forked from edrosten/threeB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
forward_algorithm.h
561 lines (474 loc) · 18.1 KB
/
forward_algorithm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
#ifndef FORWARD_ALGORITHM_H
#define FORWARD_ALGORITHM_H
#include <tr1/tuple>
#include <tr1/array>
#include <TooN/TooN.h>
#include <vector>
#include <cmath>
/** Computes the natural logarithm, but returns -1e100 instead of inf
for an input of 0. This prevents trapping of FPU exceptions.
@param x \e x
@return ln \e x
@ingroup gUtility
*/
inline double ln(double x)
{
if(x == 0)
return -1e100;
else
return std::log(x);
}
/**
The forward algorithm is defined as:
\f{align}
\alpha_1(i) &= \pi_i b_i(O_1) \\
\alpha_t(j) &= b_j(O(t)) \sum_i \alpha_{t-1}(i) a_{ij}
\f}
And the probability of observing the data is just:
\f{equation}
P(O_1 \cdots O_T|\lambda) = P(O|\lambda) \sum_i \alpha_T(i),
\f}
where the state, \f$\lambda = \{ A, \pi, B \}\f$. All multipliers are much less
than 1, to \f$\alpha\f$ rapidly ends up as zero. Instead, store the logarithm:
\f{align}
\delta_t(i) &= \ln \alpha_t(i) \\
\delta_1(i) &= \ln \pi_i + \ln b_j(O_t)
\f}
and the recursion is:
\f{align}
\delta_t(j) &= \ln b_j(O_t) + \ln \sum_i \alpha_{t-1}(i) a_{ij} \\
&= \ln b_j(O_t) + \ln \sum_i e^{\delta_{t-1}(i) + \ln a_{ij}} \\
\f}
including an arbitrary constant, \f$Z_t(j)\f$ gives:
\f{align}
\delta_t(j) &= \ln b_j(O_t) + \ln \sum_i e^{Z_t(j)} e^{\delta_{t-1}(i) + \ln a_{ij} - Z_t(j)} \\
&= \ln b_j(O_t) + Z_t(j) + \ln \sum_i e^{\delta_{t-1}(i) + \ln a_{ij} - Z_t(j)}.
\f}
In order to prevent a loss of scale on the addition:
\f{equation}
Z_t(j) \overset{\text{def}}{=} \operatorname*{max}_i \delta_{t-1}(i) + \ln a_{ij},
\f}
so the largest exponent will be exactly 0. The final log probability is, similarly:
\f{equation}
\ln P(O|\lambda) = Z + \ln \sum_i e^{\delta_T(i) - Z},
\f}
\e Z can take any value, but to keep the numbers within a convenient range:
\f{equation}
Z \overset{\text{def}}{=} \operatorname*{max}_i \delta_T(i).
\f}
For computing derivatives, two useful results are:
\f{align}
\PD{}{x} \ln f(x) &= \frac{f'(x)}{f(x)}\\
\PD{}{x} e^{f(x)} &= f'(x) e^{f(x)}
\f}
There are \e M parameters of \e B, denoted \f$\phi_1 \ldots \phi_M\f$. The derivatives of \e P are:
\f{align}
\DD P(O|\lambda) &= \SSum \DD e^{\delta_T(i)} \\
&= \SSum e^{\delta_T(i)} \DD \delta_T(i)\\
\f}
Taking derivatives of \f$ \ln P\f$ and rearranging to get numerically more convenient
results gives:
\f{align}
\DD \ln P(O|\lambda) & = \frac{\DD P(O|\lambda)}{P(O|\lambda)} \\
& = \frac{\SSum e^{\delta_T(i)} \DD \delta_T(i)}{P(O|\lambda)}\\
& = \SSum e^{\delta_T(i) - \ln P(O|\lambda)} \DD \delta_T(i)
\f}
The derivarives of \f$\delta\f$ are:
\f{align}
\gdef\dtj{\delta_T(j)}
\PD{\dtj}{\en} &= \DD \ln \left[ b_j(O_t) \SSum e^{\delta_{t-1}(i) + \ln a_{ij}} \right] \\
&= \DD \left[ \ln b_j(O_t) \right] + \frac{\SSum \DD e^{\delta_{t-1}(i) + \ln a_{ij}}}{\SSum e^{\delta_{t-1}(i) + \ln a_{ij}}}\\
\underset{\text{\tt diff\_delta[t][j]}}{\underbrace{\PD{\dtj}{\en}}} &= \underset{\text{\tt B.diff\_log(j, O[t])}}{\underbrace{\DD \left[ \ln b_j(O_t) \right]}} +
\frac{\overset{\text{\tt sum\_top}}{\overbrace{\SSum e^{\delta_{t-1}(i) + \ln a_{ij} - Z_t(j)} \DD \delta_{t-1}(i)}}
}{\underset{\text{\tt sum}}{\underbrace{\SSum e^{\delta_{t-1}(i) + \ln a_{ij} -Z_t(j)}}}},
\f}
with \f$Z_t(j)\f$ as defined in ::forward_algorithm.
