-
Notifications
You must be signed in to change notification settings - Fork 0
/
AMG.nb
1157 lines (1147 loc) · 55.9 KB
/
AMG.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 55895, 1148]
NotebookOptionsPosition[ 55408, 1129]
NotebookOutlinePosition[ 55831, 1145]
CellTagsIndexPosition[ 55788, 1142]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{"*", " ", "Anderson"}], ",",
RowBox[{"R", ".", "M", "."}], ",", "May", ",",
RowBox[{"R", ".", "M", "."}], ",",
RowBox[{"&", " ", "Gupta"}], ",",
RowBox[{
RowBox[{
RowBox[{"S", ".",
RowBox[{"(", "1989", ")"}]}], " ", "Non"}], "-",
RowBox[{"linear", " ", "phenomena", " ", "in", " ", "host"}], "-",
RowBox[{
"parasite", " ", "interactions", " ", "Parasitology", " ", "99", " ",
"Suppl"}]}], ",",
RowBox[{"S59", "-", "79"}]}], "\[IndentingNewLine]", "**)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Equation", " ", "4.1"}], "-",
RowBox[{"4.4", " ",
RowBox[{"(",
RowBox[{
"the", " ", "model", " ", "with", " ", "no", " ", "immunological", " ",
"responses"}], ")"}]}]}], " ", "*)"}]}]], "Input",
CellChangeTimes->{{3.5121099733519554`*^9, 3.512109998343526*^9}, {
3.5121101237793274`*^9, 3.512110126060504*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Manipulate", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sol", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{"\[CapitalLambda]", "-",
RowBox[{"\[Mu]", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"\[Beta]", "*",
RowBox[{"x", "[", "t", "]"}], "*",
RowBox[{"s", "[", "t", "]"}]}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Beta]", "*",
RowBox[{"x", "[", "t", "]"}], "*",
RowBox[{"s", "[", "t", "]"}]}], "-",
RowBox[{"\[Alpha]", "*",
RowBox[{"y", "[", "t", "]"}]}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"s", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Alpha]", "*", "r", "*",
RowBox[{"y", "[", "t", "]"}]}], "-",
RowBox[{"d", "*",
RowBox[{"s", "[", "t", "]"}]}], "-",
RowBox[{"\[Beta]", "*",
RowBox[{"s", "[", "t", "]"}], "*",
RowBox[{"x", "[", "t", "]"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", "initx"}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "inity"}], ",",
RowBox[{
RowBox[{"s", "[", "0", "]"}], "\[Equal]", "inits"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "s"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "runT"}], "}"}], ",",
RowBox[{"MaxSteps", "\[Rule]", "Infinity"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"cond", "=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"r", "-", "1."}], ")"}], "*", "\[Beta]", "*",
"\[CapitalLambda]"}], ">",
RowBox[{"\[Mu]", "*",
RowBox[{"d", "/", "\[CapitalLambda]"}]}]}]}], ";",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"GraphicsGrid", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "runT"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Orange", "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "False", ",", "False"}],
"}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Time in days\>\"", ",", "\"\<Uninfected RBCs\>\""}],
"}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]",
RowBox[{"{",
RowBox[{"200", ",", "200"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"y", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "runT"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Thick", "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "False", ",", "False"}],
"}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Time in days\>\"", ",", "\"\<Infected RBCs\>\""}],
"}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]",
RowBox[{"{",
RowBox[{"200", ",", "200"}], "}"}]}]}], "]"}]}], "}"}], ",",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"s", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "runT"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Dashed", "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "False", ",", "False"}],
"}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Time in days\>\"", ",", "\"\<Merozoites\>\""}],
"}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]",
RowBox[{"{",
RowBox[{"200", ",", "200"}], "}"}]}]}], "]"}], ","}], "}"}]}],
"\[IndentingNewLine]", "}"}], "\[IndentingNewLine]", "]"}]}],
"\[IndentingNewLine]", ",", "\[IndentingNewLine]",
RowBox[{"Style", "[",
RowBox[{
"\"\<Mahidol-Oxford Tropical Medicine Research Unit\>\"", ",", "Bold"}],
"]"}], ",", "\[IndentingNewLine]", "Delimiter", ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Alpha]", ",", "0.2"}], "}"}], ",", "0.01", ",", "5.0", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Beta]", ",", "0.1"}], "}"}], ",", "0.01", ",", "5.0", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[CapitalLambda]", ",", "1"}], "}"}], ",", "0.1", ",", "10.",
