-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
559 lines (447 loc) · 19.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
import sys
if sys.version_info.major < 3 or sys.version_info.minor < 4:
print("Please using python3.4 or greater!")
sys.exit(1)
import numpy as np
import cv2, io, time, argparse, re
from os import system
from os.path import isfile, join
from time import sleep
import multiprocessing as mp
from openvino.inference_engine import IENetwork, IEPlugin
import heapq
import threading
import GPy
import GPyOpt
import matplotlib.pyplot as plt
from pykalman import KalmanFilter
from dtw import dtw
lastresults = None
threads = []
processes = []
frameBuffer = None
results = None
fps = ""
detectfps = ""
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
cam = None
camera_width = 320
camera_height = 240
window_name = ""
ssd_detection_mode = 1
face_detection_mode = 0
elapsedtime = 0.0
flag = "wait"##
message1 = "Push [m] to measure reference."##
message2 = "Push [s] to start inspection."##
NO = 1##
thresh = 8##
LABELS = [['background','hand'],
['background', 'face']]
def camThread(LABELS, results, frameBuffer, camera_width, camera_height, vidfps, number_of_camera):
global fps
global detectfps
global lastresults
global framecount
global detectframecount
global time1
global time2
global cam
global window_name
global flag##
global message1##
global message2##
global writer##
global train##
global test##
cam = cv2.VideoCapture(number_of_camera)
if cam.isOpened() != True:
print("USB Camera Open Error!!!")
sys.exit(0)
cam.set(cv2.CAP_PROP_FPS, vidfps)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
window_name = "USB Camera"
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
# USB Camera Stream Read
s, color_image = cam.read()
if not s:
continue
if frameBuffer.full():
frameBuffer.get()
frames = color_image
height = color_image.shape[0]
width = color_image.shape[1]
frameBuffer.put(color_image.copy())
res = None
if not results.empty():
res = results.get(False)
detectframecount += 1
imdraw = overlay_on_image(frames, res, LABELS)
lastresults = res
else:
imdraw = overlay_on_image(frames, lastresults, LABELS)
cv2.imshow(window_name, cv2.resize(imdraw, (width, height)))
key = cv2.waitKey(1)&0xFF##
if key == ord('q'):
# Stop streaming
sys.exit(0)
if key == ord('m'):##
# measure reference hand
if flag == "wait":##
flag = "train"##
message1 = "Push [e] to stop measuring."##
message2 = " "##
fourcc = cv2.VideoWriter_fourcc(*'XVID')##movie save
writer = cv2.VideoWriter('train.avi',fourcc, vidfps, (camera_width,camera_height))##movie save
train = hand()##
if key == ord('s'):##
# start inspection
if flag == "wait":##
flag = "test"##
message1 = " "##
message2 = "Push [e] to finish inspection."##
fourcc = cv2.VideoWriter_fourcc(*'XVID')##movie save
writer = cv2.VideoWriter('test_' + str(NO) +'.avi',fourcc, vidfps, (camera_width,camera_height))##movie save
test = hand()##
if key == ord('e'):##
# end measure reference and inspection
writer.release()##movie save
if flag == "train":##
flag = "wait"##
elif flag == "test":##
flag = "test_finish"##
message1 = "Push [m] to measure reference."##
message2 = "Push [s] to start inspection."##
## Print FPS
framecount += 1
if framecount >= 15:
fps = "(Playback) {:.1f} FPS".format(time1/15)
detectfps = "(Detection) {:.1f} FPS".format(detectframecount/time2)
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2-t1
time1 += 1/elapsedTime
time2 += elapsedTime
# l = Search list
# x = Search target value
def searchlist(l, x, notfoundvalue=-1):
if x in l:
return l.index(x)
else:
return notfoundvalue
def async_infer(ncsworker):
while True:
ncsworker.predict_async()
class hand:## --->
def __init__(self):
self.hand = []
