-
Notifications
You must be signed in to change notification settings - Fork 3
/
run_pretraining_gpu.py
735 lines (595 loc) · 29.2 KB
/
run_pretraining_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run masked LM/next sentence masked_lm pre-training for BERT."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import os
import modeling
# import optimization_gpu
import tensorflow as tf
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_integer(
"n_gpus", 10,
"GPU number")
flags.DEFINE_string(
"bert_config_file", "bert_config.json",
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string(
"input_file", "tmp_data_128/sample1.tfrecords,tmp_data_128/sample2.tfrecords,tmp_data_128/sample3.tfrecords,tmp_data_128/sample4.tfrecords,tmp_data_128/sample5.tfrecords,tmp_data_128/sample6.tfrecords,tmp_data_128/sample7.tfrecords,tmp_data_128/sample8.tfrecords,tmp_data_128/sample9.tfrecords,tmp_data_128/sample10.tfrecords",
"Input TF example files (can be a glob or comma separated).")
flags.DEFINE_string(
"output_dir", "output",
"The output directory where the model checkpoints will be written.")
## Other parameters
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded. Must match data generation.")
flags.DEFINE_integer(
"max_predictions_per_seq", 20,
"Maximum number of masked LM predictions per sequence. "
"Must match data generation.")
flags.DEFINE_bool("do_train", True, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")
flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
def _deduplicate_indexed_slices(values, indices):
"""Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
"""
unique_indices, new_index_positions = tf.unique(indices)
summed_values = tf.unsorted_segment_sum(
values, new_index_positions,
tf.shape(unique_indices)[0])
return (summed_values, unique_indices)
def average_gradients(tower_grads, batch_size, options):
# calculate average gradient for each shared variable across all GPUs
average_grads = []
count = 0
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
# We need to average the gradients across each GPU.
count += 1
g0, v0 = grad_and_vars[0]
if g0 is None:
# no gradient for this variable, skip it
average_grads.append((g0, v0))
continue
if isinstance(g0, tf.IndexedSlices):
# If the gradient is type IndexedSlices then this is a sparse
# gradient with attributes indices and values.
# To average, need to concat them individually then create
# a new IndexedSlices object.
indices = []
values = []
for g, v in grad_and_vars:
indices.append(g.indices)
values.append(g.values)
all_indices = tf.concat(indices, 0)
avg_values = tf.concat(values, 0) / len(grad_and_vars)
# deduplicate across indices
av, ai = _deduplicate_indexed_slices(avg_values, all_indices)
grad = tf.IndexedSlices(av, ai, dense_shape=g0.dense_shape)
else:
# a normal tensor can just do a simple average
grads = []
for g, v in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
# the Variables are redundant because they are shared
# across towers. So.. just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
assert len(average_grads) == len(list(zip(*tower_grads)))
return average_grads
def clip_by_global_norm_summary(t_list, clip_norm, norm_name, variables):
# wrapper around tf.clip_by_global_norm that also does summary ops of norms
# compute norms
# use global_norm with one element to handle IndexedSlices vs dense
norms = [tf.global_norm([t]) for t in t_list]
# summary ops before clipping
summary_ops = []
for ns, v in zip(norms, variables):
name = 'norm_pre_clip/' + v.name.replace(":", "_")
summary_ops.append(tf.summary.scalar(name, ns))
# clip
clipped_t_list, tf_norm = tf.clip_by_global_norm(t_list, clip_norm)
# summary ops after clipping
norms_post = [tf.global_norm([t]) for t in clipped_t_list]
for ns, v in zip(norms_post, variables):
name = 'norm_post_clip/' + v.name.replace(":", "_")
summary_ops.append(tf.summary.scalar(name, ns))
summary_ops.append(tf.summary.scalar(norm_name, tf_norm))
return clipped_t_list, tf_norm, summary_ops
def clip_grads(grads, all_clip_norm_val, do_summaries):
