-
Notifications
You must be signed in to change notification settings - Fork 6
/
utils.py
297 lines (240 loc) · 11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch.nn.functional as F
import torch
import sys, os, glob
import json
import numpy as np
import torch.nn as nn
import torchgeometry as tgm
import logging
import datetime
import random
from scipy.spatial.transform import Rotation as R
import copy
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class ContinousRotReprDecoder(nn.Module):
def __init__(self):
super(ContinousRotReprDecoder, self).__init__()
# def forward(self, module_input):
# reshaped_input = module_input.view(-1, 3, 2)
# b1 = F.normalize(reshaped_input[:, :, 0], dim=1)
# dot_prod = torch.sum(b1 * reshaped_input[:, :, 1], dim=1, keepdim=True)
# b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=-1)
# b3 = torch.cross(b1, b2, dim=1)
#
# return torch.stack([b1, b2, b3], dim=-1)
@staticmethod
def decode(module_input):
reshaped_input = module_input.view(-1, 3, 2)
b1 = F.normalize(reshaped_input[:, :, 0], dim=1)
dot_prod = torch.sum(b1 * reshaped_input[:, :, 1], dim=1, keepdim=True)
b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=-1)
b3 = torch.cross(b1, b2, dim=1)
return torch.stack([b1, b2, b3], dim=-1)
@staticmethod
def matrot2aa(pose_matrot): # input: [bs, 3, 3]
'''
:param pose_matrot: Nx1xnum_jointsx9
:return: Nx1xnum_jointsx3
'''
homogen_matrot = F.pad(pose_matrot.view(-1, 3, 3), [0,1]) # [bs, 3, 4], float
pose = tgm.rotation_matrix_to_angle_axis(homogen_matrot).view(-1, 3).contiguous()
return pose
@staticmethod
def aa2matrot(pose):
'''
:param Nx1xnum_jointsx3
:return: pose_matrot: Nx1xnum_jointsx9
'''
pose_body_matrot = tgm.angle_axis_to_rotation_matrix(pose.reshape(-1, 3))[:, :3, :3].contiguous()
return pose_body_matrot
def verts_transform(verts_batch, cam_ext_batch):
# transfrom verts to world coornidate
verts_batch_homo = F.pad(verts_batch, (0, 1), mode='constant', value=1)
verts_batch_homo_transformed = torch.matmul(verts_batch_homo,
cam_ext_batch.permute(0, 2, 1))
verts_batch_transformed = verts_batch_homo_transformed[:, :, :-1]
return verts_batch_transformed
def get_contact_id(body_segments_folder, contact_body_parts=['L_Hand', 'R_Hand']):
contact_verts_ids = []
contact_faces_ids = []
for part in contact_body_parts:
with open(os.path.join(body_segments_folder, part + '.json'), 'r') as f:
data = json.load(f)
contact_verts_ids.append(list(set(data["verts_ind"])))
contact_faces_ids.append(list(set(data["faces_ind"])))
contact_verts_ids = np.concatenate(contact_verts_ids)
contact_faces_ids = np.concatenate(contact_faces_ids)
return contact_verts_ids, contact_faces_ids
def normalize_global_T(x_batch, cam_intrisic, max_depth):
'''
according to the camera intrisics and maximal depth,
normalize the global translate to [-1, 1] for X, Y and Z.
input: [transl, rotation, local params]
'''
xt_batch = x_batch[:, :3]
xr_batch = x_batch[:, 3:]
fx_batch = cam_intrisic[:, 0, 0]
fy_batch = cam_intrisic[:, 1, 1]
px_batch = cam_intrisic[:, 0, 2]
py_batch = cam_intrisic[:, 1, 2]
s_ = 1.0 / torch.max(px_batch, py_batch)
x = s_ * xt_batch[:, 0] * fx_batch / (xt_batch[:, 2] + 1e-6)
y = s_ * xt_batch[:, 1] * fy_batch / (xt_batch[:, 2] + 1e-6)
z = 2.0 * xt_batch[:, 2] / max_depth - 1.0
xt_batch_normalized = torch.stack([x, y, z], dim=-1)
return torch.cat([xt_batch_normalized, xr_batch], dim=-1)
def recover_global_T(x_batch, cam_intrisic, max_depth):
'''
according to the camera intrisics and maximal depth,
recover the translate from [-1, 1] for X, Y and Z, to the physical unit.