",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0.00833"}], "}"}], ",", "0.001", ",", "0.1",
",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"r", ",", "16"}], "}"}], ",", "0.", ",", "40", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"d", ",", "72"}], "}"}], ",", "0.", ",", "200", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"runT", ",", "200", ",", "\"\<max time\>\""}], "}"}], ",",
"1.", ",", "700.", ",", "1.", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]", "Delimiter", ",", "\[IndentingNewLine]",
RowBox[{"Style", "[",
RowBox[{
RowBox[{
"\"\<threshold condition (r-1)\[Beta]\[CapitalLambda] > \[Mu]d/\
\[CapitalLambda] : \>\"", "<>",
RowBox[{"ToString", "[", "cond", "]"}]}], ",", "Bold"}], "]"}],
"\[IndentingNewLine]", ",", "\[IndentingNewLine]", "Delimiter", ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"initx", ",", "120", ",", "\"\<x(0)\>\""}], "}"}], ",", "1",
",", "1000.", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"inity", ",", "1", ",", "\"\<y(0)\>\""}], "}"}], ",", "0.1",
",", "100.", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"inits", ",", "4", ",", "\"\<s(0)\>\""}], "}"}], ",", "0.",
",", "100.", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"ContinuousAction", "\[Rule]", "False"}], ",",
RowBox[{"ControlPlacement", "\[Rule]", "Left"}], ",",
RowBox[{"Initialization", "\[RuleDelayed]",
RowBox[{"{",
RowBox[{
RowBox[{"cond", "=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"r", "-", "1."}], ")"}], "*", "\[Beta]", "*",
"\[CapitalLambda]"}], ">",
RowBox[{"\[Mu]", "*",
RowBox[{"d", "/", "\[CapitalLambda]"}]}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"sol", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{"\[CapitalLambda]", "-",
RowBox[{"\[Mu]", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"\[Beta]", "*",
RowBox[{"x", "[", "t", "]"}], "*",
RowBox[{"s", "[", "t", "]"}]}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Beta]", "*",
RowBox[{"x", "[", "t", "]"}], "*",
RowBox[{"s", "[", "t", "]"}]}], "-",
RowBox[{"\[Alpha]", "*",
RowBox[{"y", "[", "t", "]"}]}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"s", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Alpha]", "*", "r", "*",
RowBox[{"y", "[", "t", "]"}]}], "-",
RowBox[{"d", "*",
RowBox[{"s", "[", "t", "]"}]}], "-",
RowBox[{"\[Beta]", "*",
RowBox[{"s", "[", "t", "]"}], "*",
RowBox[{"x", "[", "t", "]"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", "initx"}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "inity"}], ",",
RowBox[{
RowBox[{"s", "[", "0", "]"}], "\[Equal]", "inits"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "s"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "runT"}], "}"}], ",",
RowBox[{"MaxSteps", "\[Rule]", "Infinity"}]}], "]"}]}], ";"}],
"}"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}],
"\n"}]], "Input",
CellChangeTimes->{{3.512109941202074*^9, 3.512109941202074*^9}, {
3.512110131841569*^9, 3.5121102758369613`*^9}, {3.512110329348134*^9,
3.5121103310822535`*^9}, {3.512110368717338*^9, 3.5121104782168427`*^9}, {
3.512110520241905*^9, 3.5121107747424393`*^9}, {3.5121110098050175`*^9,
3.512111216700835*^9}, {3.5121113579170237`*^9, 3.5121114127398853`*^9}, {
3.5121115945661783`*^9, 3.512111624594282*^9}, {3.512111659948905*^9,
3.5121117809644156`*^9}, 3.5121118200380387`*^9, {3.5121118796249237`*^9,
3.5121118840931587`*^9}, {3.5121119382275467`*^9, 3.512112020327463*^9}, {
3.5121123089282956`*^9, 3.5121123122090836`*^9}, {3.5121724249270024`*^9,
3.5121724548711176`*^9}, {3.5121725448645363`*^9,
3.5121725787486544`*^9}, {3.5121727135040264`*^9, 3.512172896441965*^9}, {
3.5121778225723567`*^9, 3.5121779631576385`*^9}, {3.5121780010458384`*^9,
3.5121781066356173`*^9}, {3.512178311569183*^9, 3.5121783622865014`*^9}, {
3.512178418768346*^9, 3.5121784415641994`*^9}, {3.5121784761876483`*^9,
3.512178506905022*^9}, {3.5121785419659514`*^9, 3.512178598713409*^9}, {
3.51217869591152*^9, 3.51217872776906*^9}, {3.51218239921481*^9,
3.5121824007928643`*^9}, 3.5121832753912497`*^9, {3.5371528126306667`*^9,
3.5371528513342867`*^9}, {3.5371530116328993`*^9, 3.537153081038705*^9}, {
3.5866476778033485`*^9, 3.5866476888326902`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Manipulate", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sol", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{"\[CapitalLambda]", "-",
RowBox[{"\[Mu]", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"\[Beta]", "*",
RowBox[{"x", "[", "t", "]"}], "*",
RowBox[{"s", "[", "t", "]"}]}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Beta]", "*",