# grads = [(grad1, var1), (grad2, var2), ...]
def _clip_norms(grad_and_vars, val, name):
# grad_and_vars is a list of (g, v) pairs
grad_tensors = [g for g, v in grad_and_vars]
vv = [v for g, v in grad_and_vars]
scaled_val = val
if do_summaries:
clipped_tensors, g_norm, so = clip_by_global_norm_summary(
grad_tensors, scaled_val, name, vv)
else:
so = []
clipped_tensors, g_norm = tf.clip_by_global_norm(
grad_tensors, scaled_val)
ret = []
for t, (g, v) in zip(clipped_tensors, grad_and_vars):
ret.append((t, v))
return ret, so
ret, summary_ops = _clip_norms(grads, all_clip_norm_val, 'norm_grad')
assert len(ret) == len(grads)
return ret, summary_ops
def model_fn_builder(bert_config, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
masked_lm_positions = features["masked_lm_positions"]
masked_lm_ids = features["masked_lm_ids"]
masked_lm_weights = features["masked_lm_weights"]
next_sentence_labels = features["next_sentence_labels"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
(masked_lm_loss,
masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
bert_config, model.get_sequence_output(), model.get_embedding_table(),
masked_lm_positions, masked_lm_ids, masked_lm_weights)
(next_sentence_loss, next_sentence_example_loss,
next_sentence_log_probs) = get_next_sentence_output(
bert_config, model.get_pooled_output(), next_sentence_labels)
total_loss = masked_lm_loss + next_sentence_loss
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels):
"""Computes the loss and accuracy of the model."""
masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
[-1, masked_lm_log_probs.shape[-1]])
masked_lm_predictions = tf.argmax(
masked_lm_log_probs, axis=-1, output_type=tf.int32)
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
masked_lm_accuracy = tf.metrics.accuracy(
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights)
masked_lm_mean_loss = tf.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights)
next_sentence_log_probs = tf.reshape(
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
next_sentence_predictions = tf.argmax(
next_sentence_log_probs, axis=-1, output_type=tf.int32)
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
next_sentence_accuracy = tf.metrics.accuracy(
labels=next_sentence_labels, predictions=next_sentence_predictions)
next_sentence_mean_loss = tf.metrics.mean(
values=next_sentence_example_loss)
return {
"masked_lm_accuracy": masked_lm_accuracy,
"masked_lm_loss": masked_lm_mean_loss,
"next_sentence_accuracy": next_sentence_accuracy,
"next_sentence_loss": next_sentence_mean_loss,
}
eval_metrics = (metric_fn, [
masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels
])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
return output_spec
return model_fn
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
label_ids, label_weights):
"""Get loss and log probs for the masked LM."""
input_tensor = gather_indexes(input_tensor, positions)
with tf.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.variable_scope("transform"):
input_tensor = tf.layers.dense(
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
# The `positions` tensor might be zero-padded (if the sequence is too
# short to have the maximum number of predictions). The `label_weights`
# tensor has a value of 1.0 for every real prediction and 0.0 for the
# padding predictions.
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
numerator = tf.reduce_sum(label_weights * per_example_loss)
denominator = tf.reduce_sum(label_weights) + 1e-5
loss = numerator / denominator
return (loss, per_example_loss, log_probs)
def get_next_sentence_output(bert_config, input_tensor, labels):
"""Get loss and log probs for the next sentence prediction."""
# Simple binary classification. Note that 0 is "next sentence" and 1 is
# "random sentence". This weight matrix is not used after pre-training.
with tf.variable_scope("cls/seq_relationship"):
output_weights = tf.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
initializer=modeling.create_initializer(bert_config.initializer_range))
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, log_probs)
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
batch_size = sequence_shape[0]
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
def parse_input_fn_result(result):
"""Gets features, labels, and hooks from the result of an Estimator input_fn.
Args:
result: output of an input_fn to an estimator, which should be one of:
* A 'tf.data.Dataset' object: Outputs of `Dataset` object must be a
tuple (features, labels) with same constraints as below.
* A tuple (features, labels): Where `features` is a `Tensor` or a
dictionary of string feature name to `Tensor` and `labels` is a
`Tensor` or a dictionary of string label name to `Tensor`. Both
`features` and `labels` are consumed by `model_fn`. They should
satisfy the expectation of `model_fn` from inputs.
Returns:
Tuple of features, labels, and input_hooks, where features are as described
above, labels are as described above or None, and input_hooks are a list
of SessionRunHooks to be included when running.
Raises:
ValueError: if the result is a list or tuple of length != 2.
"""
try:
# We can't just check whether this is a tf.data.Dataset instance here,
# as this is plausibly a PerDeviceDataset. Try treating as a dataset first.
iterator = result.make_initializable_iterator()
except AttributeError:
# Not a dataset or dataset-like-object. Move along.
pass
else:
result = iterator.get_next()
return result,iterator
def input_fn(input_files,
batch_size,
max_seq_length,
max_predictions_per_seq,
is_training,
num_cpu_threads=4):
"""The actual input function."""
