-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtestrun.py
724 lines (651 loc) · 24.7 KB
/
testrun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
'''
@authors: Aaron John, Sean Trinh, Hariharan Vijayachandran
'''
import shift
import sys
import time
import random
import pandas as pd
from statsmodels.tsa.arima_model import ARIMA
#import keras
from numpy.linalg import LinAlgError
import statsmodels.api as sm
COMPANIES = ['MMM','AXP','AAPL','BA','CAT','CVX','CSCO','KO',
'DIS','DWDP','XOM','GS','HD','IBM','INTC','JNJ',
'JPM','MCD','MRK','MSFT','NKE','PFE','PG','TRV',
'UTX','UNH','VZ','V','WMT','WBA']
#Sticker symbols of companies in the Dow Jones
NUM_COMPANIES = 30 #Number of companies in the Dow Jones
MIN_TRANSACTIONS = 10 #Minimum number of transactions that need to be included to avoid $100,000 penalty
#NUM_ARIMA = x #Size of the ARIMA dataset
account_balance = 1000000.00 #Beginning account balance, adjust as necessary
BUFFER_SIZE = 50
#state 0: initial state, gather data, get prediction
#state 1: buy order is put in if the stock price increases by a certain percent
THRESHOLD = 0.0004
# PURCHASE_SIZE = 1
NUM_TRADES = 0
start = 0.0
TIME_TO_CLOSE = 1800.0
TIME_TO_STOP_BUY = TIME_TO_CLOSE*.92 #equates to TIME_TO_CLOSE-15-18min on a normal trading day, calculated for when
TIME_TO_SELL = TIME_TO_CLOSE*.98
class Stock:
def __init__(self,comp_name):
self.name = comp_name
self.state = 0
self.current_price = 0.0
self.predicted_price = 0.0
self.BO = False
self.SO = False
self.H = False
self.S = False
self.price = []
self.Holding = 0
def add_data(self,prices):
self.price += prices
if len(self.price) > 90 :
self.price = self.price[30:]
def zero(stk, trader):
global NUM_TRADES
if time.time() - start > TIME_TO_STOP_BUY:
return
pressure = get_pressure(stk.name, trader)
# pressure = -1.0
if (-1.0/3.0) <= pressure <= (1.0/3.0):
return
prediction = get_prediction(stk, trader)
PURCHASE_SIZE = purchasizing_size(stk,trader)
current_holding = trader.getPortfolioItem(stk.name).getShares()
if current_holding < 0:
PURCHASE_SIZE = PURCHASE_SIZE + abs(current_holding)
PURCHASE_SIZE = int(PURCHASE_SIZE)
stk.current_price = get_current_price(stk.name, trader)
if (prediction - stk.current_price) / stk.current_price >= THRESHOLD and pressure < 0.0:
limit_buy = shift.Order(shift.Order.LIMIT_BUY, stk.name, PURCHASE_SIZE, prediction)
trader.submitOrder(limit_buy)
stk.BO = True
stk.predicted_price = prediction
stk.state = 1
return
# print("Changed State from 0 to 1")
# SHORTING PORTION
if (prediction - stk.current_price) / stk.current_price <= -1.5*THRESHOLD and pressure > 0.0:
# print("SHORTING "+stk.name)
trader.submitOrder(shift.Order(shift.Order.MARKET_SELL, stk.name, size=2))
stk.S = True
stk.H = True
stk.state = 4
stk.predicted_price = prediction
limit_buy = shift.Order(shift.Order.LIMIT_BUY, stk.name, 3, stk.predicted_price)
trader.submitOrder(limit_buy)
stk.BO = True
NUM_TRADES+=1
return
def one(stk, trader):
global NUM_TRADES
if buy_order_executed(stk.name, trader):
stk.current_price = stk.predicted_price
stk.BO = False
stk.H = True
stk.state = 2
NUM_TRADES+=1
# print("Changed State from 1 to 2")
return
if time.time()-start>TIME_TO_STOP_BUY:
cancel_buy_order(stk.name,trader)
stk.BO = False
stk.state = 0;
return
pressure = get_pressure(stk.name, trader)
# pressure = -1.0
if (-1.0 / 3.0) <= pressure <= (1.0 / 3.0):
return
prediction = get_prediction(stk, trader)
stk.current_price = get_current_price(stk.name, trader)
if prediction < stk.predicted_price and prediction < stk.current_price and pressure < 0.0:
update_buy_order(stk, trader, prediction)
stk.predicted_price = prediction
return
# elif prediction>stk.current_price:
# cancel_buy_order(stk.name,trader)
# stk.BO = False
# stk.state = 0
# return
def two(stk, trader):
