Official code for "Deep Active Learning with Augmentation-based Consistency Estimation".
Arxiv preprint: https://arxiv.org/abs/2011.02666
@misc{hong2020deep, title={Deep Active Learning with Augmentation-based Consistency Estimation}, author={SeulGi Hong and Heonjin Ha and Junmo Kim and Min-Kook Choi}, year={2020}, eprint={2011.02666}, archivePrefix={arXiv}, primaryClass={cs.CV} }
Python implementations of the following active learning algorithms:
- Random Sampling
- Cutout Sampling
- CutMix Sampling
- Entropy Sampling
- Margin Sampling
- CIFAR10
- FashionMNIST
- nvcr.io/nvidia/pytorch:19.07-py3
- pip install torchvision==0.2.1
- pytorch, matplotlib, scikit-learn, pandas
- torchvision 0.2.1
-
round : # of learning cycle
-
epoch : # of epoch per round
-
initnum : initial data before applying AL strategy
-
pick : # of data to be picked per round (notated as K)
-
train_al : Cutout loss (Consistency-based Loss)
-
train_cm : CutMix loss (Consistency-based Loss)
-
SEED : torch.manual_seed(SEED)
-
drop : epoch that apply learning rate drop (default 160)
-
dataset : choose dataset among available ones
-
pretrained_path : path of round0 network (for model initialization)
-
ALtype : AL strategy. Random, CutoutSampling, ...
-
alpha : cutout scaling