-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_REWT.py
497 lines (472 loc) · 22.1 KB
/
train_REWT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
'''
Based on https://github.com/microsoft/vscode/issues/125993
use reweighting method 1
python -u train_REWT.py 20 full fitzpatrick REWT
python -u train_reweighting.py 15 full ddi REWT
'''
from __future__ import print_function, division
from sklearn.decomposition import TruncatedSVD
import torch
from torchvision import transforms, models
import pandas as pd
import numpy as np
import os
import skimage
from skimage import io
import cv2
import warnings
import torch.nn as nn
import torch.optim as optim
from torch.utils.data.sampler import WeightedRandomSampler
from torch.optim import lr_scheduler
import time
import copy
import sys
from sklearn.model_selection import train_test_split, KFold
from sklearn.metrics import balanced_accuracy_score
from torch.utils.tensorboard import SummaryWriter
# get model
from Models.models_losses import Network
np.random.seed(42)
warnings.filterwarnings("ignore")
def flatten(list_of_lists):
if len(list_of_lists) == 0:
return list_of_lists
if isinstance(list_of_lists[0], list):
return flatten(list_of_lists[0]) + flatten(list_of_lists[1:])
return list_of_lists[:1] + flatten(list_of_lists[1:])
def train_model(label, dataloaders, device, dataset_sizes, model,
criterion, optimizer, scheduler, num_epochs=2):
since = time.time()
training_results = []
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
best_loss = 0.0
train_step = 0 # for tensorboard
leading_epoch = 0 # record best model epoch
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
scheduler.step()
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0.0
running_balanced_acc_sum = 0.0
# running_total = 0
print(phase)
# Iterate over data.
for n_iter, batch in enumerate(dataloaders[phase]):
inputs = batch["image"].to(device)
weights = batch['weight'].to(device)
labels = batch[label]
labels = torch.from_numpy(np.asarray(labels)).to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
inputs = inputs.float() # ADDED AS A FIX
outputs = model(inputs)
_, preds = torch.max(outputs[0], 1)
# reweighting
loss_batch = criterion(outputs[0], labels) # a batch of loss
loss = torch.mean(loss_batch*weights)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
# tensorboard
if phase == 'train':
writer.add_scalar('Loss/'+phase, loss.item(), train_step)
writer.add_scalar('Accuracy/'+phase, (torch.sum(preds == labels.data)).item()/inputs.size(0), train_step)
writer.add_scalar('Balanced-Accuracy/'+phase, balanced_accuracy_score(labels.data.cpu(), preds.cpu()), train_step)
train_step += 1
# -------------------------
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
running_balanced_acc_sum += balanced_accuracy_score(labels.data.cpu(), preds.cpu())*inputs.size(0)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]
epoch_balanced_acc = running_balanced_acc_sum / dataset_sizes[phase]
# print("Loss: {}/{}".format(running_loss, dataset_sizes[phase]))
print("Accuracy: {}/{}".format(running_corrects,
dataset_sizes[phase]))
print('{} Loss: {:.4f} Acc: {:.4f} Balanced-Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc, epoch_balanced_acc))
# tensorboard
writer.add_scalar('lr/'+phase, scheduler.get_last_lr()[0], epoch)
if phase == 'val':
writer.add_scalar('Loss/'+phase, epoch_loss, epoch)
writer.add_scalar('Accuracy/'+phase, epoch_acc, epoch)
writer.add_scalar('Balanced-Accuracy/'+phase, epoch_balanced_acc, epoch)
# ---------------------
training_results.append([phase, epoch, epoch_loss, epoch_acc.item(), epoch_balanced_acc])
if epoch > 0:
if phase == 'val' and epoch_acc > best_acc:
print("New leading accuracy: {}".format(epoch_acc))
best_acc = epoch_acc
leading_epoch = epoch
best_model_wts = copy.deepcopy(model.state_dict())