For computing second derivatives, with \f$\Grad\f$ yielding column vectors, two useful results are:
\f{align}
\Hess \ln f(\Vec{x}) & = \frac{\Hess f(\Vec{x})}{f(\Vec{x})} - \Grad f(\Vec{x}) \Grad f(\Vec{x})\Trn \\
\Hess e^f(\Vec{x}) & = e^{f(\Vec{x})}(\Grad f(\Vec{x}) \Grad f(\Vec{x})\Trn + \Hess f(\Vec{x})),
\f}
therefore:
\f{equation}
\Hess \ln P(O|\lambda) = \frac{\Hess f(\Vec{x})}{P(O|\lambda)} - \Grad P(O|\lambda) \Grad P(O|\lambda)\Trn,
\f}
and:
\f{equation}
\Hess P(O|\lambda) = \sum_i e^{\delta_t(i) - \ln P(O|\lambda)}\left[ \Grad\delta_t \Grad\delta_t\Trn + \Hess \delta_t\right].
\f}
Define \f$s_t(j)\f$ as:
\f{equation}
s_t(j) = \sum_i e^{\delta_{t-1}(j) + \ln a_{ij}}
\f}
so that:
\f{equation}
\delta_t(j) = \ln b_j(O_t) + \ln s_t(j).
\f}
The derivatives and Hessian recursion are therefore:
\f{align}
\Grad \delta_t(j) &= \Grad\ln b_j(O_t) + \frac{\Grad s_t(j)}{s_t(j)} \\
\Hess \delta_t(j) &= \Hess\ln b_j(O_t) + \frac{\Hess s_t(j)}{s_t(j)} - \frac{\Grad s_t(j)}{s_t(j)}\frac{\Grad s_t(j)}{s_t(j)}\Trn.\\
&= \underset{\text{\tt B.hess\_log(j, O[t])}}{\underbrace{\Hess\ln b_j(O_t)}} +
\frac{
\overset{\text{\tt sum\_top2}}{
\overbrace{
\sum_i e^{\delta_{t-1}(j) + \ln a_{ij} - Z_t(j)}\left[\Hess\delta_{t-1}(i) + \Grad\delta_{t-1}(i)\Grad\delta_{t-1}(i)\Trn\right]}}
}{\text{\tt sum}} - \frac{\text{\tt sum\_top sum\_top}\Trn}{\text{\tt sum}^2}
\f}
@ingroup gHMM
@param A \e A: State transition probabilities.
@param pi \e \f$\pi\f$: initial state probabilities.
@param O \e O or \e I: the observed data (ie the images).
@param B \f$B\f$: A function object giving the (log) probability of an observation given a state, and derivatives with respect to the parameters.
@param compute_deriv Whether to compute the derivative, or return zero.
@param compute_hessian Whether to compute the Hessian, or return zero. This implies \c compute_deriv.
@returns the log probability of observing all the data, and the derivatives of the log probability with respect to the parameters, and the Hessian.
*/
template<int States, class Btype, class Otype> std::tr1::tuple<double, TooN::Vector<Btype::NumParameters>, TooN::Matrix<Btype::NumParameters> > forward_algorithm_hessian(TooN::Matrix<States> A, TooN::Vector<States> pi, const Btype& B, const std::vector<Otype>& O, bool compute_deriv=1, bool compute_hessian=1)
{
using namespace TooN;
using namespace std;
using namespace std::tr1;
if(compute_hessian == 1)
compute_deriv=1;
static const int M = Btype::NumParameters;
int states = pi.size();
//delta[j][i] = delta_t(i)
vector<array<double, States> > delta(O.size());
//diff_delta[t][j][n] = d/de_n delta_t(j)
vector<array<Vector<M>,States > > diff_delta(O.size());
//hess_delta[t][j][m][n] = d2/de_n de_m delta_t(j)
vector<array<Matrix<M>,States > > hess_delta(O.size());
//Initialization: Eqn 19, P 262
//Set initial partial log probabilities:
for(int i=0; i < states; i++)
{
delta[0][i] = ln(pi[i]) + B.log(i, O[0]);
if(compute_deriv)
diff_delta[0][i] = B.diff_log(i, O[0]);
if(compute_hessian)
hess_delta[0][i] = B.hess_log(i, O[0]);
}
//Perform the recursion: Eqn 20, P262
//Note, use T and T-1. Rather than T+1 and T.