input: [transl, rotation, local params]
'''
xt_batch = x_batch[:, :3]
xr_batch = x_batch[:, 3:]
fx_batch = cam_intrisic[:, 0, 0]
fy_batch = cam_intrisic[:, 1, 1]
px_batch = cam_intrisic[:, 0, 2]
py_batch = cam_intrisic[:, 1, 2]
s_ = 1.0 / torch.max(px_batch, py_batch)
z = (xt_batch[:, 2] + 1.0) / 2.0 * max_depth
x = xt_batch[:, 0] * z / s_ / fx_batch
y = xt_batch[:, 1] * z / s_ / fy_batch
xt_batch_recoverd = torch.stack([x, y, z], dim=-1)
return torch.cat([xt_batch_recoverd, xr_batch], dim=-1)
def convert_to_6D_rot(x_batch):
'''
input: [transl, rotation, local params]
convert global rotation from Eular angle to 6D continuous representation
'''
xt = x_batch[:, :3]
xr = x_batch[:, 3:6]
xb = x_batch[:, 6:]
xr_mat = ContinousRotReprDecoder.aa2matrot(xr) # return [:,3,3]
xr_repr = xr_mat[:, :, :-1].reshape([-1, 6])
return torch.cat([xt, xr_repr, xb], dim=-1)
def convert_to_3D_rot(x_batch):
'''
input: [transl, 6d rotation, local params]
convert global rotation from 6D continuous representation to Eular angle
'''
xt = x_batch[:, :3] # (reconstructed) normalized global translation
xr = x_batch[:, 3:9] # (reconstructed) 6D rotation vector
xb = x_batch[:, 9:] # pose $ shape parameters
xr_mat = ContinousRotReprDecoder.decode(xr) # [bs,3,3]
xr_aa = ContinousRotReprDecoder.matrot2aa(xr_mat) # return [:,3]
return torch.cat([xt, xr_aa, xb], dim=-1)
def get_logger(logdir):
logger = logging.getLogger('emotion')
ts = str(datetime.datetime.now()).split('.')[0].replace(" ", "_")
ts = ts.replace(":", "_").replace("-","_")
file_path = os.path.join(logdir, 'run_{}.log'.format(ts))
hdlr = logging.FileHandler(file_path)
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
hdlr.setFormatter(formatter)
logger.addHandler(hdlr)
logger.setLevel(logging.INFO)
return logger
def save_config(logdir, config):
param_path = os.path.join(logdir, "params.json")
print("[*] PARAM path: %s" % param_path)
with open(param_path, 'w') as fp:
json.dump(config.__dict__, fp, indent=4, sort_keys=True)
def recursive_glob(rootdir=".", suffix=""):
"""Performs recursive glob with given suffix and rootdir
:param rootdir is the root directory
:param suffix is the suffix to be searched
"""
image_paths = []
for looproot, _, filenames in os.walk(rootdir):
for filename in filenames:
if filename.endswith(suffix):
image_paths.append(os.path.join(looproot, filename))
return image_paths
def body_params_encapsulate_batch(x_body_rec):
body_params_batch_rec = {}
body_params_batch_rec['transl'] = x_body_rec[:, :3]
body_params_batch_rec['global_orient'] = x_body_rec[:, 3:6]
body_params_batch_rec['betas'] = x_body_rec[:, 6:16]
body_params_batch_rec['body_pose_vp'] = x_body_rec[:, 16:48]
body_params_batch_rec['left_hand_pose'] = x_body_rec[:, 48:60]
body_params_batch_rec['right_hand_pose'] = x_body_rec[:, 60:]
return body_params_batch_rec
def body_params_parse(body_params_batch):
'''
input: body_params
|-- transl: global translation, [1, 3D]
|-- global_orient: global rotation, [1, 3D]
|-- betas: body shape, [1, 10D]
|-- body_pose: in Vposer latent space, [1, 32D]
|-- left_hand_pose: [1, 12]
|-- right_hand_pose: [1, 12]
|-- camera_translation: [1, 3D]
|-- camera_rotation: [1, 3x3 mat]
z_s: scene representation [1, 128D]