# use balanced acc
# if phase == 'val' and epoch_balanced_acc > best_acc:
# print("New leading balanced accuracy: {}".format(epoch_balanced_acc))
# best_acc = epoch_balanced_acc
# leading_epoch = epoch
# best_model_wts = copy.deepcopy(model.state_dict())
elif phase == 'val':
best_acc = epoch_acc
# use balanced acc
# best_acc = epoch_balanced_acc
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
print('Best model epoch:', leading_epoch)
model.load_state_dict(best_model_wts)
training_results = pd.DataFrame(training_results)
training_results.columns = ["phase", "epoch", "loss", "accuracy", "balanced-accuracy"]
return model, training_results
class SkinDataset():
def __init__(self, dataset_name, csv_file, root_dir, transform=None):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.df = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
self.dataset_name = dataset_name
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
# img_name = os.path.join(self.root_dir,
# self.df.loc[self.df.index[idx], 'hasher'])
if self.dataset_name == 'ddi':
img_name = os.path.join(self.root_dir,
str(self.df.loc[self.df.index[idx], 'hasher']))
image = cv2.imread(img_name)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
img_name = os.path.join(self.root_dir,
str(self.df.loc[self.df.index[idx], 'hasher']))+'.jpg'
image = io.imread(img_name)
if(len(image.shape) < 3):
image = skimage.color.gray2rgb(image)
hasher = self.df.loc[self.df.index[idx], 'hasher']
high = self.df.loc[self.df.index[idx], 'high']
# mid = self.df.loc[self.df.index[idx], 'mid']
low = self.df.loc[self.df.index[idx], 'low']
fitzpatrick = self.df.loc[self.df.index[idx], 'fitzpatrick']
weight = self.df.loc[self.df.index[idx], 'REWT_weights']
if self.dataset_name == 'fitzpatrick':
mid = self.df.loc[self.df.index[idx], 'mid']
else:
mid = 0
if self.transform:
image = self.transform(image)
sample = {
'image': image,
'high': high,
'mid': mid,
'low': low,
'hasher': hasher,
'fitzpatrick': fitzpatrick,
'weight': weight
}
return sample
def custom_load(
batch_size=128,
num_workers=10,
train_dir='',
val_dir='',
label = 'low',
dataset_name = 'fitzpatrick',
image_dir='/bigdata/siyiplace/data/skin_lesion/fitzpatrick17k/data/finalfitz17k/',
):
if dataset_name == 'ddi':
image_dir = '/bigdata/siyiplace/data/skin_lesion/ddidiversedermatologyimages/'
val = pd.read_csv(val_dir)
train = pd.read_csv(train_dir)
weight = 1. / len(train)
samples_weight = np.array([weight]*len(train))
samples_weight = torch.from_numpy(samples_weight)
sampler = WeightedRandomSampler(
samples_weight.type('torch.DoubleTensor'),
len(samples_weight),
replacement=True)
dataset_sizes = {"train": train.shape[0], "val": val.shape[0]}
transformed_train = SkinDataset(
dataset_name = dataset_name,
csv_file=train_dir,
root_dir=image_dir,
transform=transforms.Compose([
transforms.ToPILImage(),
transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),
transforms.RandomRotation(degrees=15),
transforms.ColorJitter(),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(size=224), # Image net standards
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
)
transformed_test = SkinDataset(
dataset_name = dataset_name,
csv_file=val_dir,
root_dir=image_dir,
transform=transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
)
dataloaders = {
"train": torch.utils.data.DataLoader(
transformed_train,
batch_size=batch_size,
sampler=sampler,
# shuffle=True,
num_workers=num_workers),
"val": torch.utils.data.DataLoader(
transformed_test,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers)
}
return dataloaders, dataset_sizes
# tensorboard writer
# writer = SummaryWriter()
if __name__ == '__main__':
# In the custom_load() function, make sure to specify the path to the images
print("\nPlease specify number of epochs and 'dev' mode or not... e.g. python train.py 10 full \n")
n_epochs = int(sys.argv[1])
dev_mode = sys.argv[2]
dataset_name = sys.argv[3]
model_name = sys.argv[4]
