-
Notifications
You must be signed in to change notification settings - Fork 42
/
neighbors.go
364 lines (329 loc) · 9.33 KB
/
neighbors.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/*
Copyright © 2013 the InMAP authors.
This file is part of InMAP.
InMAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
InMAP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with InMAP. If not, see <http://www.gnu.org/licenses/>.
*/
package inmap
import (
"math"
"github.com/ctessum/geom"
)
func (d *InMAP) setNeighbors(c *Cell, m Mechanism) {
d.neighbors(c)
d.setBoundaryNeighbors(c, m)
}
func (d *InMAP) setBoundaryNeighbors(c *Cell, m Mechanism) {
if c.west.len() == 0 {
d.addWestBoundary(c, m)
}
if c.east.len() == 0 {
d.addEastBoundary(c, m)
}
if c.north.len() == 0 {
d.addNorthBoundary(c, m)
}
if c.south.len() == 0 {
d.addSouthBoundary(c, m)
}
if c.above.len() == 0 {
d.addTopBoundary(c, m)
}
}
func (d *InMAP) neighbors(c *Cell) {
b := c.Bounds()
// Horizontal
westbox := newNeighborRect(b, west, d)
c.west = getCells(d.index, westbox, c.Layer)
for _, w := range *c.west {
if w.east.len() == 1 && (*w.east)[0].boundary {
d.eastBoundary.delete((*w.east)[0])
w.east.delete((*w.east)[0])
}
w.east.add(c)
neighborInfoEastWest(w, w.Cell.east.ref(c))
}
eastbox := newNeighborRect(b, east, d)
c.east = getCells(d.index, eastbox, c.Layer)
for _, e := range *c.east {
if e.west.len() == 1 && (*e.west)[0].boundary {
d.westBoundary.delete((*e.west)[0])
e.west.delete((*e.west)[0])
}
e.west.add(c)
neighborInfoEastWest(e, e.Cell.west.ref(c))
}
southbox := newNeighborRect(b, south, d)
c.south = getCells(d.index, southbox, c.Layer)
for _, s := range *c.south {
if s.north.len() == 1 && (*s.north)[0].boundary {
d.northBoundary.delete((*s.north)[0])
s.north.delete((*s.north)[0])
}
s.north.add(c)
neighborInfoSouthNorth(s, s.Cell.north.ref(c))
}
northbox := newNeighborRect(b, north, d)
c.north = getCells(d.index, northbox, c.Layer)
for _, n := range *c.north {
if n.south.len() == 1 && (*n.south)[0].boundary {
d.southBoundary.delete((*n.south)[0])
n.south.delete((*n.south)[0])
}
n.south.add(c)
neighborInfoSouthNorth(n, n.Cell.south.ref(c))
}
// Above
abovebelowbox := newNeighborRect(b, aboveBelow, d)
c.above = getCells(d.index, abovebelowbox, c.Layer+1)
for _, a := range *c.above {
if a.below.len() == 1 && (*a.below)[0] == a {
a.below.delete((*a.below)[0])
}
a.below.add(c)
neighborInfoAboveBelow(a, a.Cell.below.ref(c))
}
// Below
c.below = getCells(d.index, abovebelowbox, c.Layer-1)
for _, b := range *c.below {
if b.above.len() == 1 && (*b.above)[0].boundary {
d.topBoundary.delete((*b.above)[0])
b.above.delete((*b.above)[0])
}
b.above.add(c)
neighborInfoAboveBelow(b, b.Cell.above.ref(c))
}
if c.Layer == 0 {
ref := (*c).below.add(c) // Reflective boundary at ground level.
neighborInfoBoundaryTopBottom(ref)
}
// Ground level.
c.groundLevel = getCells(d.index, abovebelowbox, 0)
for _, g := range *c.groundLevel {
neighborInfoGroundLevel(c, g)
}
// Find the cells that this cell is the ground level for.
if c.Layer == 0 {
for _, ccI := range d.index.SearchIntersect(abovebelowbox) {
cc := ccI.(*Cell)
if cc.Layer > 0 {
cc.groundLevel.add(c)
neighborInfoGroundLevel(cc, cc.groundLevel.ref(c))
}
}
}
}
// neighborInfoEastWest calculates information about the relationship
// between two cells that neighbor in the east-west direction, where
// cr1 is the first cell's reference to the second cell, and
// cr2 is the second cell's reference to the first cell.
func neighborInfoEastWest(cr1, cr2 *cellRef) {
cr1.info = &neighborInfo{
centerDistance: (cr2.Dx + cr1.Dx) / 2,
coverFrac: min(cr1.Dy/cr2.Dy, 1.),
diff: harmonicMean(cr2.Kxxyy, cr1.Kxxyy),
}
cr2.info = &neighborInfo{
centerDistance: cr1.info.centerDistance,
coverFrac: min(cr2.Dy/cr1.Dy, 1.),
diff: cr1.info.diff,
}
}
// neighborInfoBoundaryEastWest holds information about the relationship
// between a cell on the east-west edge of the domain and the boundary.
func neighborInfoBoundaryEastWest(cr *cellRef) {
cr.info = &neighborInfo{
centerDistance: cr.Dx,
coverFrac: 1.,
diff: cr.Kxxyy,
}
}
// neighborInfoSouthNorth calculates information about the relationship
// between two cells that neighbor in the south-north direction, where
// cr1 is the first cell's reference to the second cell, and
// cr2 is the second cell's reference to the first cell.