def save_position(self, hand_x, hand_y):
left = np.argmin(hand_x)
right = np.argmax(hand_x)
self.hand.append([hand_x[left], hand_y[left], hand_x[right], hand_y[right]])
## <---
class bayesian_opt:## --->
def __init__(self, train, test):
self.exp_num = 10# exploration number
train = self.kalman(train)
test = self.kalman(test)
self.train = cv2.resize(train, (100,4))
self.test = cv2.resize(test, (100,4))
np.savetxt("train.csv", self.train, delimiter=",")
np.savetxt("test_" + str(NO) +".csv", self.test, delimiter=",")
print("Bayesian Optimization")
def kalman(self, x):
x = np.array(x).T
result = []
for i in range(4):
kf = KalmanFilter(transition_matrices=np.array([[1, 1], [0, 1]]),
transition_covariance=0.01*np.eye(2))
result.append(kf.em(x[i]).smooth(x[i])[0][:, 0])
return np.array(result)
def dtw_sim(self, v1, v2):
result = []
for i in range(4):
x = v1[i].reshape(-1, 1)
y = v2[i].reshape(-1, 1)
euclidean_norm = lambda x, y: np.abs(x - y)
d, _, _, _ = dtw(x, y, dist=euclidean_norm)
result.append(d)
return np.mean(result)
def f(self, x):
score = []
score.append(self.dtw_sim(self.train[:,0:25] , self.test[:,0:int(x[:,0])]))
score.append(self.dtw_sim(self.train[:,25:50] , self.test[:,int(x[:,0]):int(x[:,1])]))
score.append(self.dtw_sim(self.train[:,50:75] , self.test[:,int(x[:,1]):int(x[:,2])]))
score.append(self.dtw_sim(self.train[:,75:100] , self.test[:,int(x[:,2]):]))
score = np.mean(score)
print(score)
return score
def plot_result(self, begin, end, begin_train, end_train, color, type_):
if type_ == "train":
data = self.train
else:
data = self.test
plt.plot(np.arange(begin, end), data[0, begin:end], c=color, label="Score %.3f"%(self.dtw_sim(self.train[:,begin_train:end_train], data[:,begin:end])))
plt.plot(np.arange(begin, end), data[1, begin:end], c=color, linestyle='dashed')
plt.plot(np.arange(begin, end), data[2, begin:end], c=color, linestyle='dashdot')
plt.plot(np.arange(begin, end), data[3, begin:end], c=color, linestyle='dotted')
plt.legend()
def main(self):
bounds = [{'name': 'x1', 'type': 'continuous', 'domain': (15,35)},
{'name': 'x2', 'type': 'continuous', 'domain': (40,60)},
{'name': 'x3', 'type': 'continuous', 'domain': (65,85)}]# limit
myBopt = GPyOpt.methods.BayesianOptimization(f = self.f,
domain = bounds,
initial_design_numdata = 50)
myBopt.run_optimization(max_iter=self.exp_num)
# bestparameter
result = myBopt.x_opt
result = np.array(result, dtype="int")
plt.figure(figsize=(8,8))
plt.subplot(2,1,1)
self.plot_result(0, 25, 0, 25,"b", "train")
self.plot_result(25, 50, 25, 50,"r", "train")
self.plot_result(50, 75, 50, 75,"g", "train")
self.plot_result(75, 100, 75, 100,"y", "train")
plt.title("train")
plt.subplot(2,1,2)
self.plot_result(0, result[0], 0, 25,"b", "test")
self.plot_result(result[0], result[1], 25, 50, "r", "test")
self.plot_result(result[1], result[2], 50, 75, "g", "test")
self.plot_result(result[2], 100, 75, 100, "y", "test")
plt.title("test")
plt.savefig("result" + str(NO) + "jpg")
plt.close()
print("finish")
return result
## <---
class NcsWorker(object):
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.xml"
self.model_bin = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device="MYRIAD")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.number_of_ncs = number_of_ncs
def image_preprocessing(self, color_image):
prepimg = cv2.resize(color_image, (300, 300))
##prepimg = prepimg - 127.5
##prepimg = prepimg * 0.007843
prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW
return prepimg
def predict_async(self):
try:
if self.frameBuffer.empty():
return
prepimg = self.image_preprocessing(self.frameBuffer.get())
reqnum = searchlist(self.inferred_request, 0)
if reqnum > -1:
self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg})