RowBox[{"x", "[", "t", "]"}], "*",
RowBox[{"s", "[", "t", "]"}]}], "-",
RowBox[{"\[Alpha]", "*",
RowBox[{"y", "[", "t", "]"}]}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"s", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Alpha]", "*", "r", "*",
RowBox[{"y", "[", "t", "]"}]}], "-",
RowBox[{"d", "*",
RowBox[{"s", "[", "t", "]"}]}], "-",
RowBox[{"\[Beta]", "*",
RowBox[{"s", "[", "t", "]"}], "*",
RowBox[{"x", "[", "t", "]"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", "initx"}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "inity"}], ",",
RowBox[{
RowBox[{"s", "[", "0", "]"}], "\[Equal]", "inits"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "s"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "runT"}], "}"}], ",",
RowBox[{"MaxSteps", "\[Rule]", "Infinity"}], ",",
RowBox[{"Method", "\[Rule]",
RowBox[{"{",
RowBox[{"StiffnessSwitching", ",", " ",
RowBox[{"Method", "\[Rule]",
RowBox[{"{",
RowBox[{"ExplicitRungeKutta", ",", " ", "Automatic"}], "}"}]}]}],
"}"}]}], ",", " ",
RowBox[{"AccuracyGoal", "\[Rule]", "5"}], ",",
RowBox[{"PrecisionGoal", "\[Rule]", "4"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"cond", "=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"r", "-", "1."}], ")"}], "*", "\[Beta]", "*",
"\[CapitalLambda]"}], ">",
RowBox[{"\[Mu]", "*",
RowBox[{"d", "/", "\[CapitalLambda]"}]}]}]}], ";",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"GraphicsGrid", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnQdUFGcXhrFjjzWK+tuisaBi74WYxNiN2COWBAvYYok1ltgSg8SCvSFW
7Io1xpbYETWWoEbBYOxG0djr/k/2HufMmWUXdFcR+N5z4Oy0r97vve+d3bmT
/8teTTsndXJy6uvMv6YdB7j36dNxkEdyNj4a1K/Tl8n48AV///L332eTgoKC
goKCgoKCgoKCgoKCgoKCgoKCgoKCQkLEs2fPHj9+HNetSCBgMB88ePDw4cO4
bkhCwJMnT/z9/QcOHDhs2LBbt2690rXBwcHdunWzdnT27NkDzTh79qzdzXxN
nD59eubMmXFVe+wBOfTo0aNYsWLFixcPCQmJ6+bEe9y5c+enn35ydnZOnTr1
8ePHY38hxFKiRIn27dtbOyEiIuK9995zcnL65ZdfHNDQV0dYWJiLi0uNGjXi
pPbYA35mGOvXr3/v3j1vb+9MmTKdOXMmrhsV7/Hvv/8WKlQoQ4YMWHjsrzp0
6JBti3369GmOHDny5Mnzqi7AIbh//37hwoVpoaen59uv/ZWwadMmV1fXu3fv
8tnHx4c279+/P64bFe+xd+9eRrJt27ZIu9hf1aFDh4oVKz569MjaCZGRkXA1
pqXtwSk0a9bMrrbGGiNGjEia9L+fitG7t1Pj6wGXV7Vq1aCgINlUVu0QYMn1
6tVjJAMDA6M9AeFtae1RUVFFihQZPny45fnPnz+PMgNdTbGTJk2S/deuXcud
OzfSEQ53aA+iwciRI5Ml++9njY61apbwixcvtM+GyE6/KYMQm55u2LAha9as
4eHhfL5x40b27Nn/97///fXXX5aFGDaZFBlnvJIjOpcQcPHixSFDhsAMbdq0
EQM4f/68yTxZo0aNIgb8+++/2Tx8+HDjxo2/+uorw9BNnz49ZcqUv//+u6FY
AkMvL6+CBQtmyZIlVapU6dKlO3HiBPsJ2VAj1AJ//vDDD2+0a6GhoRgGwS/B
ggOtGoXQpEmT3377zWSWN82bN2/YsKFm5KtWrapZs+b333/PZ3bOmzcPRden
Tx/bZcIY1atXr1atmp+fH3Ph7u5eqlQpEdUUEhAQQCHsZ1Iw6SlTpjCeAwYM
MJlN2tfXN4sZZcuWvXz5skP6GK+xc+fOjBkzIjk2btxIMMXUoyVwhRzq3bs3
ERZ7hg4dCvkwzh988EGaNGn02lh0OINpKHb16tUM++DBg69evTpjxgwKyZYt
m0iU69ev58yZkz0cvXnzpmWTTp8+TbhUzyb+/PPPGLt28ODBzJkzd+rUiUZi
Eg606okTJ1La3Llz+bxlyxY+d+3aVawawixevDgLlhpPnTq1bdu2fPny0Yym
TZvaLhNuYSKWLVuG5KCDXCIsbTK7NspkDxUFBwevW7cOg69UqRJLwGQeLkhj
8uTJ/v7+SZIkiRf3ed4o9uzZw0i2atVKzLhly5aMW69evfiM6Xbv3n337t1p
06ZFDxNntW7dGjvBFPXOFPplSGfNmqUvds2aNRg/Vwmrs3AoFuuCZOQECBwj
/+eff6JtFeT2UUxgKm13jRVUu3btRo0a3bt3D8ajF7Gx6kuXLsHDISEh586d
s3EaNsa4iQv7/PPPsWFNszGkOLW+fftSHadBFNj22LFjjxw5YrvqOXPmID8Q
HrKJixEqBjt27JAFQpmEJ9BLREQEVENoyVGqpgHTpk27ffs2EwTn264oYQNL
Zt5xWzKDWCDLn3EzjL+YOiyNeVgWgp/NkyePxOwCkdlcwuTKHkwLYRMWFiab
kBKK8eOPP9ZctsOBU4Y8tWUFidEeeGzfvn3607DAEiVKIO+LFi3q6upKs3Pl
ysWKS506NRqJQ+zBMjEV/VV4H05jrLAfjDB//vwsGcMKxeqojkrHjRun348L
C9RBGyLWe4UKFYg1tIWPVVOy/lpWnCg3uqPfT9U0AIllLRpKVCB2Y+Rr1aol
m9g2Sx4TvXLliv60JUuWMJLwuWUJyBJsoF27dvqd2ADnY1GYN5tIBSarZMmS
muUvX77ccrr14EyWwDCbsM3Vv/76KwtHY2axauzWwGPwOaZCjMYJxAUjRozA
6tauXTt16lRMF4FKI/FWhu9MOZ/SCEL5vH37drllhDXqlzaXIA84dOjQIf21
GKqTDlKIyczGLHzoVxtYFo7BqnGRUuaCBQv0+6m6S5cu7C9QoIA195d40L9/
f4ZCvBgjg95gk3hQjmLbyFH4mT3sZ4T5zMTppxilgXg+efKkvliECuc3aNDA
ZJ5c1IJhUZQvX57oEi/P3EUbs0+YMCF58uROFmDWir7E0qVLrfULUYSb7tGj
h8Z7YtVubm6vP1g6YFqwAfJDM12kAgGCdJmowWS+gS9cTVCJNWq6Akm8WAfN
/RGDczJCRTuNzXLlyslmeHg4hbC+pExGGGd04cIFRu/OnTuobrQHbpdD48eP
d0gf4y/EjAl2+IwwTpEiBZvQVJs2bRhGyHb9+vU4NRR1hw4dOEQ8UrduXb3g
RFp8+OGHhptaoliYYkZeZgcw5oRLzDUknD59elT30aNHiegt75yYzBSKFN9h
gWglkAGsO6r+7LPP9KvPgVZ99uxZwkAEMNYr8QLAH1GFr68vC4pADw1cpUqV
hQsXsuRZngSAtr/9oc2sU82qIZNPPvkE6uZCNhGEaPhdu3aheRgEYnMOsY4I
6jFmGACZhKiDJSjh22+/tb+P8RpIC8aHcKZhw4YMI/wpc+Tl5cWUYXuoC9Rd
ZGTk/Pnz5VuMjh07al+1wE5E96wCQ7EHDhwgWmciiNORptWrVxdNiwKHPFEO
HKI0POzKlSsd26Pjx4/TF6pDtGvt/O2332gGO1HLhFTYjD1VINcpCorG5HBA
iAE2EQDUS3w9fPhwNl1cXCR8RpuxycAS6NkoUwwS7Ve/fv3g4GDmgk2Kkq8G
EDmMHsO1aNEi00tXiIpetWqVySzn+Mw0QS9Vq1bFvO3pXQIAg8bgw9g//vgj
zIaR8xkb4DPmFxAQwKaEM5w5ffr00aNH6789RHNCRNEOI1dx7dy5c/GPXDJm
zJjQ0FDt6xtiNOrFgTq8R8iS7mbQWq06etRdB3tu57IiWCCIMSmK2FNu6X/9
9dcSjOC2vvvuOxyciB/icUKAoKAg23GxeDdvb2/WBQ6RkolNtBtNFLJx40a6