for(unsigned int t=1; t < O.size(); t++)
{
for(int j=0; j < states; j++)
{
double Ztj = -HUGE_VAL; //This is Z_t(j)
for(int i=0; i < states; i++)
Ztj = max(Ztj, delta[t-1][i] + ln(A[i][j]));
double sum=0;
for(int i=0; i < states; i++)
sum += exp(delta[t-1][i] + ln(A[i][j]) - Ztj);
delta[t][j] = B.log(j, O[t]) + Ztj + ln(sum);
if(compute_deriv)
{
Vector<M> sum_top = Zeros;
for(int i=0; i < states; i++)
sum_top += diff_delta[t-1][i] * exp(delta[t-1][i] + ln(A[i][j]) - Ztj);
diff_delta[t][j] = B.diff_log(j, O[t]) + (sum_top) / sum;
if(compute_hessian)
{
Matrix<M> sum_top2 = Zeros;
for(int i=0; i < states; i++)
sum_top2 += exp(delta[t-1][i] + ln(A[i][j]) - Ztj) * ( hess_delta[t-1][i] + diff_delta[t-1][i].as_col() * diff_delta[t-1][i].as_row());
hess_delta[t][j] = B.hess_log(j, O[t]) + sum_top2 / sum - sum_top.as_col() * sum_top.as_row() / (sum*sum);
}
}
}
}
//Compute the log prob using normalization
double Z = -HUGE_VAL;
for(int i=0; i < states; i++)
Z = max(Z, delta.back()[i]);
double sum =0;
for(int i=0; i < states; i++)
sum += exp(delta.back()[i] - Z);
double log_prob = Z + ln(sum);
//Compute the differential of the log
Vector<M> diff_log = Zeros;
//Compute the differential of the log using normalization
//The convenient normalizer is ln P(O|lambda) which makes the bottom 1.
for(int i=0; compute_deriv && i < states; i++)
diff_log += exp(delta.back()[i] - log_prob)*diff_delta.back()[i];
Matrix<M> hess_log = Zeros;
//Compute the hessian of the log using normalization
//The convenient normalizer is ln P(O|lambda) which makes the bottom 1.
for(int i=0; compute_hessian && i < states; i++)
hess_log += exp(delta.back()[i] - log_prob) * (hess_delta.back()[i] + diff_delta.back()[i].as_col() * diff_delta.back()[i].as_row());
hess_log -= diff_log.as_col() * diff_log.as_row();
//Compute the differential of the Hessian
return make_tuple(log_prob, diff_log, hess_log);
}
/**
Run the forward algorithm and return the log probability.
@ingroup gHMM
@param A \e A: State transition probabilities.
@param pi \e \f$\pi\f$: initial state probabilities.
@param O \e O or \e I: the observed data (ie the images).
@param B \f$B\f$: A function object giving the (log) probability of an observation given a state.
@returns the log probability of observing all the data.
*/
template<int States, class Btype, class Otype> double forward_algorithm(TooN::Matrix<States> A, TooN::Vector<States> pi, const Btype& B, const std::vector<Otype>& O)
{
using namespace TooN;
using namespace std;
using namespace std::tr1;
int states = pi.size();
//delta[j][i] = delta_t(i)
vector<array<double, States> > delta(O.size());
//Initialization: Eqn 19, P 262
//Set initial partial log probabilities:
for(int i=0; i < states; i++)
delta[0][i] = ln(pi[i]) + B.log(i, O[0]);
//Perform the recursion: Eqn 20, P262
//Note, use T and T-1. Rather than T+1 and T.
for(unsigned int t=1; t < O.size(); t++)
{
for(int j=0; j < states; j++)
{
double Ztj = -HUGE_VAL; //This is Z_t(j)
for(int i=0; i < states; i++)
Ztj = max(Ztj, delta[t-1][i] + ln(A[i][j]));
double sum=0;
for(int i=0; i < states; i++)
sum += exp(delta[t-1][i] + ln(A[i][j]) - Ztj);
delta[t][j] = B.log(j, O[t]) + Ztj + ln(sum);
}
}
//Compute the log prob using normalization
double Z = -HUGE_VAL;
for(int i=0; i < states; i++)
Z = max(Z, delta.back()[i]);
double sum =0;
for(int i=0; i < states; i++)
sum += exp(delta.back()[i] - Z);
double log_prob = Z + ln(sum);
return log_prob;
}
/**
Run the forward algorithm and return the log probability and its derivatives.