global THRESHOLD
global NUM_TRADES
price_current = get_current_price(stk.name, trader)
if (stk.current_price - price_current) / stk.current_price >= .01:
stop_loss(stk.name,trader)
stk.H = False
stk.state = 0
NUM_TRADES += 1
return
pressure = get_pressure(stk.name, trader)
# pressure = 1.0
if (-1.0 / 3.0) <= pressure <= (1.0 / 3.0):
return
prediction = get_prediction(stk, trader)
# if time.time() - start > TIME_TO_STOP_BUY:
# THRESHOLD /= 1.5
PURCHASE_SIZE = trader.getPortfolioItem(stk.name).getShares()
if PURCHASE_SIZE < 0:
return
if (prediction - stk.current_price) / stk.current_price <= -1.0*THRESHOLD and pressure > 0.0:
if expected_sell_return(stk, trader, prediction) > 0:
limit_sell = shift.Order(shift.Order.LIMIT_SELL, stk.name, PURCHASE_SIZE, prediction)
trader.submitOrder(limit_sell)
stk.SO = True
stk.state = 3
return
# if (prediction - stk.current_price) / stk.current_price <= -1.5*THRESHOLD and pressure > 0.0:
# # print("SHORTING "+stk.name)
# trader.submitOrder(shift.Order(shift.Order.MARKET_SELL, stk.name, size=2))
# stk.S = True
# stk.H = True
# stk.state = 4
# stk.predicted_price = prediction
# limit_buy = shift.Order(shift.Order.LIMIT_BUY, stk.name, 3, stk.predicted_price)
# trader.submitOrder(limit_buy)
# stk.BO = True
# NUM_TRADES+=1
# return
# current_holding = trader.getPortfolioItem(stk.name).getShares()
# if current_holding < 0:
# if (stk.current_price - prediction) / stk.current_price >= THRESHOLD and pressure < 0.0:
# limit_buy = shift.Order(shift.Order.LIMIT_BUY, stk.name, current_holding, prediction)
# trader.submitOrder(limit_buy)
# stk.BO = True
# stk.predicted_price = prediction
# stk.state = 1
# return
# PURCHASE_SIZE = trader.getPortfolioItem(stk.name).getShares()
# if (prediction - stk.current_price) / stk.current_price >= THRESHOLD and pressure > 0.0:
# if expected_sell_return(stk,trader,prediction) > 2:
# limit_sell = shift.Order(shift.Order.LIMIT_SELL, stk.name, PURCHASE_SIZE, prediction)
# trader.submitOrder(limit_sell)
# stk.SO = True
# stk.state = 3
# if (prediction - stk.current_price) / stk.current_price >= 5 * THRESHOLD and pressure > 0.0:
# # print("SHORTING "+stk.name)
# trader.submitOrder(shift.Order(shift.Order.MARKET_SELL, stk.name, size=3))
# stk.S = True
# stk.H = True
# stk.state = 4
# stk.predicted_price = prediction
# limit_buy = shift.Order(shift.Order.LIMIT_BUY, stk.name, 2, stk.predicted_price)
# trader.submitOrder(limit_buy)
# stk.BO = True
# NUM_TRADES += 1
# return
# print("Changed state from 2 to 3")
def three(stk, trader):
global THRESHOLD
if sell_order_executed(stk.name, trader):
stk.SO = False
stk.H = False
stk.state = 0
global NUM_TRADES
NUM_TRADES += 1
# print("Changed state from 3 to 0")
return
price_current = get_current_price(stk.name, trader)
if ( stk.current_price - price_current) / stk.current_price >= .25:
stop_loss(stk.name,trader)
stk.H = False
stk.BO = False
stk.state = 0
return
pressure = get_pressure(stk.name, trader)
# pressure = 1.0
if (-1.0 / 3.0) <= pressure <= (1.0 / 3.0):
return
prediction = get_prediction(stk, trader)
# if time.time() - start > TIME_TO_STOP_BUY:
# THRESHOLD /= 2.0
if prediction > stk.predicted_price and prediction > stk.current_price and pressure > 0.0:
update_sell_order(stk, trader, prediction)
stk.predicted_price = prediction
return
def four(stk,trader):
global THRESHOLD
if buy_order_executed(stk.name, trader):
stk.current_price = stk.predicted_price
stk.BO = False
stk.H = False
stk.state = 0
global NUM_TRADES
NUM_TRADES+=1
# print("Changed State from 1 to 2")
return
# if time.time()-start>TIME_TO_STOP_BUY:
# THRESHOLD/=2.0
pressure = get_pressure(stk.name, trader)
# pressure = -1.0
if (-1.0 / 3.0) <= pressure <= (1.0 / 3.0):
return
prediction = get_prediction(stk, trader)