JoWgOhD2+h+JnTlzhgbgOGx8t6sQS8AM+HpNuyYGIDAwP8jTgWXiFmFaipWv
qBTiEOfPn0dm4P7iuiFvFVCiw39MgianzNKlS+tvoSjECXr27EnQZPurigQG
XD+RWtq0aR1LqkOHDsWqO3fu7MAyFV4Pfn5+0f6cKQEDfVumTJm2bds6tlgi
XHR1ouIHhXcKBL/qqSsFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBcHFixfP
nj07ZMiQa9euvdKFYWFhPj4+1n69HBIS0tmMPXv2OKKZsQXdGTp0KPX269cv
Ng8dKCRIrFixInXq1PqMNLHEF198kSNHDmsJx7CuDz/8UJ61cUQzY4XIyMjM
mTM3adJk1apVadKkad68+VurWuFdg5ubW9q0aSWDUCwBUXPJiBEjrJ3w4sUL
CPNtZo989OiRp6cnJg1FP3v2jEWHYR87duzt1K7wTuHIkSOpUqUqU6aMZAiJ
JWbNmpUkSRIb2Tsle2S+fPk0GbBjxw7YOzQ01N4WW8HOnTshaknXQKV58uSx
zJygkEggmYh69uwZ+0uwWHd39xo1athIOCnZcjp16iSbjx8/5hIqkqReDgdN
qlOnjre3t2zu2rWLpVq5cuW3nwEGJ3X9+vU3l/lEwRru3r27ePHilma8//77
2oPn0HXfvn1HjRqlPUM3aNCg8ePHG6z3wIEDXDJ79mxDsf/884+fn58UK8mr
AwIC2H/06NFmzZrJw78NGza8evWqw3uEIUHU8+bNO3ny5Jo1a3A9+AVJtYSB
0QAEiWghyVnXo0cPcSJ0be/evdLmaJ9/fyWg4lhZtIT/lI8fpNgNGzbI0du3
b3t5eXFInoKhJdOmTSOqtbNSBZPZpOvXr1+uXDlGGyGKpWXKlOny5cvoUqZe
cjxiBnJy2bJlDXn2AIK5cOHChnzXN2/eLF++fOnSpVECEyZMoJyMGTPKE7gc
6tOnD3ug92jzdMHk+6yDa2mYlgkqWowZMwZbwj5dXV3lkXAtZx0GnzVrVnbS
PJM584bkHhGvsWjRoty5c8+cOdPJ7mTXDGzx4sWRPUIU/v7+uA8Gc+HChXJC
gwYN5KF+4RAGvFixYrQtIiLCnnoVIJB69eoxkvKoOMwm/Mnnbdu2NW7cuEWL
FpI9Us7HnCA9/RN2EE6uXLnYry8Wu61SpQqSQ3KrSt4MLXsk+Oabb5ydna09
ALh27VpJ52IDkgzQGmgk9Ast08FJkybpX52wfPly2Dt//vwsz+nTp3t4eLCZ
IUMGydUDqxcoUOD+/ftQ6E8//fQ6Y/oSX375Zbt27SAE1rLkTwZFihQRpyC5
+GikNuBg4MCBLAR7KlVg0tHPyZIl0+5LSGIriM5ktkwmVwxywIABogwxb4Pk
xmlSwtatW/U7fX19ncxpQuUJdNHq2KEUgp7BqKBEa2oTGQC1nrcJG1kC9uzZ
kyJFCkm0C9avX0/t+AvZlFsiktYDloaWac+lS5fkKAbGzpEjRxpU1ujRo/PG
BM04TeZkOOyRRQ32798v1Wk3YR4+fIhL4gQEv+RoYjSwc9aCtX4pxAaRkZHp
06dHJMgMwroICQb5jz/+0M5Bi+bIkQM2lilgpgwpdmEhNzc3fZZU1AvnQ49y
bxDzq1SpEp73559/lhNYAlAx9G7DqqkrwiYMyQD1YPkg2rVEJQarFkgOBBcX
F4OqZ0VwLa01rNOgoCD/mKDPzEYbNAdnepkZGFFtSDRx48YNfFbJkiUZJT4X
KlRIvQXGTvzwww8MNQNuMocqkBvGVrlyZcNpiD0RD926devYsaP+UFRUVPbs
2WfMmKHfKTJGks6BjRs3sqnPYTt37lzMRpI/RwvWhfZ2AGswtEQDJElkqs/d
1KpVK71VS5YbVLSUs3v3bv3lT548kZR3tWvXtjV2McHHx4eOy2d4QDJ+aBlQ
NcAVn332GYdCQkJwkUQo6m6JnRCrllAF3iaaYxOrDgwM1Cc4qlu3Lq6zf//+
HDLkrPDz84PttUBMoLfqgwcPEnuy+dFHH8FdEv5LyEkV2E+07xpgrnHZNgJG
YC17hiRc1fLs4YAkk7wkO1q5cmWHDh1wRgULFqQZomlp5JAhQzjatm3b0NBQ
1AiRpv1WLXk4KU3yHgOWv/waQe8NZRERAkPUsUk1r2AbTDGUWLFiRURj9erV
iVMYXgwAFa2/ryuZfomnDDmLYJUSJUroc60LRLSkS5cOOs2XL59wkZP5FQaS
h7Z8+fI4BYytWbNmjn2PCU2S6tBRkDChQc2aNakLGhSVRQxLM/A+y5YtO3fu
HNYrKewwbGI6FzMCAgLQVDG+8MI2ECRosKJFi1IgjqlRo0ZwAg3LkiXLp59+
qj8TZnAy5yFUbzVyCLAowhPUBUEifEvMiEieOnWq4asKrJoxh3wMlx84cAAO
X7FihWXJcBHMPGrUKMQtnMznYcOGaQoWRyx58h2ehUCCL0JF5LGnp6fkWp8z
Z44W+s2aNYs+rlu3Thw95AlXi7cymX+ChflB45MnT7bz+xpqpF5q7969e3Bw
8IMHD8LCwtq3b9+vXz/DS0PgZ4aRdfcWXvyUSMDkSq5I2Yz2y0FoB7O3nGXm
C0K2EbW9fWCN8J67uzv9kjdQWzbb0EfLTQd+/0hRep3MOBtkM9WNHTuWZieq
dIVxBRgbYTl//nxUaNeuXS1vo8HzRO4Ydpw0L1rAdR4eHlj14sWL47ottsBg
Mm61zSDceGsvnVSoVauWaGmER7Q/c0KTc8I79RO4W7duERTQ5hhfhBS3wIN4
eXkxekQfvr6+iqXfGm7fvh0eHi4/nIgW33//fc+ePQ0vTIlbREVFESO8U+7D
GqBrhvdN/ABGwR4gCN+16AbJimEn8veyKSgoKCgoKCgoKCgoKCgoKCgoKCgo
KCgoKCi8NYSHhx83Q34LHSPmzp1reBhKj0uXLklpifzVVxcuXJBxeKO/Mbh7
9+6CBQuaNWvm4+OjXnWnBwOSNm1ap1jn2cudO7fhCS8NWHLbtm3lWRh/f3+H
NjM+AWPTnjF/pTxvr1pL3bp1K1SosHnz5lq1arm6uqpsmXq4ubklT558zZo1
MZ65bdu2NGnSaA/oRQvJeqF/pikR4saNG/nz53+jVh0YGJgtWzZ5WL558+bU
pWVxUXj69GmJEiUyZMhgyFoTLfr161ejRg0bXhXPmzp16kqVKmk/OlqxYoWf
n19UVJTDWhwfgIHJw5tv6CdhERERzs7OIgWfP3/epEkTZdV6HDhwIGnSpHXq
1IlRAZ49ezZLliyjR4+2cc6cOXMY3s8//1w2KbNKlSrskWdjEw86duxIr6dP
n/6Gyp8yZUrevHkl5fjp06dTpEhRoEAB7aH+RIuTJ0+GmtG6dWst0Q04derU
/Pnzd+3aZRk8BgUFcablb7AfPHiAeqlnBkPNOZKJ9PLly7169RJ5GRwc7HDW
osAjR46MGzdOUmrgHQ4fPqxliWdB0Tt5oODKlSta7g6mnv1ajjUp5Pbt2/a3
5/79+5SMPQ8fPtzFxUXLnCAt6dKlyzfffKMlLbEHeNWCBQs2btyYyYKUcLXw
9pIlS+TosWPHZC4GDhwoHhO97eXlxfmShAdBTiN//PHHhPT8AmPi4eGB6sM/
Zs+eXaxO+osNpEuXjgAkZcqU7u7uhgurVq1as2ZNA6U/evSICBEBs3r1ai6k
qMKFC4tpLVy4MEeOHOzJnDnz4MGDLa2algwYMGCbdWzfvt1Gyia8Bl5GHuHB
Iw8aNChJkiQ7duzg0Llz51BBHEqfPv3evXuLFStWqFAhkzm/Zbly5STTghSC
OqUQ+2NbljajSqTMqIqiLl68uIRv2A+jyn6i8qJFi9roUSwh+VW2bNni7e2N
3suaNaumPSQVCb1r1KgRsZI8ZNq+fXuZ5fHjx0uMSQuZlFfK7fwuA3vDXHPm
zCnchQ3I06yyqDt06MAmh3CdrVq10l9I9McAGnIpcFXnzp2RJb/++iubkyZN
4vKyZcvK0RcvXnh6emJp2jPdBmCKn376aQrrYHFZy33HBJUuXZry69evTxX5
8uVLliwZpiuZGViAo0aNkqmkeaVKlYInTebEUw0bNqTY3Llzy5MpLGf6Ffu0
YE/NMOx8+PAhLo/YTZIhwNWSn02GCAMrWbIkxMi6mzVrlsaQ8mS0bVjSKVdh
pZiuLJmwsDCsWku7Knk7We/sZzbxQSzkkSNHcgIrC4aX1DoQOysiYXA1vcBc
6bWWko7ZZJMZkU3JeoQhMXGGG84QMiNpeEbJx8cHQli0aJH+8qVLl8omvh4W
xfZsPK7CxF21iWiT20RGRtIY0eoUjsU6mVO5LliwQE5gKiX3DnB1ddVeebN5
82b69fHHHzu9zImKFKGR+AWt8JUrVw6zjjJlyrBs161bp28Pi4txWLt2rcn8
0JDc1hMGkMTdHB0xYoRhORBE04vsNsECMfQdgsUDYrGySXewarykbCIdWbOc
YJlCVrLFciYjxlXWsgbFO+CX4SXCCtHMTCgUR0+1/P8nTpzgBH1yWgHnQ25N
mzbV7zx+/Dj+nQEUo8ULICYhWNEAAPOmKC1TmSWYIFzA9evX9dN98+ZNdlIa
