-
Notifications
You must be signed in to change notification settings - Fork 141
/
synthesis.py
60 lines (48 loc) · 2.1 KB
/
synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch as t
from utils import spectrogram2wav
from scipy.io.wavfile import write
import hyperparams as hp
from text import text_to_sequence
import numpy as np
from network import ModelPostNet, Model
from collections import OrderedDict
from tqdm import tqdm
import argparse
def load_checkpoint(step, model_name="transformer"):
state_dict = t.load('./checkpoint/checkpoint_%s_%d.pth.tar'% (model_name, step))
new_state_dict = OrderedDict()
for k, value in state_dict['model'].items():
key = k[7:]
new_state_dict[key] = value
return new_state_dict
def synthesis(text, args):
m = Model()
m_post = ModelPostNet()
m.load_state_dict(load_checkpoint(args.restore_step1, "transformer"))
m_post.load_state_dict(load_checkpoint(args.restore_step2, "postnet"))
text = np.asarray(text_to_sequence(text, [hp.cleaners]))
text = t.LongTensor(text).unsqueeze(0)
text = text.cuda()
mel_input = t.zeros([1,1, 80]).cuda()
pos_text = t.arange(1, text.size(1)+1).unsqueeze(0)
pos_text = pos_text.cuda()
m=m.cuda()
m_post = m_post.cuda()
m.train(False)
m_post.train(False)
pbar = tqdm(range(args.max_len))
with t.no_grad():
for i in pbar:
pos_mel = t.arange(1,mel_input.size(1)+1).unsqueeze(0).cuda()
mel_pred, postnet_pred, attn, stop_token, _, attn_dec = m.forward(text, mel_input, pos_text, pos_mel)
mel_input = t.cat([mel_input, mel_pred[:,-1:,:]], dim=1)
mag_pred = m_post.forward(postnet_pred)
wav = spectrogram2wav(mag_pred.squeeze(0).cpu().numpy())
write(hp.sample_path + "/test.wav", hp.sr, wav)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--restore_step1', type=int, help='Global step to restore checkpoint', default=172000)
parser.add_argument('--restore_step2', type=int, help='Global step to restore checkpoint', default=100000)
parser.add_argument('--max_len', type=int, help='Global step to restore checkpoint', default=400)
args = parser.parse_args()
synthesis("Transformer model is so fast!",args)