stk.current_price = get_current_price(stk.name, trader)
if prediction < stk.predicted_price and prediction < stk.current_price and pressure < 0.0:
update_buy_order(stk, trader, prediction)
stk.predicted_price = prediction
return
STATES_TRANSITION = {0:zero, 1:one, 2:two, 3:three, 4: four}
def get_prediction(stk, trader, p=3,d=1,q=0):
'''
:param stk: The stock object
:param trader: The trader object
:param p: Default value 3
:param d: Default value 1
:param q: Default value 0
:return: A prediction as a float
'''
actual = trader.getSamplePrices(stk.name, midPrices=True)
while len(actual) < 30: # Collect 30 data points
actual = trader.getSamplePrices(stk.name, midPrices=True)
stk.add_data(actual)
try:
model = ARIMA(stk.price, order=(p,d,q))
model_fit = model.fit(disp = 0)
prediction = model_fit.forecast(5)[0][4]
except (ValueError, LinAlgError):
prediction = stk.price[-1]
return prediction
def expected_sell_return(stk, trader, predicted_price):
'''
:param stk: The stock object
:param trader: The trader object
:param predicted_price: The predicted price
:return: The expected return after selling
'''
size = trader.getPortfolioItem(stk.name).getShares()
purchase_price = trader.getPortfolioItem(stk.name).getPrice()
expected = size * (predicted_price - purchase_price - 0.002)
return expected
def expected_return(stk, predicted_price, extrapolated_price):
'''
:param stk: The stock object
:param predicted_price: Purchase Price
:param extrapolated_price: 'Future Selling Price'
:param size: Size of Purchase Shares
:return: Expected Return
'''
purchase_price = predicted_price
predicted_price = extrapolated_price
expected = (predicted_price-purchase_price-.002)
return expected
def get_extrapolated_prediction(stk, trader, p=3, d = 1, q=0):
'''
:param stk: The stock object
:param trader: The trader object
:param p: Default value 3
:param d: Default value 1
:param q: Default value 0
:return: A prediction as a float
'''
actual = trader.getSamplePrices(stk.name, midPrices=True)
while len(actual) < 30: # Collect 30 data points
actual = trader.getSamplePrices(stk.name, midPrices=True)
stk.add_data(actual)
try:
model = ARIMA(stk.price, order=(p,d,q))
model_fit = model.fit(disp = 0)
prediction = model_fit.forecast(10)[0][9]
except (ValueError, LinAlgError):
prediction = stk.price[-1]
return prediction
def purchasizing_size (stk, trader):
'''
:param stk: The stock object
:param trader: The trader object
:return: The number of shares to purchase **returns**
'''
buying_power = trader.getPortfolioSummary().getTotalBP()
current_price = get_prediction(stk, trader)
future_price = get_extrapolated_prediction(stk,trader)
if future_price > current_price:
shares = buying_power/current_price
shares = int(shares/100)
if shares == 0:
return 1
if shares > 4:
shares = 4
trend = future_price - current_price
if trend > 0:
expected = expected_return(stk,current_price,future_price)
retrn = 3/expected
if 0 < retrn < 1.0:
return 4
elif 0.99 < retrn < 2:
return 3
elif 1.99 < retrn < 3:
return 2
else:
return 1
else:
return 1
else:
return 1
# while True:
# if shares == 0:
# return 1
# if shares > 4:
# shares = 4
# while shares > 1:
# expected = 2/expected_return(stk,current_price,future_price)
# if 0 < expected < 0.7:
# return 4
# elif 0.69 < expected < 1.3:
# return 3
# else:
# return 2
# expected = expected_return(stk,current_price,future_price,shares)
# res = 2/expected
# if 0 < res < 0.7:
# return 4
# else:
# shares = 3
# expected = expected_return(stk, current_price, future_price, shares)
# res = 2/expected
# if 0 < res < 1.3:
# return 3
# else:
# return 2
# else:
# return 1
def update_buy_order(stk, trader, price):
'''
:param stk: The stock object
:param trader: The trader object
:param price: The price for the new buy order
:return: N/A
'''