TG7tOcru3bsjFLWkBJKWh3Wnz4rQu3dvsWptlWno378/+7FePiOcYHh9fgMs
tmhM2LRpk3b+oUOH0qRJg0+XQljLeAd9Qr+tW7dKWhttZATEGotjgqWbk1RF
y5Ytk02xai2xKotIsjcjwAxShwBTz2AJBpKRTLtBMW3aNDbRnPr3cMlNDDc3
Nz3BTpw40fIdKzJZ+FmZzalTp0p+MznKzm7dujnZfC8MwQ5ukZWFYKj1EtgY
V8nNRsiK9lheWK1aNS2DOpxDFyBD/X0tdIi8awnXb/ndBM6IQ1WqVOFz9erV
4cyYx846iJSdzFlkZRM/6GRO8KudgOG1bNlSbvTZ/1UjLKGXxEgLmKROnTra
CZcuXZKU+PKVAR5NYmFiInZ+8MEHTDc09U49WG0P9Hn2YEJIW+wQVsFfQ9TI
Y7rMfn3qaQaQocA8DKWJVSNfTea4W3sRWEhICF5A3guTN29eCiS6sXY/ENJr
YB00VUvJqwdWvXz5cpM5upcvfXC7IjP27dvHJFIpi4L90WaawgWIVc+YMQM5
YeeX+2LV8qqygwcPpkqVik1fX19pCTok3AwCSejaznsgR44ccXZ21ls1Q0GN
oqZmzpzZs2dPRh5Tpw2wFo4PZkBfMQWEkDLj48aNQ+FrfnD37t0bN26Mv0Yu
Gd4InQj54Td5pQVjUqNGDUwajYfMQKXAM0hBTRUcPnyY4D0wMNBQGv4UgZEr
Vy4sGR4Qq8Yb9urVCzsRq2ZIhw4dyopw7P3q2rVrUya9QMHSBoQQ//PkyQPt
Q9EXLlwICAhgDx4nWotlpcDtdBwHZP93oOvXr8dcW7RoQXtwOnJbho7TSJgB
ZcLSxur40KRJEztvb+L4KBzDxjWwcvELEDXrWtwlYQ7iBMmNxMKAr1y5Al9x
goeHB6IaaUTcIaqscePGWkskCyJLwM5xiCvcuXOHgZWM4oR4TAdmgABj2TIs
CDb2Y+1EyvroiaWN6VpGfAwL8oAlQAB1+vRp1gWyAcUrZxKZIn2xK8Shw3+f
AL3QVOaLlYizgBIJGNlDZCrLZ/78+TTG2ks3aFujRo2wasjN/vsA9Nfb25va
MQ84AXvjM/+l11RR2Awszf6b1WgYbJJYICgoiA5CPiwl7WY7LcFlIOEgFrlV
ixLjBAQk8bXJHPtMNEPfEuIOfSGJASwECFx7N9Y7hZ07d74e9eFt4Tft1k18
AaIxkxmv+hZjBQPQvfg7wrq4boi9gLV2vUSfPn1s3Jl5Z7F27VqIWqXpsx91
69ZFkySAe5sobZGURBNTpkyJzU+53jUghrXb4Ar2gJBH+2ojXgOtMsMMYqh4
+p2ap6cnWlol67MfSFD14pJ3BASD8ff+m4KCgoKCgoKCgoKCgoKCgoKChv8D
xq43dA==
"], {{0, 91}, {242, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag[
"Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
BaseStyle->"ImageGraphics",
ImageSize->Automatic,
ImageSizeRaw->{242, 91},
PlotRange->{{0, 242}, {0, 91}}], ",", "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "runT"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thick", ",", "Red"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "False", ",", "False"}],
"}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Time in days\>\"", ",", "\"\<Uninfected RBCs\>\""}],
"}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "Medium"}], "]"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"LightGray", ",", "Dashed"}], "]"}]}]}], "]"}]}],
"}"}], ",",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"y", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "runT"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Brown", ",", "Thick"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "False", ",", "False"}],
"}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Time in days\>\"", ",", "\"\<Infected RBCs\>\""}],
"}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "Medium"}], "]"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"LightGray", ",", "Dashed"}], "]"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"s", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "runT"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Blue", ",", "Thick"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "False", ",", "False"}],
"}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Time in days\>\"", ",", "\"\<Merozoites\>\""}],
"}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "Medium"}], "]"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"LightGray", ",", "Dashed"}], "]"}]}]}], "]"}]}],
"\[IndentingNewLine]", "}"}]}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", " ", "540"}]}], "\[IndentingNewLine]",
"]"}]}], "\[IndentingNewLine]", ",", "\[IndentingNewLine]",
RowBox[{"Style", "[",
RowBox[{
"\"\<Mahidol-Oxford Tropical Medicine Research Unit\>\"", ",", "Bold"}],
"]"}], ",", "Delimiter", ",", "\[IndentingNewLine]",
"\"\<R. M. Anderson et al. Parasitology (1989) 99, S59-S79\>\"", ",",
"\[IndentingNewLine]", "Delimiter", ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"\[Alpha]", ",", "0.2", ",", "\"\<Dead rate of IBRCs \[Alpha]\>\""}],
"}"}], ",", "0.01", ",", "5.0", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"\[Beta]", ",", "0.1", ",",
"\"\<prob. RBCs become infected \[Beta]\>\""}], "}"}], ",", "0.01",
",", "5.0", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"\[CapitalLambda]", ",", "1", ",",
"\"\<birth rate of new RBCs \[CapitalLambda]\>\""}], "}"}], ",",
"0.1", ",", "10.", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"\[Mu]", ",", "0.00833", ",",
"\"\<\[Mu] where \!\(\*FractionBox[\(1\), \(\[Mu]\)]\)=RBCs life \
expectancy \>\""}], "}"}], ",", "0.001", ",", "0.1", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"r", ",", "16", ",", "\"\<merozoites/IRBC r\>\""}], "}"}], ",",
"0.", ",", "40", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"d", ",", "72", ",",
"\"\<d where \!\(\*FractionBox[\(1\), \(d\)]\)=merozoite life \