print("CUDA is available: {} \n".format(torch.cuda.is_available()))
print("Starting... \n")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if dev_mode == "dev":
if dataset_name == 'ddi':
df = pd.read_csv('ddi_metadata_code.csv').sample(300)
else:
df = pd.read_csv("fitzpatrick17k_known_code.csv").sample(1000)
else:
if dataset_name == 'ddi':
df = pd.read_csv('ddi_metadata_code.csv')
else:
df = pd.read_csv("fitzpatrick17k_known_code.csv")
print(df['fitzpatrick'].value_counts()) # count num of samples in each fitzpatrick type
print("Rows: {}".format(df.shape[0]))
for holdout_set in ["a56"]: # ["expert_select","random_holdout", "a12", "a34","a56", "dermaamin","br"]:
if holdout_set == "expert_select":
df2 = df
train = df2[df2.qc.isnull()]
test = df2[df2.qc=="1 Diagnostic"]
elif holdout_set == "random_holdout":
if dataset_name == 'ddi':
train, test, y_train, y_test = train_test_split(
df,
df['high'],
test_size=0.2,
random_state=64,
)
else:
train, test, y_train, y_test = train_test_split(
df,
df['low'],
test_size=0.2,
random_state=64,
stratify=df['low']) #
elif holdout_set == "dermaamin": # train with b
# only choose those skin conditions in both dermaamin and non dermaamin
combo = set(df[df.image_path.str.contains("dermaamin")==True].label.unique()) & set(df[df.image_path.str.contains("dermaamin")==False].label.unique())
df = df[df.label.isin(combo)]
df["low"] = df['label'].astype('category').cat.codes
train = df[df.image_path.str.contains("dermaamin") == False]
test = df[df.image_path.str.contains("dermaamin")]
elif holdout_set == "br": # train with a
combo = set(df[df.image_path.str.contains("dermaamin")==True].label.unique()) & set(df[df.image_path.str.contains("dermaamin")==False].label.unique())
df = df[df.label.isin(combo)]
df["low"] = df['label'].astype('category').cat.codes
train = df[df.image_path.str.contains("dermaamin")]
test = df[df.image_path.str.contains("dermaamin") == False]
print(train.label.nunique())
print(test.label.nunique())
elif holdout_set == "a12":
train = df[(df.fitzpatrick==1)|(df.fitzpatrick==2)]
test = df[(df.fitzpatrick!=1)&(df.fitzpatrick!=2)]
combo = set(train.label.unique()) & set(test.label.unique())
print(combo)
train = train[train.label.isin(combo)].reset_index()
test = test[test.label.isin(combo)].reset_index()
train["low"] = train['label'].astype('category').cat.codes
test["low"] = test['label'].astype('category').cat.codes
elif holdout_set == "a34":
train = df[(df.fitzpatrick==3)|(df.fitzpatrick==4)]
test = df[(df.fitzpatrick!=3)&(df.fitzpatrick!=4)]
combo = set(train.label.unique()) & set(test.label.unique())
train = train[train.label.isin(combo)].reset_index()
test = test[test.label.isin(combo)].reset_index()
train["low"] = train['label'].astype('category').cat.codes
test["low"] = test['label'].astype('category').cat.codes
elif holdout_set == "a56":
train = df[(df.fitzpatrick==5)|(df.fitzpatrick==6)]
test = df[(df.fitzpatrick!=5)&(df.fitzpatrick!=6)]
combo = set(train.label.unique()) & set(test.label.unique())
train = train[train.label.isin(combo)].reset_index()
test = test[test.label.isin(combo)].reset_index()
train["low"] = train['label'].astype('category').cat.codes
test["low"] = test['label'].astype('category').cat.codes
print(train.shape)
print(test.shape)
train_path = "temp_train_{}.csv".format(model_name)
test_path = "temp_test_{}.csv".format(model_name)
train.to_csv(train_path, index=False)
test.to_csv(test_path, index=False)
print("Training Shape: {}, Test Shape: {} \n".format(
train.shape,
test.shape)
)
for indexer, label in enumerate(["high"]):
# tensorboard
writer = SummaryWriter(comment="logs_{}_{}_{}_{}.pth".format(model_name, n_epochs, label, holdout_set))
print(label)
weights = np.array(max(train[label].value_counts())/train[label].value_counts().sort_index())
label_codes = sorted(list(train[label].unique()))
dataloaders, dataset_sizes = custom_load(
64,
10,
"{}".format(train_path),