for order in trader.getWaitingList():
if order.symbol == stk.name and order.type == shift.Order.LIMIT_BUY:
order.type = shift.Order.CANCEL_BID
trader.submitOrder(order)
PURCHASE_SIZE = purchasizing_size(stk, trader)
limit_buy = shift.Order(shift.Order.LIMIT_BUY, stk.name, PURCHASE_SIZE, price)
trader.submitOrder(limit_buy)
return
stk.current_price = stk.predicted_price
stk.BO = False
stk.H = True
stk.state = 2
def update_sell_order(stk, trader, price):
'''
:param stk: The stock object
:param trader: The trader object
:param price: The price for the new sell order
:return: N/A
'''
for order in trader.getWaitingList():
if order.symbol == stk.name and order.type == shift.Order.LIMIT_SELL:
order.type = shift.Order.CANCEL_ASK
trader.submitOrder(order)
PURCHASE_SIZE = trader.getPortfolioItem(stk.name).getShares()
limit_sell = shift.Order(shift.Order.LIMIT_SELL, stk.name, PURCHASE_SIZE, price)
trader.submitOrder(limit_sell)
return
stk.SO = False
stk.H = False
stk.state = 0
def buy_order_executed(stock, trader):
'''
:param stock: The stock symbol
:param trader: The trader object
:return: True if the buy order was executed; False if not
'''
for order in trader.getWaitingList():
if order.symbol == stock and order.type == shift.Order.LIMIT_BUY:
return False
return True
def cancel_buy_order(stock, trader):
'''
:param stock: The stock symbol
:param trader: The trader object
:return: N/A
'''
for order in trader.getWaitingList():
if order.symbol == stock and order.type == shift.Order.LIMIT_BUY:
order.type = shift.Order.CANCEL_BID
trader.submitOrder(order)
def cancel_sell_order(stock, trader):
'''
:param stock: The stock symbol
:param trader: The trader object
:return: N/A
'''
for order in trader.getWaitingList():
if order.symbol == stock and order.type == shift.Order.LIMIT_SELL:
order.type = shift.Order.CANCEL_ASK
trader.submitOrder(order)
def stop_loss(stock, trader):
'''
:param stock: The stock symbol
:param trader: The trader object
:return: N/A
'''
# print("stop loss")
cancel_sell_order(stock,trader)
portfolio_item = trader.getPortfolioItem(stock)
num_shares = int(portfolio_item.getShares()/100)
trader.submitOrder(shift.Order(shift.Order.MARKET_SELL, stock, size=num_shares))
def sell_order_executed(stock, trader):
'''
:param stock: The stock symbol
:param trader: The trader object
:return: True if the sell order was executed; False if not
'''
for order in trader.getWaitingList():
if order.symbol == stock and order.type == shift.Order.LIMIT_SELL:
return False
return True
def get_pressure(stk_name, trader):
'''
:param stk_name: The stock symbol
:param trader: The trader object
:return: The buying/selling pressure as calculated by:
(B - A) / (B + A)
where B = the highest bid size and A = the highest ask size
'''
bid_book = trader.getOrderBook(stk_name, shift.OrderBookType.GLOBAL_BID, 1)
ask_book = trader.getOrderBook(stk_name, shift.OrderBookType.GLOBAL_ASK, 1)
pressure = 0
if len(bid_book) == 1 and len(ask_book) == 1:
bid_size = bid_book[0].size
ask_size = ask_book[0].size
pressure = float(bid_size - ask_size) / float(bid_size + ask_size)
return pressure
def get_current_price(stock, trader):
'''
:param stock: Stock symbol
:param trader: the trader
:return: the current price of the given stock
Calculated by getting the average of the highest bid price and highest ask price
'''
current_price = 0.00
bid_book = trader.getOrderBook(stock, shift.OrderBookType.GLOBAL_BID, 1)
ask_book = trader.getOrderBook(stock, shift.OrderBookType.GLOBAL_ASK, 1)
if len(bid_book) == 1 and len(ask_book) == 1:
bid_price = bid_book[0].price
ask_price = ask_book[0].price
current_price = (bid_price + ask_price) / 2.0
return current_price
def cancelAllPendingOrders(trader):
"""
This method cancels all the orders in the waiting list.
