-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_bpgm.py
214 lines (168 loc) · 7.98 KB
/
train_bpgm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#coding=utf-8
import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import sys
sys.path.append('../')
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from tensorboardX import SummaryWriter
import argparse
import multiprocessing as mp
import lpips
# Import all the things we need for the model
from bpgm.model.models import BPGM
from bpgm.model.utils import load_checkpoint, save_checkpoint
from bpgm.dataset import DataLoader, VitonDataset
from bpgm.utils.loss import VGGLoss, SSIMLoss
from bpgm.utils.visualization import board_add_images
def train_bpgm(opt, train_loader, model, board):
# Make the model use the GPU
model.cuda()
# Set the model in training mode
model.train()
# Define the loss functions
# L1 loss
# L1 loss is the sum of the absolute differences between the predicted and the target values
#criterionL1 = nn.L1Loss()
# VGG loss
# criterionVGG = VGGLoss() # This is the loss function used in the original paper
# SSIM loss
#criterionSSIM = SSIMLoss().cuda()
# loss_fn_vgg = lpips.LPIPS(net='vgg').cuda()
#CLASSIC LOSS
criterionL1 = nn.L1Loss()
criterionVGG = VGGLoss()
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
for step in range(opt.keep_step):
iter_start_time = time.time()
inputs = train_loader.next_batch()
# cloth of the target person
tc = inputs['target_cloth'].cuda()
# cloth mask of the target person
tcm = inputs['target_cloth_mask'].cuda()
# cloth you want to put on the target person
im_c = inputs['cloth'].cuda()
im_bm = inputs['body_mask'].cuda()
im_cm = inputs['cloth_mask'].cuda()
im_label = inputs['body_label'].cuda()
# Generate a grid for warping the cloth onto the label image
grid = model(im_label, tc)
# Warp the target cloth onto the label image and mask it
warped_cloth = F.grid_sample(tc, grid, padding_mode='border', align_corners=True)
warped_cloth = warped_cloth * im_bm
warped_mask = F.grid_sample(tcm, grid, padding_mode='border', align_corners=True)
# Calculate the loss
# perceptual loss between warped_cloth and cloth
#vgg_p_loss = loss_fn_vgg.forward(warped_cloth, im_c)
# convert vgg_p_loss to a scalar
# vgg_p_loss = torch.mean(vgg_p_loss)
# loss_cloth = criterionL1(warped_cloth, im_c) + 0.5 * vgg_p_loss
# loss_mask = criterionL1(warped_mask, im_cm) * 0.1
# loss = loss_cloth + loss_mask
# CLASSIC LOSS
loss_cloth = criterionL1(warped_cloth, im_c) + 0.1 * criterionVGG(warped_cloth, im_c)
loss_mask = criterionL1(warped_mask, im_cm) * 0.1
loss = loss_cloth + loss_mask
# Zero the gradients, perform backward pass, and update weights
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (step+1) % opt.display_count == 0:
label = inputs['label'].cuda()
im_g = inputs['grid_image'].cuda()
with torch.no_grad():
warped_grid = F.grid_sample(im_g, grid, padding_mode='zeros', align_corners=True)
visuals = [[label, warped_grid, -torch.ones_like(label)],
[tc, warped_cloth, im_c],
[tcm, warped_mask, im_cm]]
board_add_images(board, 'combine', visuals, step+1)
board.add_scalar('metric', loss.item(), step+1)
t = time.time() - iter_start_time
print('step: %8d, time: %.3f, loss: %4f' % (step+1, t, loss.item()), flush=True)
if (step+1) % opt.save_count == 0:
save_checkpoint(model, os.path.join(opt.checkpoint_dir, opt.name, 'step_%06d.pth' % (step+1)))
def get_opt():
parser = argparse.ArgumentParser()
# Name of the GMM or TOM model
parser.add_argument("--name", default="GMM")
# parser.add_argument("--name", default="TOM")
# Add multiple workers support
parser.add_argument("--workers", type=int, default=mp.cpu_count() // 2)
# GPU IDs to use
# parser.add_argument("--gpu_ids", default="")
# Number of workers for dataloader (default: 1)
#parser.add_argument('-j', '--workers', type=int, default=1)
# Batch size for training (default: 32)
# Batch size defines the number of images that are processed at the same time
parser.add_argument('-b', '--batch-size', type=int, default=32)
# Path to the data folder
parser.add_argument("--dataroot", default="/scratch/c.c1984628/my_diss/bpgm/data")
# Training mode or testing mode
parser.add_argument("--datamode", default="train")
# What are we training/testing here
parser.add_argument("--stage", default="GMM")
# parser.add_argument("--stage", default="TOM")
# Path to the list of training/testing images
parser.add_argument("--data_list", default="/scratch/c.c1984628/my_diss/bpgm/data/train_pairs.txt")
# choose dataset
parser.add_argument("--dataset", default="viton")
# fine_width, fine_height: size of the input image to the network
parser.add_argument("--fine_width", type=int, default=192)
parser.add_argument("--fine_height", type=int, default=256)
parser.add_argument("--radius", type=int, default=5)
parser.add_argument("--grid_size", type=int, default=5)
# lr = learning rate
parser.add_argument('--lr', type=float, default=0.0001,
help='initial learning rate for adam')
# tensorboard_dir: path to the folder where tensorboard files are saved
parser.add_argument('--tensorboard_dir', type=str,
default='tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str,
default='checkpoints', help='save checkpoint infos')
parser.add_argument('--checkpoint', type=str, default='',
help='model checkpoint for initialization')
# display_count: how often to display the training results defaulted to every 20 steps
parser.add_argument("--display_count", type=int, default=20)
# save_count: how often to save the model defaulted to every 5000 steps
parser.add_argument("--save_count", type=int, default=5000)
# keep_step: how many steps to train the model for
parser.add_argument("--keep_step", type=int, default=100000)
# decay_step: how many steps to decay the learning rate for
parser.add_argument("--decay_step", type=int, default=100000)
# shuffle: shuffle the input data
parser.add_argument("--shuffle", action='store_true',
help='shuffle input data')
opt = parser.parse_args()
return opt
def main():
opt = get_opt()
opt.train_size = 0.9
opt.val_size = 0.1
opt.img_size = 256
print(opt)
print("Start to train stage: %s, named: %s!" % (opt.stage, opt.name))
# create dataset
# if opt.dataset == "mpv":
# train_dataset = MPVDataset(opt)
if opt.dataset == "viton":
train_dataset = VitonDataset(opt)
else:
raise NotImplementedError
# create dataloader
train_loader = DataLoader(opt, train_dataset)
# visualization
if not os.path.exists(opt.tensorboard_dir):
os.makedirs(opt.tensorboard_dir)
board = SummaryWriter(logdir=os.path.join(opt.tensorboard_dir, opt.name))
# create model & train & save the final checkpoint
model = BPGM(opt)
if not opt.checkpoint == '' and os.path.exists(opt.checkpoint):
load_checkpoint(model, opt.checkpoint)
train_bpgm(opt, train_loader, model, board)
save_checkpoint(model, os.path.join(opt.checkpoint_dir, opt.name, 'bpgm_final.pth'))
print('Finished training %s, named: %s!' % (opt.stage, opt.name))
if __name__ == "__main__":
main()