func neighborInfoSouthNorth(cr1, cr2 *cellRef) {
cr1.info = &neighborInfo{
centerDistance: (cr2.Dy + cr1.Dy) / 2,
coverFrac: min(cr1.Dx/cr2.Dx, 1.),
diff: harmonicMean(cr2.Kxxyy, cr1.Kxxyy),
}
cr2.info = &neighborInfo{
centerDistance: cr1.info.centerDistance,
coverFrac: min(cr2.Dx/cr1.Dx, 1.),
diff: cr1.info.diff,
}
}
// neighborInfoBoundaryEastWest holds information about the relationship
// between a cell on the north-south edge of the domain and the boundary.
func neighborInfoBoundarySouthNorth(cr *cellRef) {
cr.info = &neighborInfo{
centerDistance: cr.Dy,
coverFrac: 1.,
diff: cr.Kxxyy,
}
}
// neighborInfoAboveBelow calculates information about the relationship
// between two cells that neighbor in the up-down direction, where
// cr1 is the first cell's reference to the second cell, and
// cr2 is the second cell's reference to the first cell.
func neighborInfoAboveBelow(cr1, cr2 *cellRef) {
cr1.info = &neighborInfo{
centerDistance: (cr2.Dz + cr1.Dz) / 2,
coverFrac: min((cr1.Dx*cr1.Dy)/(cr2.Dx*cr2.Dy), 1.),
diff: harmonicMean(cr2.Kzz, cr1.Kzz),
}
cr2.info = &neighborInfo{
centerDistance: cr1.info.centerDistance,
coverFrac: min((cr2.Dx*cr2.Dy)/(cr1.Dx*cr1.Dy), 1.),
diff: cr1.info.diff,
}
}
// neighborInfoBoundaryEastWest holds information about the relationship
// between a cell on the Top edge of the domain and the boundary.
func neighborInfoBoundaryTopBottom(cr *cellRef) {
cr.info = &neighborInfo{
centerDistance: cr.Dz,
coverFrac: 1.,
diff: cr.Kzz,
}
}
// neighborInfoAboveBelow calculates information about the relationship
// between two cells where cr is a reference to a cell that
// is above c when c is at ground level.
func neighborInfoGroundLevel(c *Cell, cr *cellRef) {
cr.info = &neighborInfo{
coverFrac: min((cr.Dx*cr.Dy)/(c.Dx*c.Dy), 1.),
}
}
// dereferenceNeighbors removes any references to this cell that exist in its
// neighbors.
func (c *Cell) dereferenceNeighbors(d *InMAP) {
for _, w := range *c.west {
if w.boundary {
d.westBoundary.deleteCell(w.Cell)
} else {
w.east.deleteCell(c)
}
}
for _, e := range *c.east {
if e.boundary {
d.eastBoundary.deleteCell(e.Cell)
} else {
e.west.deleteCell(c)
}
}
for _, s := range *c.south {
if s.boundary {
d.southBoundary.deleteCell(s.Cell)
} else {
s.north.deleteCell(c)
}
}
for _, n := range *c.north {
if n.boundary {
d.northBoundary.deleteCell(n.Cell)
} else {
n.south.deleteCell(c)
}
}
if c.Layer != 0 { // We don't worry about dereferencing below ground level cells.
for _, b := range *c.below {
b.above.deleteCell(c)
}
}
for _, a := range *c.above {
if a.boundary {
d.topBoundary.deleteCell(a.Cell)
} else {
a.below.deleteCell(c)
}
}
// Dereference the cells that this cell is the ground level for.
if c.Layer == 0 {
r := newNeighborRect(c.Bounds(), aboveBelow, d)
for _, ccI := range d.index.SearchIntersect(r) {
cc := ccI.(*Cell)
if cc.Layer > 0 {
cc.groundLevel.deleteCell(c)
}
}
}
}
// neighborAlignment specifies the desired alignment of the neighbors that
// are being looked for.
type neighborAlignment int
const (
west neighborAlignment = iota
east
north
south
aboveBelow
)
// newNeighborRect returns a rectangle that should overlap all of the neighbors
// of a cell with the given alignment a.
func newNeighborRect(b *geom.Bounds, a neighborAlignment, d *InMAP) *geom.Bounds {
// bboxOffset is a number significantly less than the smallest grid size
// but not small enough to be confused with zero.
const (
bboxOffset = 1.e-10
)
o := new(geom.Bounds)
offsetX := math.Abs(b.Min.X+b.Max.X) / 2 * bboxOffset
offsetY := math.Abs(b.Min.Y+b.Max.Y) / 2 * bboxOffset
if offsetX == 0 {
offsetX = bboxOffset * math.Abs(b.Max.X)
}
if offsetY == 0 {
offsetY = bboxOffset * math.Abs(b.Max.Y)
}
// Set x extents
switch a {
case west:
o.Min.X = b.Min.X - 2*offsetX
o.Max.X = b.Min.X - offsetX
case east:
o.Min.X = b.Max.X + offsetX
o.Max.X = b.Max.X + 2*offsetX
default:
o.Min.X = b.Min.X + offsetX
o.Max.X = b.Max.X - offsetX
}
if !math.IsNaN(d.HorizontalWrap) {
// Wrap bounding box.
w := math.Abs(d.HorizontalWrap)
if o.Min.X > w {
o.Min.X -= 2 * w
}
if o.Max.X > w {
o.Max.X -= 2 * w
}
if o.Min.X < -w {
o.Min.X += 2 * w
}
if o.Max.X < -w {
o.Max.X += 2 * w
}
}
// Set y extents
switch a {
case south:
o.Min.Y = b.Min.Y - 2*offsetY
o.Max.Y = b.Min.Y - offsetY
case north:
o.Min.Y = b.Max.Y + offsetY
o.Max.Y = b.Max.Y + 2*offsetY
default:
o.Min.Y = b.Min.Y + offsetY
o.Max.Y = b.Max.Y - offsetY
}
return o
}