-
Notifications
You must be signed in to change notification settings - Fork 2
/
convolutionalnetwork.py
84 lines (62 loc) · 3.03 KB
/
convolutionalnetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Building the CNN
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# PART 1 Intialising the CNN
classifier = Sequential()
#hello this is testing
# STEP1:CONVOLUTION
classifier.add(Conv2D(32,3, 3, input_shape = ( 64,64,3), activation = 'relu'))
# 32 is the no. of filter used
# 3 is the no of rows in the filter
# 43 is the no. of column in the filter
# STEP 2 POOLING
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# adding second covolutional layer
classifier.add(Conv2D(32,3, 3, activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
#Size is taken as 2*2
#STEP 3 Flattening
classifier.add(Flatten())
#STEP 4 FULL CONNECTION
classifier.add(Dense(output_dim=128, activation = 'relu'))
classifier.add(Dense(output_dim=1, activation = 'sigmoid'))
#binary output that why sigmoid if more than 2 output we use softmax activation
# compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# PART 2 Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2)
# horiontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)
#steps for epochs is the no. of images in the training data set
#prediction of first image of dog
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('dataset/single_prediction/cat_or_dog_2.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
training_set.class_indices
if result[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'