*(Mix[0][n][re]*Mix[0][m][re]);
twoEHmM[n][m][0][im] = 0 ;
twoEHmM[n][m][1][re] = twoEHmM[n][m][2][re] = twoEHmM[n][m][0][re];
twoEHmM[n][m][1][im] = twoEHmM[n][m][2][im] = twoEHmM[n][m][0][im];
#endif
if (n==m) for (j=0; j<3; j++)
twoEHmM[n][m][j][re] -= dmMatVac[j][n];
}
}
/* Calculate the product in eq.(10) of twoEHmM for j!=k */
memset(product, 0, 3*3*3*2*sizeof(double));
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
for (k=0; k<3; k++) {
#ifndef ZERO_CP
product[i][j][0][re] +=
twoEHmM[i][k][1][re]*twoEHmM[k][j][2][re] -
twoEHmM[i][k][1][im]*twoEHmM[k][j][2][im];
product[i][j][0][im] +=
twoEHmM[i][k][1][re]*twoEHmM[k][j][2][im] +
twoEHmM[i][k][1][im]*twoEHmM[k][j][2][re];
product[i][j][1][re] +=
twoEHmM[i][k][2][re]*twoEHmM[k][j][0][re] -
twoEHmM[i][k][2][im]*twoEHmM[k][j][0][im];
product[i][j][1][im] +=
twoEHmM[i][k][2][re]*twoEHmM[k][j][0][im] +
twoEHmM[i][k][2][im]*twoEHmM[k][j][0][re];
product[i][j][2][re] +=
twoEHmM[i][k][0][re]*twoEHmM[k][j][1][re] -
twoEHmM[i][k][0][im]*twoEHmM[k][j][1][im];
product[i][j][2][im] +=
twoEHmM[i][k][0][re]*twoEHmM[k][j][1][im] +
twoEHmM[i][k][0][im]*twoEHmM[k][j][1][re];
#else
product[i][j][0][re] +=
twoEHmM[i][k][1][re]*twoEHmM[k][j][2][re];
product[i][j][1][re] +=
twoEHmM[i][k][2][re]*twoEHmM[k][j][0][re];
product[i][j][2][re] +=
twoEHmM[i][k][0][re]*twoEHmM[k][j][1][re];
#endif
}
#ifndef ZERO_CP
product[i][j][0][re] /= (dmMatMat[0][1]*dmMatMat[0][2]);
product[i][j][0][im] /= (dmMatMat[0][1]*dmMatMat[0][2]);
product[i][j][1][re] /= (dmMatMat[1][2]*dmMatMat[1][0]);
product[i][j][1][im] /= (dmMatMat[1][2]*dmMatMat[1][0]);
product[i][j][2][re] /= (dmMatMat[2][0]*dmMatMat[2][1]);
product[i][j][2][im] /= (dmMatMat[2][0]*dmMatMat[2][1]);
#else
product[i][j][0][re] /= (dmMatMat[0][1]*dmMatMat[0][2]);
product[i][j][1][re] /= (dmMatMat[1][2]*dmMatMat[1][0]);
product[i][j][2][re] /= (dmMatMat[2][0]*dmMatMat[2][1]);
#endif
}
}
}
/***********************************************************************
getA
Calculate the transition amplitude matrix A (equation 10)
***********************************************************************/
void getA(double L, double E, double rho,
double Mix[][3][2], double dmMatVac[][3], double dmMatMat[][3],
int antitype, double A[3][3][2], double phase_offset) {
int n, m, i, j, k;
double fac=0.0, arg, c, s;
double X[3][3][2];
static double product[3][3][3][2];
/* (1/2)*(1/(h_bar*c)) in units of GeV/(eV^2-km) */
const double LoEfac = 2.534;
if ( phase_offset==0.0 ) {
get_product(L, E, rho, Mix, dmMatVac, dmMatMat, antitype, product);
}
/* Make the sum with the exponential factor */
memset(X, 0, 3*3*2*sizeof(double));
for (k=0; k<3; k++) {
arg = -LoEfac*dmMatVac[k][0]*L/E;
if ( k==2 ) arg += phase_offset ;
c = cos(arg);
s = sin(arg);
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
#ifndef ZERO_CP
X[i][j][re] += c*product[i][j][k][re] - s*product[i][j][k][im];
X[i][j][im] += c*product[i][j][k][im] + s*product[i][j][k][re];
#else
X[i][j][re] += c*product[i][j][k][re];
X[i][j][im] += s*product[i][j][k][re];
#endif
}
}
}
/* Compute the product with the mixing matrices */
memset(A, 0, 3*3*2*sizeof(double));
for (n=0; n<3; n++) {
for (m=0; m<3; m++) {