# batch_size = params["batch_size"]
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
# `cycle_length` is the number of parallel files that get read.
cycle_length = min(num_cpu_threads, len(input_files))
# `sloppy` mode means that the interleaving is not exact. This adds
# even more randomness to the training pipeline.
d = d.apply(
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
# Since we evaluate for a fixed number of steps we don't want to encounter
# out-of-range exceptions.
d = d.repeat()
# We must `drop_remainder` on training because the TPU requires fixed
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU
# and we *don't* want to drop the remainder, otherwise we wont cover
# every sample.
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_cpu_threads,
drop_remainder=True))
return d
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def main(_):
mode = tf.estimator.ModeKeys.TRAIN
use_one_hot_embeddings = FLAGS.use_tpu
tf.logging.set_verbosity(tf.logging.INFO)
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
#tf.gfile.MakeDirs(FLAGS.output_dir)
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Input Files ***")
for input_file in input_files:
tf.logging.info(" %s" % input_file)
if FLAGS.do_train:
tf.logging.info("***** Running training *****")
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
n_gpus = FLAGS.n_gpus
batch_size = FLAGS.train_batch_size
d = input_fn(input_files,FLAGS.train_batch_size*n_gpus,FLAGS.max_seq_length,
FLAGS.max_predictions_per_seq,True)
features,iterator = parse_input_fn_result(d)
# train_input_fn = input_fn_builder(
# input_files=input_files,
# max_seq_length=FLAGS.max_seq_length,
# max_predictions_per_seq=FLAGS.max_predictions_per_seq,
# is_training=True)
# estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
input_ids_list = tf.split(features["input_ids"], n_gpus, axis=0)
input_mask_list = tf.split(features["input_mask"], n_gpus, axis=0)
segment_ids_list = tf.split(features["segment_ids"], n_gpus, axis=0)
masked_lm_positions_list = tf.split(features["masked_lm_positions"], n_gpus, axis=0)
masked_lm_ids_list = tf.split(features["masked_lm_ids"], n_gpus, axis=0)
masked_lm_weights_list = tf.split(features["masked_lm_weights"], n_gpus, axis=0)
next_sentence_labels_list = tf.split(features["next_sentence_labels"], n_gpus, axis=0)
# multi-gpu train
# optimizer = optimization_gpu.create_optimizer(
# None, FLAGS.learning_rate, FLAGS.num_train_steps, FLAGS.num_warmup_steps, False)
optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
# calculate the gradients on each GPU
tower_grads = []
models = []
loss_print = tf.get_variable(
'train_perplexity', [],
initializer=tf.constant_initializer(0.0), trainable=False)
for k in range(n_gpus):
with tf.device('/gpu:%d' % k):
with tf.variable_scope('lm', reuse=k > 0):
# calculate the loss for one model replica and get
# lstm states
input_ids = input_ids_list[k]
input_mask = input_mask_list[k]
segment_ids = segment_ids_list[k]
masked_lm_positions = masked_lm_positions_list[k]
masked_lm_ids = masked_lm_ids_list[k]
masked_lm_weights = masked_lm_weights_list[k]
next_sentence_labels = next_sentence_labels_list[k]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
(masked_lm_loss,
masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
bert_config, model.get_sequence_output(), model.get_embedding_table(),
masked_lm_positions, masked_lm_ids, masked_lm_weights)
(next_sentence_loss, next_sentence_example_loss,
next_sentence_log_probs) = get_next_sentence_output(
bert_config, model.get_pooled_output(), next_sentence_labels)
total_loss = masked_lm_loss + next_sentence_loss
loss = total_loss
models.append(model)
# get gradients
grads = optimizer.compute_gradients(
loss,
aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE,
)
tower_grads.append(grads)
# keep track of loss across all GPUs
loss_print += loss
average_grads = average_gradients(tower_grads, None, None)
average_grads, norm_summary_ops = clip_grads(average_grads, 10.0, True)
loss_print = loss_print / n_gpus
train_op = optimizer.apply_gradients(average_grads)
init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables(), max_to_keep=2)
with tf.Session(config=tf.ConfigProto(
allow_soft_placement=True)) as sess:
sess.run(init)
sess.run(iterator.initializer)
checkpoint_path = os.path.join(FLAGS.output_dir, 'model.ckpt')
if os.path.exists(FLAGS.output_dir):
saver.restore(sess, checkpoint_path)
count = 0
t0 = time.time()
sum = 0
while True:
_, loss_print_ = sess.run([train_op, loss_print])
# optimistic_restore(sess, checkpoint_path + "-0")
# loss_print_2 = sess.run([loss_print])
sum+=loss_print_
count += 1
if count%300==0:
print("------------")
print(time.time() - t0," s")
t0 = time.time()
print("loss ",sum/count)
sum=0
count=0
checkpoint_path = os.path.join(FLAGS.output_dir, 'model.ckpt')
saver.save(sess, checkpoint_path)
if FLAGS.do_eval:
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=False)
result = estimator.evaluate(
input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
flags.mark_flag_as_required("input_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()