@ingroup gHMM
@param A \e A: State transition probabilities.
@param pi \e \f$\pi\f$: initial state probabilities.
@param O \e O or \e I: the observed data (ie the images).
@param B \f$B\f$: A function object giving the (log) probability of an observation given a state, and derivatives with respect to the parameters.
@returns the log probability of observing all the data.
*/
template<int States, class Btype, class Otype> std::pair<double, TooN::Vector<Btype::NumParameters> > forward_algorithm_deriv(TooN::Matrix<States> A, TooN::Vector<States> pi, const Btype& B, const std::vector<Otype>& O)
{
using namespace std::tr1;
double p;
TooN::Vector<Btype::NumParameters> v;
tie(p,v, ignore) = forward_algorithm_hessian(A, pi, B, O, 1, 0);
return make_pair(p,v);
}
/**
Run the forward algorithm and return the log partials (delta)
@ingroup gHMM
@param A \e A: State transition probabilities.
@param pi \e \f$\pi\f$: initial state probabilities.
@param O \e O or \e I: the observed data (ie the images).
@param B \f$B\f$: A function object giving the (log) probability of an observation given a state, and derivatives with respect to the parameters.
@returns the log probability of observing all the data.
*/
template<int States, class Btype, class Otype>
std::vector<std::tr1::array<double, States> >
forward_algorithm_delta(TooN::Matrix<States> A, TooN::Vector<States> pi, const Btype& B, const std::vector<Otype>& O)
{
using namespace TooN;
using namespace std;
using namespace std::tr1;
int states = pi.size();
//delta[j][i] = delta_t(i)
vector<array<double, States> > delta(O.size());
//Initialization: Eqn 19, P 262
//Set initial partial log probabilities:
for(int i=0; i < states; i++)
delta[0][i] = ln(pi[i]) + B.log(i, O[0]);
//Forward pass...
//Perform the recursion: Eqn 20, P262
//Note, use T and T-1. Rather than T+1 and T.
for(unsigned int t=1; t < O.size(); t++)
{
for(int j=0; j < states; j++)
{
double Ztj = -HUGE_VAL; //This is Z_t(j)
for(int i=0; i < states; i++)
Ztj = max(Ztj, delta[t-1][i] + ln(A[i][j]));
double sum=0;
for(int i=0; i < states; i++)
sum += exp(delta[t-1][i] + ln(A[i][j]) - Ztj);
delta[t][j] = B.log(j, O[t]) + Ztj + ln(sum);
}
}
return delta;
}
/**
Run the forward algorithm and return the log partials (delta)
@ingroup gHMM
@param A \e A: State transition probabilities.
@param pi \e \f$\pi\f$: initial state probabilities.
@param O \e O or \e I: the observed data (ie the images).
@param B \f$B\f$: A function object giving the (log) probability of an observation given a state, and derivatives with respect to the parameters.
@param delta the \f$\delta\f$ values
*/
template<int States, class Btype, class Otype>
void forward_algorithm_delta2(TooN::Matrix<States> A, TooN::Vector<States> pi, const Btype& B, const std::vector<Otype>& O, std::vector<std::tr1::array<double, States> >& delta)
{
using namespace TooN;
using namespace std;
using namespace std::tr1;
int states = pi.size();
//delta[j][i] = delta_t(i)
delta.resize(O.size());
//Initialization: Eqn 19, P 262
//Set initial partial log probabilities:
for(int i=0; i < states; i++)
delta[0][i] = ln(pi[i]) + B.log(i, O[0]);
Matrix<States> lA;
for(int r=0; r < States; r++)
for(int c=0; c < States; c++)
lA[r][c] = ln(A[r][c]);
//Forward pass...
//Perform the recursion: Eqn 20, P262
//Note, use T and T-1. Rather than T+1 and T.
for(unsigned int t=1; t < O.size(); t++)
{
for(int j=0; j < states; j++)
{
double Ztj = -HUGE_VAL; //This is Z_t(j)
for(int i=0; i < states; i++)
Ztj = max(Ztj, delta[t-1][i] + lA[i][j]);
double sum=0;
for(int i=0; i < states; i++)
sum += exp(delta[t-1][i] + lA[i][j] - Ztj);
delta[t][j] = B.log(j, O[t]) + Ztj + ln(sum);
}
}
}
/**
Run the forward-backwards algorithm and return the log partials (delta and epsilon).
@ingroup gHMM
@param A \e A: State transition probabilities.
