-
Notifications
You must be signed in to change notification settings - Fork 8
/
data_processer.py
202 lines (170 loc) · 7.6 KB
/
data_processer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# @Time : 2023/3/25 18:36
# @Author : tk
import copy
import json
import random
from enum import Enum
from typing import Tuple, List
import numpy as np
from deep_training.zoo.model_zoo.qwen.llm_model import QWenTokenizer
# from deep_training.zoo.model_zoo.qwen.qwen_generation_utils import make_context
from transformers import PreTrainedTokenizer
class DataStrategy(Enum):
truncation = 1
siding = 2
def make_context(
tokenizer: PreTrainedTokenizer,
query: str,
history: List[Tuple[str, str]] = None,
system: str = "",
max_window_size: int = 6144,
chat_format: str = "chatml",
):
if history is None:
history = []
if chat_format == "chatml":
im_start, im_end = "<|im_start|>", "<|im_end|>"
im_start_tokens = [tokenizer.im_start_id]
im_end_tokens = [tokenizer.im_end_id]
nl_tokens = tokenizer.encode("\n")
def _tokenize_str(role, content):
return f"{role}\n{content}", tokenizer.encode(
role, allowed_special=set()
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
system_text, system_tokens_part = _tokenize_str("system", system)
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
raw_text = ""
context_tokens = []
for turn_query, turn_response in reversed(history):
query_text, query_tokens_part = _tokenize_str("user", turn_query)
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
response_text, response_tokens_part = _tokenize_str(
"assistant", turn_response
)
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
prev_chat = (
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
)
current_context_size = (
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
)
if current_context_size < max_window_size:
context_tokens = next_context_tokens + context_tokens
raw_text = prev_chat + raw_text
else:
break
context_tokens = system_tokens + context_tokens
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
context_tokens += (
nl_tokens
+ im_start_tokens
+ _tokenize_str("user", query)[1]
+ im_end_tokens
+ nl_tokens
+ im_start_tokens
+ tokenizer.encode("assistant")
+ nl_tokens
)
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
elif chat_format == "raw":
raw_text = query
context_tokens = tokenizer.encode(raw_text)
else:
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
return raw_text, context_tokens
class TokenIdsMaker:
@classmethod
def final(cls, tokenizer,config, input_ids, labels, max_seq_length):
seqlen = np.asarray(len(input_ids), dtype=np.int32)
pad_len = max_seq_length - seqlen
input_ids = np.asarray(input_ids, dtype=np.int32)
labels = np.asarray(labels, dtype=np.int32)
if pad_len:
pad_val = config.eos_token_id or tokenizer.eos_token_id
input_ids = np.pad(input_ids, (0, pad_len), 'constant', constant_values=(pad_val, pad_val))
labels = np.pad(labels, (0, pad_len), 'constant', constant_values=(-100, -100))
d = {
'input_ids': input_ids,
'labels': labels,
'seqlen': seqlen
}
return d
@classmethod
def tunction(cls, tokenizer: QWenTokenizer,config, paragraph, max_seq_length, sup=True):
sptoken = []
ds = []
prefix = None
history = []
for sid,(role,q,a) in enumerate(paragraph):
if role == 'system':
prefix = q
continue
# 从兼容性考虑,预处理从数据源构建
# if tools is not None:
# q = ToolsBuilder.build(tools,query=q)
#
# if role in ['observation','Observation']:
# q = f'Observation: {q}'
history += [(q,a)]
_,a_ids = make_context(tokenizer=tokenizer,query=q,history=history[:-1],
system = prefix or "You are a helpful assistant." ,
max_window_size = 6144,
chat_format = "chatml",)
b_ids = tokenizer.encode(a,add_special_tokens=False)
while len(a_ids) + len(b_ids) > max_seq_length - len(sptoken) - 1:
if len(b_ids) > len(a_ids):
b_ids.pop(-1)
else:
a_ids.pop(0)
b_ids += [ config.eos_token_id ]
input_ids = a_ids + b_ids
labels = copy.deepcopy(input_ids) if not sup else [ -100 ] * len(a_ids) + copy.deepcopy(b_ids)
input_ids = sptoken + input_ids
labels = sptoken + labels if not sup else [ -100 ] * len(sptoken) + labels
assert len(input_ids) <= max_seq_length
ds.append(cls.final(tokenizer,config, input_ids, labels, max_seq_length))
return ds
@classmethod
def slidding(cls, tokenizer: QWenTokenizer,config, paragraph, max_seq_length, sliding_size = None,src_max_length=None,dst_max_length=None,sup=True):
if sliding_size is None:
sliding_size = max_seq_length
ds = []
sptoken = []
prefix = None
history = []
for sid, (role, q, a) in enumerate(paragraph):
if role == 'system':
prefix = q
continue
# 从兼容性考虑,预处理从数据源构建
# if tools is not None:
# q = ToolsBuilder.build(tools, query=q)
# if role in ['observation', 'Observation']:
# q = f'Observation: {q}'
history += [(q, a)]
_, a_ids = make_context(tokenizer=tokenizer, query=q, history=history[:-1],
system=prefix or "You are a helpful assistant.",
max_window_size=6144,
chat_format="chatml", )
b_ids = tokenizer.encode(a,add_special_tokens=False)
if src_max_length and src_max_length > 0:
a_ids = a_ids[ :src_max_length ]
if dst_max_length and dst_max_length > 0:
b_ids = b_ids[ :dst_max_length ]
input_ids_qa = a_ids + b_ids + [config.eos_token_id]
if sup:
labels_all = [-100] * len(a_ids) + b_ids
else:
labels_all = copy.deepcopy(input_ids_qa)
pos = 0
while pos < len(input_ids_qa):
input_ids = input_ids_qa[pos:pos + max_seq_length - len(sptoken)]
labels = labels_all[pos:pos + max_seq_length - len(sptoken)]
pos += sliding_size
if np.all(np.asarray(labels) == -100):
continue
input_ids = sptoken + input_ids
labels = sptoken + labels if not sup else [ -100 ] * len(sptoken) + labels
ds.append(cls.final(tokenizer, config,input_ids, labels, max_seq_length))
return ds