"{}".format(test_path),
label = label,
dataset_name = dataset_name)
model_ft = Network('resnet18', len(label_codes), pretrained=True)
total_params = sum(p.numel() for p in model_ft.parameters())
print('{} total parameters'.format(total_params))
total_trainable_params = sum(
p.numel() for p in model_ft.parameters() if p.requires_grad)
print('{} total trainable parameters'.format(total_trainable_params))
model_ft = model_ft.to(device)
model_ft = nn.DataParallel(model_ft)
class_weights = torch.FloatTensor(weights).cuda()
criterion = nn.CrossEntropyLoss(reduction='none')
optimizer_ft = optim.Adam(model_ft.parameters(), 0.0001)
# exp_lr_scheduler = lr_scheduler.StepLR(
# optimizer_ft,
# step_size=7,
# gamma=0.1)
exp_lr_scheduler = lr_scheduler.StepLR(
optimizer_ft,
step_size=2,
gamma=0.9)
print("\nTraining classifier for {}........ \n".format(label))
print("....... processing ........ \n")
model_ft, training_results = train_model(
label,
dataloaders, device,
dataset_sizes, model_ft,
criterion, optimizer_ft,
exp_lr_scheduler, n_epochs)
print("Training Complete")
torch.save(model_ft.state_dict(), "model_path_{}_{}_{}_{}.pth".format(model_name, n_epochs, label, holdout_set))
torch.save(model_ft, "model_path_{}_{}_{}_{}.pt".format(model_name, n_epochs, label, holdout_set))
print("gold")
training_results.to_csv("training_{}_{}_{}_{}.csv".format(model_name, n_epochs, label, holdout_set))
model = model_ft.eval()
loader = dataloaders["val"]
prediction_list = []
fitzpatrick_list = []
hasher_list = []
labels_list = []
p_list = []
topk_p = []
topk_n = []
d1 = []
d2 = []
d3 = []
p1 = []
p2 = []
p3 = []
with torch.no_grad():
running_corrects = 0
running_balanced_acc_sum = 0
total = 0
for i, batch in enumerate(dataloaders['val']):
inputs = batch["image"].to(device)
classes = batch[label].to(device)
fitzpatrick = batch["fitzpatrick"] # skin type
hasher = batch["hasher"]
outputs = model(inputs.float()) # (batchsize, classes num)
probability = torch.nn.functional.softmax(outputs[0], dim=1)
ppp, preds = torch.topk(probability, 1) #topk values, topk indices
if label == "low":
_, preds5 = torch.topk(probability, 3) # topk values, topk indices
# topk_p.append(np.exp(_.cpu()).tolist())
topk_p.append((_.cpu()).tolist())
topk_n.append(preds5.cpu().tolist())
running_corrects += torch.sum(preds.reshape(-1) == classes.data)
running_balanced_acc_sum += balanced_accuracy_score(classes.data.cpu(), preds.reshape(-1).cpu()) * inputs.shape[0]
p_list.append(ppp.cpu().tolist())
prediction_list.append(preds.cpu().tolist())
labels_list.append(classes.tolist())
fitzpatrick_list.append(fitzpatrick.tolist())
hasher_list.append(hasher)
total += inputs.shape[0]
acc = float(running_corrects)/float(dataset_sizes['val'])
balanced_acc = float(running_balanced_acc_sum)/float(dataset_sizes['val'])
if label == "low":
for j in topk_n: # each sample
for i in j: # in k
d1.append(i[0])
d2.append(i[1])
d3.append(i[2])
for j in topk_p:
for i in j:
# print(i)
p1.append(i[0])
p2.append(i[1])
p3.append(i[2])
df_x=pd.DataFrame({
"hasher": flatten(hasher_list),
"label": flatten(labels_list),
"fitzpatrick": flatten(fitzpatrick_list),
"prediction_probability": flatten(p_list),
"prediction": flatten(prediction_list),
"d1": d1,
"d2": d2,
"d3": d3,
"p1": p1,
"p2": p2,
"p3": p3})
else:
# print(len(flatten(hasher_list)))
# print(len(flatten(labels_list)))
# print(len(flatten(fitzpatrick_list)))
# print(len(flatten(p_list)))
# print(len(flatten(prediction_list)))
df_x=pd.DataFrame({
"hasher": flatten(hasher_list),
"label": flatten(labels_list),
"fitzpatrick": flatten(fitzpatrick_list),
"prediction_probability": flatten(p_list),
"prediction": flatten(prediction_list)})
df_x.to_csv("results_{}_{}_{}_{}.csv".format(model_name, n_epochs, label, holdout_set),
index=False)
print("\n Accuracy: {} Balanced Accuracy: {} \n".format(acc, balanced_acc))
print("done")
# writer.close()