'''
## parse body_params_batch
x_body_T = body_params_batch['transl']
x_body_R = body_params_batch['global_orient']
x_body_beta = body_params_batch['betas']
x_body_pose = body_params_batch['body_pose_vp']
x_body_lh = body_params_batch['left_hand_pose']
x_body_rh = body_params_batch['right_hand_pose']
x_body = np.concatenate([x_body_T, x_body_R,
x_body_beta, x_body_pose,
x_body_lh, x_body_rh], axis=-1)
return x_body
def gen_body_mesh(body_params, body_pose_joint, smplx_model):
# input: body_params/body_pose_joint: tensor batch
# output: body_verts: np array batch
body_params_dict = body_params_encapsulate_batch(body_params)
body_param_ = {}
for key in body_params_dict.keys():
if key in ['body_pose_vp']:
continue
else:
body_param_[key] = body_params_dict[key]
smplx_output = smplx_model(return_verts=True, body_pose=body_pose_joint, **body_param_) # generated human body mesh
body_verts = smplx_output.vertices # [bs, n_body_vert, 3]
return body_verts
def update_globalRT_for_smplx(body_params, smplx_model, trans_to_target_origin, delta_T=None):
'''
input:
body_params: array, [72], under camera coordinate
smplx_model: the model to generate smplx mesh, given body_params
trans_to_target_origin: coordinate transformation [4,4] mat
Output:
body_params with new globalR and globalT, which are corresponding to the new coord system
'''
### step (1) compute the shift of pelvis from the origin
body_params_dict = {}
body_params_dict['transl'] = np.expand_dims(body_params[:3], axis=0)
body_params_dict['global_orient'] = np.expand_dims(body_params[3:6], axis=0)
body_params_dict['betas'] = np.expand_dims(body_params[6:16], axis=0)
body_params_dict['body_pose_vp'] = np.expand_dims(body_params[16:48], axis=0)
body_params_dict['left_hand_pose'] = np.expand_dims(body_params[48:60], axis=0)
body_params_dict['right_hand_pose'] = np.expand_dims(body_params[60:], axis=0)
body_param_dict_torch = {}
for key in body_params_dict.keys():
body_param_dict_torch[key] = torch.FloatTensor(body_params_dict[key]).to(device)
if delta_T is None:
body_param_dict_torch['transl'] = torch.zeros([1,3], dtype=torch.float32).to(device)
body_param_dict_torch['global_orient'] = torch.zeros([1,3], dtype=torch.float32).to(device)
smplx_out = smplx_model(return_verts=True, **body_param_dict_torch)
delta_T = smplx_out.joints[0,0,:] # (3,)
delta_T = delta_T.detach().cpu().numpy()
### step (2): calibrate the original R and T in body_params
body_R_angle = body_params_dict['global_orient'][0]
body_R_mat = R.from_rotvec(body_R_angle).as_dcm() # to a [3,3] rotation mat
body_T = body_params_dict['transl'][0]
body_mat = np.eye(4)
body_mat[:-1,:-1] = body_R_mat
body_mat[:-1, -1] = body_T + delta_T
### step (3): perform transformation, and decalib the delta shift
body_params_dict_new = copy.deepcopy(body_params_dict)
body_mat_new = np.dot(trans_to_target_origin, body_mat)
body_R_new = R.from_dcm(body_mat_new[:-1,:-1]).as_rotvec()
body_T_new = body_mat_new[:-1, -1]
body_params_dict_new['global_orient'] = body_R_new.reshape(1,3)
body_params_dict_new['transl'] = (body_T_new - delta_T).reshape(1,3)
body_param_new = body_params_parse(body_params_dict_new)[0] # array, [72]
return body_param_new