expectancy \>\""}], "}"}], ",", "0.", ",", "200", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"runT", ",", "200", ",", "\"\<max time\>\""}], "}"}], ",",
"1.", ",", "700.", ",", "1.", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]", "Delimiter", ",", "\[IndentingNewLine]",
RowBox[{"Style", "[",
RowBox[{
RowBox[{
"\"\<threshold condition (r-1)\[Beta]\[CapitalLambda] > \[Mu]d/\
\[CapitalLambda] : \>\"", "<>",
RowBox[{"ToString", "[", "cond", "]"}]}], ",", "Bold"}], "]"}],
"\[IndentingNewLine]", ",", "\[IndentingNewLine]", "Delimiter", ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"initx", ",", "120", ",", "\"\<Uninfected RBC x(0)\>\""}],
"}"}], ",", "1", ",", "1000.", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"inity", ",", "1", ",", "\"\<Infected RBC y(0)\>\""}], "}"}],
",", "0.1", ",", "100.", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"inits", ",", "4", ",", "\"\<merozoite s(0)\>\""}], "}"}], ",",
"0.", ",", "100.", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"ContinuousAction", "\[Rule]", "False"}], ",",
RowBox[{"ControlPlacement", "\[Rule]", "Top"}]}], "\[IndentingNewLine]",
"]"}], "\n"}]], "Input",
CellChangeTimes->{{3.512109941202074*^9, 3.512109941202074*^9}, {
3.512110131841569*^9, 3.5121102758369613`*^9}, {3.512110329348134*^9,
3.5121103310822535`*^9}, {3.512110368717338*^9, 3.5121104782168427`*^9}, {
3.512110520241905*^9, 3.5121107747424393`*^9}, {3.5121110098050175`*^9,
3.512111216700835*^9}, {3.5121113579170237`*^9, 3.5121114127398853`*^9}, {
3.5121115945661783`*^9, 3.512111624594282*^9}, {3.512111659948905*^9,
3.5121117809644156`*^9}, 3.5121118200380387`*^9, {3.5121118796249237`*^9,
3.5121118840931587`*^9}, {3.5121119382275467`*^9, 3.512112020327463*^9}, {
3.5121123089282956`*^9, 3.5121123122090836`*^9}, {3.5121724249270024`*^9,
3.5121724548711176`*^9}, {3.5121725448645363`*^9,
3.5121725787486544`*^9}, {3.5121727135040264`*^9, 3.512172896441965*^9}, {
3.5121778225723567`*^9, 3.5121779631576385`*^9}, {3.5121780010458384`*^9,
3.5121781066356173`*^9}, {3.512178311569183*^9, 3.5121783622865014`*^9}, {
3.512178418768346*^9, 3.5121784415641994`*^9}, {3.5121784761876483`*^9,
3.512178506905022*^9}, {3.5121785419659514`*^9, 3.512178598713409*^9}, {
3.51217869591152*^9, 3.51217872776906*^9}, {3.51218239921481*^9,
3.5121824007928643`*^9}, 3.5121832753912497`*^9, {3.5371528126306667`*^9,
3.5371528513342867`*^9}, {3.5371530116328993`*^9, 3.537153081038705*^9}, {
3.5864898549121923`*^9, 3.586489874042575*^9}, {3.586490003236159*^9,
3.5864900141163764`*^9}, {3.5864900516571274`*^9,
3.5864900894178824`*^9}, {3.5864901308097105`*^9,
3.5864902162124186`*^9}, {3.5864902573232403`*^9,
3.5864902761836176`*^9}, {3.586490364445383*^9, 3.586490377345641*^9}, {
3.586490510358301*^9, 3.5864906241305766`*^9}, {3.5864906727315483`*^9,
3.5864907216025257`*^9}, {3.5864908843767815`*^9, 3.586490924477584*^9}, {
3.586491000959113*^9, 3.5864910670804358`*^9}, {3.5864912156844077`*^9,
3.586491280415702*^9}, {3.586491313996374*^9, 3.586491314516384*^9}, {
3.586491381607726*^9, 3.5864915567812295`*^9}, {3.586491589861891*^9,
3.5864916120423346`*^9}, {3.5865673598478785`*^9,
3.5865673890054655`*^9}, {3.586647062228817*^9, 3.5866471117919703`*^9}, {
3.5866472077806163`*^9, 3.586647217249998*^9}, {3.5866472570950203`*^9,
3.586647307314886*^9}, {3.5866476948699675`*^9, 3.5866476951663713`*^9},
3.586647823015011*^9}],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`d$$ = 72, $CellContext`inits$$ =
4, $CellContext`initx$$ = 120, $CellContext`inity$$ =
1, $CellContext`r$$ = 16, $CellContext`runT$$ =
200, $CellContext`\[Alpha]$$ = 0.2, $CellContext`\[Beta]$$ =
0.1, $CellContext`\[CapitalLambda]$$ = 1, $CellContext`\[Mu]$$ = 0.00833,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{
Hold[
Style["Mahidol-Oxford Tropical Medicine Research Unit", Bold]],
Manipulate`Dump`ThisIsNotAControl}, {
Hold["R. M. Anderson et al. Parasitology (1989) 99, S59-S79"],
Manipulate`Dump`ThisIsNotAControl}, {{
Hold[$CellContext`\[Alpha]$$], 0.2, "Dead rate of IBRCs \[Alpha]"},
0.01, 5.}, {{
Hold[$CellContext`\[Beta]$$], 0.1,
"prob. RBCs become infected \[Beta]"}, 0.01, 5.}, {{
Hold[$CellContext`\[CapitalLambda]$$], 1,
"birth rate of new RBCs \[CapitalLambda]"}, 0.1, 10.}, {{
Hold[$CellContext`\[Mu]$$], 0.00833,
"\[Mu] where \!\(\*FractionBox[\(1\), \(\[Mu]\)]\)=RBCs life \
expectancy "}, 0.001, 0.1}, {{
Hold[$CellContext`r$$], 16, "merozoites/IRBC r"}, 0., 40}, {{
Hold[$CellContext`d$$], 72,
"d where \!\(\*FractionBox[\(1\), \(d\)]\)=merozoite life expectancy \
"}, 0., 200}, {{
Hold[$CellContext`runT$$], 200, "max time"}, 1., 700., 1.}, {
Hold[
Style[
"threshold condition (r-1)\[Beta]\[CapitalLambda] > \[Mu]d/\