:param trader:
:return:
"""
print("Symbol\t\t\t\t\t Type\t Price\t\tSize\tID\t\t\t\t\t\t\t\t\t\tTimestamp")
for order in trader.getWaitingList():
print("%6s\t%21s\t%7.2f\t\t%4d\t%36s\t%26s" %
(order.symbol, order.type, order.price, order.size, order.id, order.timestamp))
print()
print("Waiting list size: " + str(trader.getWaitingListSize()))
print("Canceling all pending orders...", end=" ")
# trader.cancelAllPendingOrders() also works
for order in trader.getWaitingList():
if order.type == shift.Order.LIMIT_BUY:
order.type = shift.Order.CANCEL_BID
else:
order.type = shift.Order.CANCEL_ASK
trader.submitOrder(order)
i = 0
while trader.getWaitingListSize() > 0:
i += 1
print(i, end=" ")
time.sleep(1)
print()
print("Waiting list size: " + str(trader.getWaitingListSize()))
return
def printSummary(trader):
"""
This method provides information on the structure of PortfolioSummary and PortfolioItem objects:
getPortfolioSummary() returns a PortfolioSummary object with the following data:
1. Total Buying Power (totalBP)
2. Total Shares (totalShares)
3. Total Realized Profit/Loss (totalRealizedPL)
4. Timestamp of Last Update (timestamp)
getPortfolioItems() returns a dictionary with "symbol" as keys and PortfolioItem as values, with each providing the following information:
1. Symbol (getSymbol())
2. Shares (getShares())
3. Price (getPrice())
4. Realized Profit/Loss (getRealizedPL())
5. Timestamp of Last Update (getTimestamp())
:param trader:
:return:
"""
print("Buying Power\tTotal Shares\tTotal P&L\tTimestamp")
print("%12.2f\t%12d\t%9.2f\t%26s" % (trader.getPortfolioSummary().getTotalBP(),
trader.getPortfolioSummary().getTotalShares(),
trader.getPortfolioSummary().getTotalRealizedPL(),
trader.getPortfolioSummary().getTimestamp()))
print()
print("Symbol\t\tShares\t\tPrice\t\tP&L\t\tTimestamp")
for item in trader.getPortfolioItems().values():
print("%6s\t\t%6d\t%9.2f\t%7.2f\t\t%26s" %
(item.getSymbol(), item.getShares(), item.getPrice(), item.getRealizedPL(), item.getTimestamp()))
return
def request_prices(trader):
flag = trader.requestSamplePrices(COMPANIES) # Input needs to be a list
while not flag:
flag = trader.requestSamplePrices(COMPANIES)
def main(argv):
'''
STEP 0
'''
# create trader object
trader = shift.Trader("test002") #Change this?