@param pi \e \f$\pi\f$: initial state probabilities.
@param O \e O or \e I: the observed data (ie the images).
@param B \f$B\f$: A function object giving the (log) probability of an observation given a state, and derivatives with respect to the parameters.
@returns the log probability of observing all the data.
*/
template<int States, class Btype, class Otype>
std::pair<std::vector<std::tr1::array<double, States> >, std::vector<std::tr1::array<double, States> > >
forward_backward_algorithm(TooN::Matrix<States> A, TooN::Vector<States> pi, const Btype& B, const std::vector<Otype>& O)
{
using namespace TooN;
using namespace std;
using namespace std::tr1;
int states = pi.size();
//delta[j][i] = delta_t(i)
vector<array<double, States> > delta = forward_algorithm_delta(A, pi, B, O);
///Backward pass
///Epsilon is log beta
vector<array<double, States> > epsilon(O.size());
//Initialize beta to 1, ie epsilon to 0
for(int i=0; i < states; i++)
epsilon[O.size()-1][i] = 0;
//Perform the backwards recursion
for(int t=O.size()-2; t >= 0; t--)
{
for(int i=0; i < states; i++)
{
//Find a normalizing constant
double Z = -HUGE_VAL;
for(int j=0; j < states; j++)
Z = max(Z, ln(A[i][j]) + B.log(j, O[t+1]) + epsilon[t+1][j]);
double sum=0;
for(int j= 0; j < states; j++)
sum += exp(ln(A[i][j]) + B.log(j, O[t+1]) + epsilon[t+1][j] - Z);
epsilon[t][i] = ln(sum) + Z;
}
}
return make_pair(delta, epsilon);
}
/*struct RngDrand48
{
double operator()()
{
return drand48();
}
};*/
///Select an element from the container v, assuming that v is a
///probability distribution over elements up to some scale.
///@param v Uscaled probability distribution
///@param scale Scale of v
///@param rng Random number generator to use
///@ingroup gHMM
template<class A, class Rng> int select_random_element(const A& v, const double scale, Rng& rng)
{
double total=0, choice = rng()*scale;
for(int i=0; i < (int)v.size(); i++)
{
total += v[i];
if(choice <= total)
return i;
}
return v.size()-1;
}
///Select an element from the a, assuming that a stores unscaled
///log probabilities of the elements
///@param a Uscaled probability distribution, stored as logarithms.
///@param rng Random number generator to use
///@ingroup gHMM
template<int N, class Rng> int sample_unscaled_log(std::tr1::array<double, N> a, Rng& rng)
{
double hi = *max_element(a.begin(), a.end());
double sum=0;
for(unsigned int i=0; i < a.size(); i++)
{
a[i] = exp(a[i] - hi);
sum += a[i];
}
return select_random_element(a, sum, rng);
}
///An implementation of the backwards sampling part of the forwards filtering/backwards sampling algorithm.
/// See `Monte Carlo smoothing for non-linear time series', Godsill and Doucet, JASA 2004
///@param A HMM transition matrix.
///@param delta Forward partial probabilities stored as logarithms.
///@param rng Random number generator to use
///@returns state at each time step.
///@ingroup gHMM
template<int States, class StateType, class Rng>
std::vector<StateType> backward_sampling(TooN::Matrix<States> A, const std::vector<std::tr1::array<double, States> >& delta, Rng& rng)
{
//Compute the elementwise log of A
for(int r=0; r < A.num_rows(); r++)
for(int c=0; c < A.num_cols(); c++)
A[r][c] = ln(A[r][c]);
std::vector<StateType> samples(delta.size());
samples.back() = sample_unscaled_log<States, Rng>(delta.back(), rng);
//A is A[t][t+1]
for(int i=delta.size()-2; i >= 0; i--)
{
std::tr1::array<double, States> reverse_probabilities = delta[i];
for(int j=0; j < States; j++)
reverse_probabilities[j] += A[j][samples[i+1]];
samples[i] = sample_unscaled_log<States, Rng>(reverse_probabilities, rng);
}
return samples;
}
/*
template<int States, class StateType>
std::vector<StateType> backward_sampling(const TooN::Matrix<States> &A, const std::vector<std::tr1::array<double, States> >& delta)
{
RngDrand48 d;
return backward_sampling<States, StateType, RngDrand48>(A, delta, d);
}
///@overload
template<int States>
std::vector<int> backward_sampling(const TooN::Matrix<States>& A, const std::vector<std::tr1::array<double, States> >& delta)
{
RngDrand48 d;
return backward_sampling<States, int, RngDrand48>(A, delta, d);
}
*/
#endif