\[CapitalLambda] : True", Bold]], Manipulate`Dump`ThisIsNotAControl}, {{
Hold[$CellContext`initx$$], 120, "Uninfected RBC x(0)"}, 1, 1000.}, {{
Hold[$CellContext`inity$$], 1, "Infected RBC y(0)"}, 0.1, 100.}, {{
Hold[$CellContext`inits$$], 4, "merozoite s(0)"}, 0., 100.}},
Typeset`size$$ = {540., {191., 195.}}, Typeset`update$$ = 0,
Typeset`initDone$$, Typeset`skipInitDone$$ =
True, $CellContext`\[Alpha]$602$$ = 0, $CellContext`\[Beta]$603$$ =
0, $CellContext`\[CapitalLambda]$604$$ = 0, $CellContext`\[Mu]$605$$ =
0, $CellContext`r$606$$ = 0, $CellContext`d$607$$ =
0, $CellContext`runT$608$$ = 0, $CellContext`initx$609$$ =
0, $CellContext`inity$610$$ = 0, $CellContext`inits$611$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`d$$ = 72, $CellContext`inits$$ =
4, $CellContext`initx$$ = 120, $CellContext`inity$$ =
1, $CellContext`r$$ = 16, $CellContext`runT$$ =
200, $CellContext`\[Alpha]$$ = 0.2, $CellContext`\[Beta]$$ =
0.1, $CellContext`\[CapitalLambda]$$ = 1, $CellContext`\[Mu]$$ =
0.00833}, "ControllerVariables" :> {
Hold[$CellContext`\[Alpha]$$, $CellContext`\[Alpha]$602$$, 0],
Hold[$CellContext`\[Beta]$$, $CellContext`\[Beta]$603$$, 0],
Hold[$CellContext`\[CapitalLambda]$$, \
$CellContext`\[CapitalLambda]$604$$, 0],
Hold[$CellContext`\[Mu]$$, $CellContext`\[Mu]$605$$, 0],
Hold[$CellContext`r$$, $CellContext`r$606$$, 0],
Hold[$CellContext`d$$, $CellContext`d$607$$, 0],
Hold[$CellContext`runT$$, $CellContext`runT$608$$, 0],
Hold[$CellContext`initx$$, $CellContext`initx$609$$, 0],
Hold[$CellContext`inity$$, $CellContext`inity$610$$, 0],
Hold[$CellContext`inits$$, $CellContext`inits$611$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$},
"Body" :> ($CellContext`sol =
NDSolve[{
Derivative[
1][$CellContext`x][$CellContext`t] == $CellContext`\
\[CapitalLambda]$$ - $CellContext`\[Mu]$$ $CellContext`x[$CellContext`t] - \
$CellContext`\[Beta]$$ $CellContext`x[$CellContext`t] \
$CellContext`s[$CellContext`t],
Derivative[
1][$CellContext`y][$CellContext`t] == $CellContext`\[Beta]$$ \
$CellContext`x[$CellContext`t] $CellContext`s[$CellContext`t] - $CellContext`\
\[Alpha]$$ $CellContext`y[$CellContext`t],
Derivative[
1][$CellContext`s][$CellContext`t] == $CellContext`\[Alpha]$$ \
$CellContext`r$$ $CellContext`y[$CellContext`t] - $CellContext`d$$ \
$CellContext`s[$CellContext`t] - $CellContext`\[Beta]$$ \
$CellContext`s[$CellContext`t] $CellContext`x[$CellContext`t], $CellContext`x[
0] == $CellContext`initx$$, $CellContext`y[
0] == $CellContext`inity$$, $CellContext`s[
0] == $CellContext`inits$$}, {$CellContext`x, $CellContext`y, \
$CellContext`s}, {$CellContext`t, 0, $CellContext`runT$$}, MaxSteps ->
Infinity,
Method -> {$CellContext`StiffnessSwitching,
Method -> {$CellContext`ExplicitRungeKutta, Automatic}},
AccuracyGoal -> 5, PrecisionGoal ->
4]; $CellContext`cond = ($CellContext`r$$ -
1.) $CellContext`\[Beta]$$ $CellContext`\[CapitalLambda]$$ > \
$CellContext`\[Mu]$$ ($CellContext`d$$/$CellContext`\[CapitalLambda]$$);
GraphicsGrid[{{
Image[CompressedData["
1:eJztnQdUFGcXhrFjjzWK+tuisaBi74WYxNiN2COWBAvYYok1ltgSg8SCvSFW
7Io1xpbYETWWoEbBYOxG0djr/k/2HufMmWUXdFcR+N5z4Oy0r97vve+d3bmT
/8teTTsndXJy6uvMv6YdB7j36dNxkEdyNj4a1K/Tl8n48AV///L332eTgoKC
goKCgoKCgoKCgoKCgoKCgoKCgoKCQkLEs2fPHj9+HNetSCBgMB88ePDw4cO4
bkhCwJMnT/z9/QcOHDhs2LBbt2690rXBwcHdunWzdnT27NkDzTh79qzdzXxN
nD59eubMmXFVe+wBOfTo0aNYsWLFixcPCQmJ6+bEe9y5c+enn35ydnZOnTr1
8ePHY38hxFKiRIn27dtbOyEiIuK9995zcnL65ZdfHNDQV0dYWJiLi0uNGjXi
pPbYA35mGOvXr3/v3j1vb+9MmTKdOXMmrhsV7/Hvv/8WKlQoQ4YMWHjsrzp0
6JBti3369GmOHDny5Mnzqi7AIbh//37hwoVpoaen59uv/ZWwadMmV1fXu3fv
8tnHx4c279+/P64bFe+xd+9eRrJt27ZIu9hf1aFDh4oVKz569MjaCZGRkXA1
pqXtwSk0a9bMrrbGGiNGjEia9L+fitG7t1Pj6wGXV7Vq1aCgINlUVu0QYMn1
6tVjJAMDA6M9AeFtae1RUVFFihQZPny45fnPnz+PMgNdTbGTJk2S/deuXcud
OzfSEQ53aA+iwciRI5Ml++9njY61apbwixcvtM+GyE6/KYMQm55u2LAha9as
4eHhfL5x40b27Nn/97///fXXX5aFGDaZFBlnvJIjOpcQcPHixSFDhsAMbdq0
EQM4f/68yTxZo0aNIgb8+++/2Tx8+HDjxo2/+uorw9BNnz49ZcqUv//+u6FY
AkMvL6+CBQtmyZIlVapU6dKlO3HiBPsJ2VAj1AJ//vDDD2+0a6GhoRgGwS/B
ggOtGoXQpEmT3377zWSWN82bN2/YsKFm5KtWrapZs+b333/PZ3bOmzcPRden
Tx/bZcIY1atXr1atmp+fH3Ph7u5eqlQpEdUUEhAQQCHsZ1Iw6SlTpjCeAwYM
MJlN2tfXN4sZZcuWvXz5skP6GK+xc+fOjBkzIjk2btxIMMXUoyVwhRzq3bs3
ERZ7hg4dCvkwzh988EGaNGn02lh0OINpKHb16tUM++DBg69evTpjxgwKyZYt
m0iU69ev58yZkz0cvXnzpmWTTp8+TbhUzyb+/PPPGLt28ODBzJkzd+rUiUZi
Eg606okTJ1La3Llz+bxlyxY+d+3aVawawixevDgLlhpPnTq1bdu2fPny0Yym
TZvaLhNuYSKWLVuG5KCDXCIsbTK7NspkDxUFBwevW7cOg69UqRJLwGQeLkhj
8uTJ/v7+SZIkiRf3ed4o9uzZw0i2atVKzLhly5aMW69evfiM6Xbv3n337t1p
06ZFDxNntW7dGjvBFPXOFPplSGfNmqUvds2aNRg/Vwmrs3AoFuuCZOQECBwj
/+eff6JtFeT2UUxgKm13jRVUu3btRo0a3bt3D8ajF7Gx6kuXLsHDISEh586d
s3EaNsa4iQv7/PPPsWFNszGkOLW+fftSHadBFNj22LFjjxw5YrvqOXPmID8Q
