-
Notifications
You must be signed in to change notification settings - Fork 0
/
DFS_using_class.cpp
89 lines (75 loc) · 1.74 KB
/
DFS_using_class.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include <cstdio>
#include <iomanip>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <algorithm>
#include <string>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <sstream>
#include <stack>
#include <list>
#include <iostream>
#include <assert.h>
#define mem(x,y) memset(x,y,sizeof(x))
#define CLEAR(x) memset(x,0,sizeof(x))
#define pb push_back
#define Sort(v) sort(v.begin(),v.end())
#define _sort(s, n) sort(s, s+n)
#define sqr(x) ((x)*(x))
#define le 50001
#define ERR 1e-9
#define pi (2*acos(0))
#define PI 3.141592653589793
#define MX 1e18
#define scanint(a) scanf("%d", &a)
#define scanLLD(a) scanf("%lld", &a)
typedef long long ll;
using namespace std;
/* -------------------------- */
class Graph {
int numberOfNodes;
list<int> *adj;
public:
Graph(int numberOfNodes);
void addEdge(int u, int v);
void DFS(int numberOfNodes);
void dfsVISIT(int numberOfNodes, bool visited[]);
};
Graph::Graph(int numberOfNodes) {
this->numberOfNodes = numberOfNodes;
adj = new list<int>[numberOfNodes];
}
void Graph::addEdge(int u, int v) {
adj[u].pb(v);
}
void Graph::dfsVISIT(int s, bool visited[]) {
visited[s] = true;
cout << s << " ";
list<int>:: iterator i;
for (i = adj[s].begin(); i != adj[s].end(); i++) {
if (!visited[*i]) dfsVISIT(*i, visited);
}
}
void Graph::DFS(int s) {
bool *visited = new bool[numberOfNodes];
for (int i = 0; i < numberOfNodes; i++)
visited[i] = false;
dfsVISIT(s, visited);
}
int main() {
int numberOfNodes = 4;
Graph g(numberOfNodes);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
g.DFS(2);
}
// DFS = 2 0 1 3