# trader = shift.Trader("wolves_of_wall_street")
# connect and subscribe to all available order books
try:
trader.connect("initiator.cfg", "password")
# trader.connect("initiator.cfg", "ubd7w26JahGS9p4A")
trader.subAllOrderBook()
except shift.IncorrectPassword as e:
print(e)
except shift.ConnectionTimeout as e:
print(e)
'''
STEP 1
'''
# 6.5 hours = 23400
global start
start = time.time()
#Create PortfolioItems for each company?
#Create PortfolioSummary
'''
STEP 2
'''
#EXECUTE METHODS
stock_data = []
for company in COMPANIES:
stock_data.append(Stock(company))
# stock_data.append(Stock(COMPANIES[2]))
request_prices(trader) # Make the connection to get sample prices (requestSamplePrices) for all companies
while time.time() - start < TIME_TO_STOP_BUY: # 22500 corresponds to 3:45
#Execute trades and stuff
s = time.time()
for stk in stock_data:
STATES_TRANSITION[stk.state](stk, trader)
printSummary(trader)
'''
STEP 3
'''
while time.time() - start < TIME_TO_SELL:
for stk in stock_data:
global THRESHOLD
global NUM_TRADES
price_current = get_current_price(stk.name, trader)
pressure = get_pressure(stk.name, trader)
# pressure = 1.0
prediction = get_prediction(stk, trader,1,1,0)
# if time.time() - start > TIME_TO_STOP_BUY:
# THRESHOLD /= 1.5
PURCHASE_SIZE = trader.getPortfolioItem(stk.name).getShares()
if PURCHASE_SIZE < 0:
continue
if (prediction - stk.current_price) / stk.current_price <= -1.0 * THRESHOLD and pressure > 0.0:
if expected_sell_return(stk, trader, prediction) > 0:
limit_sell = shift.Order(shift.Order.LIMIT_SELL, stk.name, PURCHASE_SIZE, prediction)
trader.submitOrder(limit_sell)
stk.SO = True
stk.state = 3
continue
time.sleep(10)
#Do this at 3:59?
trader.cancelAllSamplePricesRequests() #Cancel the sample prices connection
# Cancel all buy orders and sell orders
for order in trader.getWaitingList():
if order.type == shift.Order.LIMIT_BUY:
order.type = shift.Order.CANCEL_BID
trader.submitOrder(order)
elif order.type == shift.Order.LIMIT_SELL:
order.type = shift.Order.CANCEL_ASK
trader.submitOrder(order)
#cancelAllPendingOrders(trader)
for order in trader.getWaitingList():
print("%6s\t%21s\t%7.2f\t\t%4d\t%36s\t%26s" %
(order.symbol, order.type, order.price, order.size, order.id, order.timestamp))
while trader.getWaitingListSize() != 0: #Wait for the orders to go through
print("Waiting")
time.sleep(3)
for company in COMPANIES:
# For all holdings, market sell them
# For all short positions, market buy
# If no holdings for a particular company, do nothing
portfolio_item = trader.getPortfolioItem(company)
num_shares = int(portfolio_item.getShares()/100)
bid_book = trader.getOrderBook(company, shift.OrderBookType.GLOBAL_BID, 1)
print(bid_book[0].price)
global NUM_TRADES
if num_shares > 0:
trader.submitOrder(shift.Order(shift.Order.MARKET_SELL,company,size = num_shares) )#Sell at market price
NUM_TRADES += 1
elif num_shares < 0:
trader.submitOrder(shift.Order(shift.Order.MARKET_BUY, company, size = -1*num_shares))
NUM_TRADES += 1
#Update log with transaction
print("printing submitted orders")
for order in trader.getSubmittedOrders():
print("%6s\t%21s\t%7.2f\t\t%4d\t%36s\t%26s" %
(order.symbol, order.type, order.price, order.size, order.id, order.timestamp))
for company in COMPANIES:
portfolio_item = trader.getPortfolioItem(company)
num_shares = portfolio_item.getShares()
while num_shares != 0:
portfolio_item = trader.getPortfolioItem(company)
num_shares = portfolio_item.getShares()
#Update log
#Print summary
printSummary(trader)
time.sleep(10)
print(trader.getPortfolioSummary().getTotalBP())
'''
STEP 4
'''
trader.disconnect() #Disconnect
if __name__ == "__main__":
main(sys.argv)