self.inferred_request[reqnum] = 1
self.inferred_cnt += 1
if self.inferred_cnt == sys.maxsize:
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
heapq.heappush(self.heap_request, (self.inferred_cnt, reqnum))
cnt, dev = heapq.heappop(self.heap_request)
if self.exec_net.requests[dev].wait(0) == 0:
self.exec_net.requests[dev].wait(-1)
out = self.exec_net.requests[dev].outputs["DetectionOutput"].flatten()
self.results.put([out])
self.inferred_request[dev] = 0
else:
heapq.heappush(self.heap_request, (cnt, dev))
except:
import traceback
traceback.print_exc()
def inferencer(results, frameBuffer, ssd_detection_mode, face_detection_mode, camera_width, camera_height, number_of_ncs):
# Init infer threads
threads = []
for devid in range(number_of_ncs):
thworker = threading.Thread(target=async_infer, args=(NcsWorker(devid, frameBuffer, results, camera_width, camera_height, number_of_ncs),))
thworker.start()
threads.append(thworker)
for th in threads:
th.join()
def movie_make(result):
global NO
count = 0
test_no = [0, result[0], result[1], result[2], 100]
train_no = [0, 25, 50, 75, 100]
video = cv2.VideoCapture('test_' + str(NO) + '.avi')
W = video.get(cv2.CAP_PROP_FRAME_WIDTH)
H = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
count_max = video.get(cv2.CAP_PROP_FRAME_COUNT)
fps_movie = video.get(cv2.CAP_PROP_FPS)
fourcc_movie = cv2.VideoWriter_fourcc(*'XVID')##movie save
writer_movie = cv2.VideoWriter('result_' + str(NO) + '.avi',fourcc_movie, fps_movie, (int(W), int(H)))##movie save
while(video.isOpened()):
ret, frame = video.read()
count += 1
if ret == False:
break
if count < count_max/100*25:
span = 0
elif count < count_max/100*50:
span = 1
elif count < count_max/100*75:
span = 2
else:
span = 3
score = opt.dtw_sim(opt.train[:,train_no[span]:train_no[span+1]], opt.test[:,test_no[span]:test_no[span+1]])
if score < thresh:
color = (255, 0, 0)
else:
color = (0, 0, 255)
frame = cv2.rectangle(frame, (0, 0), (639, 479), color, 20)
frame = cv2.putText(frame, str(score), (int(W)-150,150), cv2.FONT_HERSHEY_SIMPLEX, 2, color, 2, cv2.LINE_AA)
frame = cv2.putText(frame, "Score", (int(W)-350,150), cv2.FONT_HERSHEY_SIMPLEX, 2, color, 2, cv2.LINE_AA)
writer_movie.write(frame)##movie save
writer_movie.release()##movie save
NO += 1
video.release()
def overlay_on_image(frames, object_infos, LABELS):
global flag##
global opt##
try:
color_image = frames
if isinstance(object_infos, type(None)):
return color_image
# Show images
height = color_image.shape[0]
width = color_image.shape[1]
entire_pixel = height * width
img_cp = color_image.copy()
for (object_info, LABEL) in zip(object_infos, LABELS):
drawing_initial_flag = True
hand_x, hand_y = [], []##
for box_index in range(2):
if object_info[box_index + 1] == 0.0:
break
base_index = box_index * 7
if (not np.isfinite(object_info[base_index]) or
not np.isfinite(object_info[base_index + 1]) or
not np.isfinite(object_info[base_index + 2]) or
not np.isfinite(object_info[base_index + 3]) or
not np.isfinite(object_info[base_index + 4]) or
not np.isfinite(object_info[base_index + 5]) or
not np.isfinite(object_info[base_index + 6])):
continue
object_info_overlay = object_info[base_index:base_index + 7]
min_score_percent = 30##
source_image_width = width
source_image_height = height
base_index = 0
class_id = object_info_overlay[base_index + 1]
percentage = int(object_info_overlay[base_index + 2] * 100)
if (percentage <= min_score_percent):
continue
box_left = int(object_info_overlay[base_index + 3] * source_image_width)
box_top = int(object_info_overlay[base_index + 4] * source_image_height)
box_right = int(object_info_overlay[base_index + 5] * source_image_width)
box_bottom = int(object_info_overlay[base_index + 6] * source_image_height)