HrKJixEqBjt27JAFQpmEJ9BLREQEVENoyVGqpgHTpk27ffs2EwTn264oYQNL
Zt5xWzKDWCDLn3EzjL+YOiyNeVgWgp/NkyePxOwCkdlcwuTKHkwLYRMWFiab
kBKK8eOPP9ZctsOBU4Y8tWUFidEeeGzfvn3607DAEiVKIO+LFi3q6upKs3Pl
ysWKS506NRqJQ+zBMjEV/VV4H05jrLAfjDB//vwsGcMKxeqojkrHjRun348L
C9RBGyLWe4UKFYg1tIWPVVOy/lpWnCg3uqPfT9U0AIllLRpKVCB2Y+Rr1aol
m9g2Sx4TvXLliv60JUuWMJLwuWUJyBJsoF27dvqd2ADnY1GYN5tIBSarZMmS
muUvX77ccrr14EyWwDCbsM3Vv/76KwtHY2axauzWwGPwOaZCjMYJxAUjRozA
6tauXTt16lRMF4FKI/FWhu9MOZ/SCEL5vH37drllhDXqlzaXIA84dOjQIf21
GKqTDlKIyczGLHzoVxtYFo7BqnGRUuaCBQv0+6m6S5cu7C9QoIA195d40L9/
f4ZCvBgjg95gk3hQjmLbyFH4mT3sZ4T5zMTppxilgXg+efKkvliECuc3aNDA
ZJ5c1IJhUZQvX57oEi/P3EUbs0+YMCF58uROFmDWir7E0qVLrfULUYSb7tGj
h8Z7YtVubm6vP1g6YFqwAfJDM12kAgGCdJmowWS+gS9cTVCJNWq6Akm8WAfN
/RGDczJCRTuNzXLlyslmeHg4hbC+pExGGGd04cIFRu/OnTuobrQHbpdD48eP
d0gf4y/EjAl2+IwwTpEiBZvQVJs2bRhGyHb9+vU4NRR1hw4dOEQ8UrduXb3g
RFp8+OGHhptaoliYYkZeZgcw5oRLzDUknD59elT30aNHiegt75yYzBSKFN9h
gWglkAGsO6r+7LPP9KvPgVZ99uxZwkAEMNYr8QLAH1GFr68vC4pADw1cpUqV
hQsXsuRZngSAtr/9oc2sU82qIZNPPvkE6uZCNhGEaPhdu3aheRgEYnMOsY4I
6jFmGACZhKiDJSjh22+/tb+P8RpIC8aHcKZhw4YMI/wpc+Tl5cWUYXuoC9Rd
ZGTk/Pnz5VuMjh07al+1wE5E96wCQ7EHDhwgWmciiNORptWrVxdNiwKHPFEO
HKI0POzKlSsd26Pjx4/TF6pDtGvt/O2332gGO1HLhFTYjD1VINcpCorG5HBA
iAE2EQDUS3w9fPhwNl1cXCR8RpuxycAS6NkoUwwS7Ve/fv3g4GDmgk2Kkq8G
EDmMHsO1aNEi00tXiIpetWqVySzn+Mw0QS9Vq1bFvO3pXQIAg8bgw9g//vgj
zIaR8xkb4DPmFxAQwKaEM5w5ffr00aNH6789RHNCRNEOI1dx7dy5c/GPXDJm
zJjQ0FDt6xtiNOrFgTq8R8iS7mbQWq06etRdB3tu57IiWCCIMSmK2FNu6X/9
9dcSjOC2vvvuOxyciB/icUKAoKAg23GxeDdvb2/WBQ6RkolNtBtNFLJx40a6
JoWgOhD2+h+JnTlzhgbgOGx8t6sQS8AM+HpNuyYGIDAwP8jTgWXiFmFaipWv
qBTiEOfPn0dm4P7iuiFvFVCiw39MgianzNKlS+tvoSjECXr27EnQZPurigQG
XD+RWtq0aR1LqkOHDsWqO3fu7MAyFV4Pfn5+0f6cKQEDfVumTJm2bds6tlgi
XHR1ouIHhXcKBL/qqSsFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBcHFixfP
nj07ZMiQa9euvdKFYWFhPj4+1n69HBIS0tmMPXv2OKKZsQXdGTp0KPX269cv
Ng8dKCRIrFixInXq1PqMNLHEF198kSNHDmsJx7CuDz/8UJ61cUQzY4XIyMjM
mTM3adJk1apVadKkad68+VurWuFdg5ubW9q0aSWDUCwBUXPJiBEjrJ3w4sUL
CPNtZo989OiRp6cnJg1FP3v2jEWHYR87duzt1K7wTuHIkSOpUqUqU6aMZAiJ
JWbNmpUkSRIb2Tsle2S+fPk0GbBjxw7YOzQ01N4WW8HOnTshaknXQKV58uSx
zJygkEggmYh69uwZ+0uwWHd39xo1athIOCnZcjp16iSbjx8/5hIqkqReDgdN
qlOnjre3t2zu2rWLpVq5cuW3nwEGJ3X9+vU3l/lEwRru3r27ePHilma8//77
2oPn0HXfvn1HjRqlPUM3aNCg8ePHG6z3wIEDXDJ79mxDsf/884+fn58UK8mr
AwIC2H/06NFmzZrJw78NGza8evWqw3uEIUHU8+bNO3ny5Jo1a3A9+AVJtYSB
0QAEiWghyVnXo0cPcSJ0be/evdLmaJ9/fyWg4lhZtIT/lI8fpNgNGzbI0du3
b3t5eXFInoKhJdOmTSOqtbNSBZPZpOvXr1+uXDlGGyGKpWXKlOny5cvoUqZe
cjxiBnJy2bJlDXn2AIK5cOHChnzXN2/eLF++fOnSpVECEyZMoJyMGTPKE7gc
6tOnD3ug92jzdMHk+6yDa2mYlgkqWowZMwZbwj5dXV3lkXAtZx0GnzVrVnbS
PJM584bkHhGvsWjRoty5c8+cOdPJ7mTXDGzx4sWRPUIU/v7+uA8Gc+HChXJC
gwYN5KF+4RAGvFixYrQtIiLCnnoVIJB69eoxkvKoOMwm/Mnnbdu2NW7cuEWL
FpI9Us7HnCA9/RN2EE6uXLnYry8Wu61SpQqSQ3KrSt4MLXsk+Oabb5ydna09
ALh27VpJ52IDkgzQGmgk9Ast08FJkybpX52wfPly2Dt//vwsz+nTp3t4eLCZ
IUMGydUDqxcoUOD+/ftQ6E8//fQ6Y/oSX375Zbt27SAE1rLkTwZFihQRpyC5
+GikNuBg4MCBLAR7KlVg0tHPyZIl0+5LSGIriM5ktkwmVwxywIABogwxb4Pk
xmlSwtatW/U7fX19ncxpQuUJdNHq2KEUgp7BqKBEa2oTGQC1nrcJG1kC9uzZ
kyJFCkm0C9avX0/t+AvZlFsiktYDloaWac+lS5fkKAbGzpEjRxpU1ujRo/PG
BM04TeZkOOyRRQ32798v1Wk3YR4+fIhL4gQEv+RoYjSwc9aCtX4pxAaRkZHp
06dHJMgMwroICQb5jz/+0M5Bi+bIkQM2lilgpgwpdmEhNzc3fZZU1AvnQ49y
bxDzq1SpEp73559/lhNYAlAx9G7DqqkrwiYMyQD1YPkg2rVEJQarFkgOBBcX
F4OqZ0VwLa01rNOgoCD/mKDPzEYbNAdnepkZGFFtSDRx48YNfFbJkiUZJT4X
KlRIvQXGTvzwww8MNQNuMocqkBvGVrlyZcNpiD0RD926devYsaP+UFRUVPbs
2WfMmKHfKTJGks6BjRs3sqnPYTt37lzMRpI/RwvWhfZ2AGswtEQDJElkqs/d
1KpVK71VS5YbVLSUs3v3bv3lT548kZR3tWvXtjV2McHHx4eOy2d4QDJ+aBlQ
NcAVn332GYdCQkJwkUQo6m6JnRCrllAF3iaaYxOrDgwM1Cc4qlu3Lq6zf//+
HDLkrPDz84PttUBMoLfqgwcPEnuy+dFHH8FdEv5LyEkV2E+07xpgrnHZNgJG
YC17hiRc1fLs4YAkk7wkO1q5cmWHDh1wRgULFqQZomlp5JAhQzjatm3b0NBQ
1AiRpv1WLXk4KU3yHgOWv/waQe8NZRERAkPUsUk1r2AbTDGUWLFiRURj9erV
iVMYXgwAFa2/ryuZfomnDDmLYJUSJUroc60LRLSkS5cOOs2XL59wkZP5FQaS
h7Z8+fI4BYytWbNmjn2PCU2S6tBRkDChQc2aNakLGhSVRQxLM/A+y5YtO3fu
HNYrKewwbGI6FzMCAgLQVDG+8MI2ECRosKJFi1IgjqlRo0ZwAg3LkiXLp59+
qj8TZnAy5yFUbzVyCLAowhPUBUEifEvMiEieOnWq4asKrJoxh3wMlx84cAAO
X7FihWXJcBHMPGrUKMQtnMznYcOGaQoWRyx58h2ehUCCL0JF5LGnp6fkWp8z
Z44W+s2aNYs+rlu3Thw95AlXi7cymX+ChflB45MnT7bz+xpqpF5q7969e3Bw
8IMHD8LCwtq3b9+vXz/DS0PgZ4aRdfcWXvyUSMDkSq5I2Yz2y0FoB7O3nGXm
C0K2EbW9fWCN8J67uzv9kjdQWzbb0EfLTQd+/0hRep3MOBtkM9WNHTuWZieq
dIVxBRgbYTl//nxUaNeuXS1vo8HzRO4Ydpw0L1rAdR4eHlj14sWL47ottsBg
Mm61zSDceGsvnVSoVauWaGmER7Q/c0KTc8I79RO4W7duERTQ5hhfhBS3wIN4
eXkxekQfvr6+iqXfGm7fvh0eHi4/nIgW33//fc+ePQ0vTIlbREVFESO8U+7D
GqBrhvdN/ABGwR4gCN+16AbJimEn8veyKSgoKCgoKCgoKCgoKCgoKCgoKCgo
KCgoKCi8NYSHhx83Q34LHSPmzp1reBhKj0uXLklpifzVVxcuXJBxeKO/Mbh7
9+6CBQuaNWvm4+OjXnWnBwOSNm1ap1jn2cudO7fhCS8NWHLbtm3lWRh/f3+H
NjM+AWPTnjF/pTxvr1pL3bp1K1SosHnz5lq1arm6uqpsmXq4ubklT558zZo1