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
#ifndef ZERO_CP
A[n][m][re] +=
Mix[n][i][re]*X[i][j][re]*Mix[m][j][re] +
Mix[n][i][re]*X[i][j][im]*Mix[m][j][im] +
Mix[n][i][im]*X[i][j][re]*Mix[m][j][im] -
Mix[n][i][im]*X[i][j][im]*Mix[m][j][re];
A[n][m][im] +=
Mix[n][i][im]*X[i][j][im]*Mix[m][j][im] +
Mix[n][i][im]*X[i][j][re]*Mix[m][j][re] +
Mix[n][i][re]*X[i][j][im]*Mix[m][j][re] -
Mix[n][i][re]*X[i][j][re]*Mix[m][j][im];
#else
A[n][m][re] +=
Mix[n][i][re]*X[i][j][re]*Mix[m][j][re];
A[n][m][im] +=
Mix[n][i][re]*X[i][j][im]*Mix[m][j][re];
#endif
}
}
}
}
}
/***********************************************************************
propagate_mat
Propagate a neutrino state through matter with constant density
***********************************************************************/
void propagate_mat(double Ain[][3][2], double rho, double L, double E,
double Mix[][3][2], double dmVacVac[][3],
int antitype, double Aend[][3][2]) {
int i, j, k;
double dmMatVac[3][3], dmMatMat[3][3], A[3][3][2];
int make_average=0;
/* Get the transition matrix for the step across this slab of matter */
getM(E, rho, Mix, dmVacVac, antitype, dmMatMat, dmMatVac);
getA(L, E, rho, Mix, dmMatVac, dmMatMat, antitype, A, make_average);
/* Compute the product with the input transition matrix */
memset(Aend, 0, 3*3*2*sizeof(double));
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
for (k=0; k<3; k++) {
Aend[i][j][re] += Ain[i][k][re]*A[k][j][re]-Ain[i][k][im]*A[k][j][im];
Aend[i][j][im] += Ain[i][k][im]*A[k][j][re]+Ain[i][k][re]*A[k][j][im];
}
}
}
}
void setmix_sin(s12,s23,s13,dcp,Mix)
double s12,s23,s13,dcp;
double Mix[][3][2];
{
double c12,c23,c13,sd,cd;
if ( s12>1.0 ) s12=1.0;
if ( s23>1.0 ) s23=1.0;
if ( s13>1.0 ) s13=1.0;
if ( cd >1.0 ) cd =1.0;
sd = sin( dcp );
cd = cos( dcp );
c12 = sqrt(1.0-s12*s12);
c23 = sqrt(1.0-s23*s23);
c13 = sqrt(1.0-s13*s13);
if ( matrixtype == standard_type ) {
Mix[0][0][re] = c12*c13;
Mix[0][0][im] = 0.0;
Mix[0][1][re] = s12*c13;
Mix[0][1][im] = 0.0;
Mix[0][2][re] = s13*cd;
Mix[0][2][im] = -s13*sd;
Mix[1][0][re] = -s12*c23-c12*s23*s13*cd;
Mix[1][0][im] = -c12*s23*s13*sd;
Mix[1][1][re] = c12*c23-s12*s23*s13*cd;
Mix[1][1][im] = -s12*s23*s13*sd;
Mix[1][2][re] = s23*c13;
Mix[1][2][im] = 0.0;
Mix[2][0][re] = s12*s23-c12*c23*s13*cd;
Mix[2][0][im] = -c12*c23*s13*sd;
Mix[2][1][re] = -c12*s23-s12*c23*s13*cd;
Mix[2][1][im] = -s12*c23*s13*sd;
Mix[2][2][re] = c23*c13;
Mix[2][2][im] = 0.0;
} else {
Mix[0][0][re] = c12;
Mix[0][0][im] = 0.0;
Mix[0][1][re] = s12*c23;
Mix[0][1][im] = 0.0;
Mix[0][2][re] = s12*s23;
Mix[0][2][im] = 0.0;
Mix[1][0][re] = -s12*c13;
Mix[1][0][im] = 0.0;
Mix[1][1][re] = c12*c13*c23+s13*s23*cd;
Mix[1][1][im] = s13*s23*sd;
Mix[1][2][re] = c12*c13*s23-s13*c23*cd;
Mix[1][2][im] = -s13*c23*sd;
Mix[2][0][re] = -s12*s13;
Mix[2][0][im] = 0.0;
Mix[2][1][re] = c12*s13*c23-c13*s23*cd;
Mix[2][1][im] = -c13*s23*sd;
Mix[2][2][re] = c12*s13*s23+c13*c23*cd;
Mix[2][2][im] = c13*c23*sd;
}
}
void matrix2mix(matrix,mix)
double *matrix;
double mix[][3][2];
{
int i,j;
memset(mix,0,3*3*2*sizeof(double));
for(j=0;j<3;j++)
for(i=0;i<3;i++)
mix[i][j][re] = (double)(*matrix+(3*j+i));
}
void swap(int array[],int i,int j)
{ int tmp; tmp=array[j] ; array[j]=array[i] ; array[i]=tmp ;}