hand_x.append(box_left + (box_right - box_left)/2)
hand_y.append(box_top + (box_bottom - box_top)/2)
label_text = LABEL[int(class_id)] + " (" + str(percentage) + "%)"
box_color = (0, 255, 0)##
box_thickness = 5##
cv2.rectangle(img_cp, (box_left, box_top), (box_right, box_bottom), box_color, box_thickness)
##label_background_color = (125, 175, 75)
##label_text_color = (255, 255, 255)##
##label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
##label_left = box_left
##label_top = box_top - label_size[1]
##if (label_top < 1):
## label_top = 1
##label_right = label_left + label_size[0]
##label_bottom = label_top + label_size[1]
##cv2.rectangle(img_cp, (label_left - 1, label_top - 1), (label_right + 1, label_bottom + 1), label_background_color, -1)
##cv2.putText(img_cp, label_text, (label_left, label_bottom), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color, 1)
cv2.putText(img_cp, fps, (width-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
cv2.putText(img_cp, detectfps, (width-170,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
cv2.putText(img_cp, message1, (width-280,45), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)##
cv2.putText(img_cp, message2, (width-280,60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)##
if len(hand_x) == 2:##
if flag == "train":##
writer.write(img_cp)##movie save
train.save_position(hand_x, hand_y)##
elif flag == "test":##
writer.write(img_cp)##movie save
test.save_position(hand_x, hand_y)##
else:##
pass##
if flag == "test_finish":##
opt = bayesian_opt(train.hand, test.hand)##
result = opt.main()##
movie_make(result)##
flag = "wait"
return img_cp
except:
import traceback
traceback.print_exc()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-cn','--numberofcamera',dest='number_of_camera',type=int,default=0,help='USB camera number. (Default=0)')
parser.add_argument('-wd','--width',dest='camera_width',type=int,default=320,help='Width of the frames in the video stream. (Default=320)')
parser.add_argument('-ht','--height',dest='camera_height',type=int,default=240,help='Height of the frames in the video stream. (Default=240)')
parser.add_argument('-sd','--ssddetection',dest='ssd_detection_mode',type=int,default=1,help='[Future functions] SSDDetectionMode. (0:=Disabled, 1:=Enabled Default=1)')
parser.add_argument('-fd','--facedetection',dest='face_detection_mode',type=int,default=0,help='[Future functions] FaceDetectionMode. (0:=Disabled, 1:=Full, 2:=Short Default=0)')
parser.add_argument('-numncs','--numberofncs',dest='number_of_ncs',type=int,default=1,help='Number of NCS. (Default=1)')
parser.add_argument('-vidfps','--fpsofvideo',dest='fps_of_video',type=int,default=30,help='FPS of Video. (Default=30)')
args = parser.parse_args()
number_of_camera = args.number_of_camera
camera_width = args.camera_width
camera_height = args.camera_height
ssd_detection_mode = args.ssd_detection_mode
face_detection_mode = args.face_detection_mode
number_of_ncs = args.number_of_ncs
vidfps = args.fps_of_video
if ssd_detection_mode == 0 and face_detection_mode != 0:
del(LABELS[0])
try:
mp.set_start_method('forkserver')
frameBuffer = mp.Queue(10)
results = mp.Queue()
# Start streaming
p = mp.Process(target=camThread,
args=(LABELS, results, frameBuffer, camera_width, camera_height, vidfps, number_of_camera),
daemon=True)
p.start()
processes.append(p)
# Start detection MultiStick
# Activation of inferencer
p = mp.Process(target=inferencer,
args=(results, frameBuffer, ssd_detection_mode, face_detection_mode, camera_width, camera_height, number_of_ncs),
daemon=True)
p.start()
processes.append(p)
while True:
sleep(1)
except:
import traceback
traceback.print_exc()
finally:
for p in range(len(processes)):
processes[p].terminate()
print("\n\nFinished\n\n")