-
Notifications
You must be signed in to change notification settings - Fork 0
/
Stefan_tesi_intermedia.tex
900 lines (823 loc) · 31.4 KB
/
Stefan_tesi_intermedia.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
\documentclass[aspectratio=169]{beamer}
\usepackage[english]{babel}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{cite}
\usepackage{tikz}
\usetikzlibrary{shapes,arrows,fit,calc,positioning,automata}
\usepackage{eurosym}
\usepackage{caption}
\captionsetup[figure]{labelformat=empty}
\usepackage{microtype}
\title{{\normalsize Development and test of FPGA firmware extensions for the configuration and readout\\ of the ABACUS\_v2 chip for beam monitoring applications in hadron therapy}}
\author[Stefan Zugravel]{Candidate: \\ Stefan Cristi Zugravel \\ --------------------------------- \\ Supervisor: \\ Dott. Luca Pacher\\ --------------------------------- \\ Co-Supervisor: \\ Prof. Vincenzo Monaco}
\date{\today}
\institute[UniTo]{University of Turin}
\logo{\includegraphics[width=10mm]{IMG/Unito.png}}
\usetheme{Madrid}
%\setbeamercovered{dynamic}
\setbeamertemplate{footline}[frame number]
\setbeamertemplate{navigation symbols}{}
\begin{document}
\begin{frame}[noframenumbering]
\maketitle
\end{frame}
\begin{frame}[noframenumbering]
\frametitle{Table of contents}
\begin{columns}
\hspace*{15mm}
\column{0.3 \textwidth}
\begin{center}
\tableofcontents
\end{center}
\column{0.7 \textwidth}
\begin{center}
\includegraphics[width=0.55 \textwidth]{IMG/LOGOINFN.PNG}
\includegraphics[width=0.55 \textwidth]{IMG/Move_IT_logo.PNG}
\end{center}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Hadron therapy}
\begin{frame}[plain, noframenumbering]
%\frametitle{Hadron therapy, sensor and ASICs}
\begin{center}
{\Huge \fontfamily{qtm}\selectfont \color{blue} \textbf{Hadron therapy, sensor and ASICs}}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Hadron therapy}
\begin{columns}
\column{0.40 \textwidth}
\begin{center}
\textbf{Hadron therapy} uses heavy charged particles (p, ${}^{12}$C ions) to administer a lethal dose to the tumor target minimizing the energy deposited in the surrounding healthy tissues.
\includegraphics[width=0.95 \textwidth]{IMG/Bragg_Peak.PNG}
\end{center}
\column{0.60 \textwidth}
{\color{blue} Advantages compared to x-ray radiotherapy:}
\begin{itemize}
\item Maximum dose delivered deep into tissue (Bragg peak that depends on the energy)
\item Greater conformation of the dose to the tumor
\item Conservation of the healthy tissues
\end{itemize}
\vspace{1 cm}
{\color{blue} Advanced treatment techniques use thin proton beams. \\ Typical parameters (TIFPA examples):}
\begin{itemize}
\item FWHM 3$\div$7 mm
\item Beam rates $10^6\div10^{10}$ p/s
%\item Current 1$\div$320 nA
\item Energy 70$\div$228 MeV $\rightarrow$ (4$\div$32) cm in water
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Dose delivery system}
\begin{columns}
\column{0.5 \textwidth}
\includegraphics[width=0.95 \textwidth]{IMG/Beam_Monitoring.PNG}
\column{0.5 \textwidth}
{\color{blue} \textbf{Active spot scanning:}}
\begin{itemize}
\item Acquisition of morphological data by CT (\textbf{C}omputed \textbf{T}omography) and tumor volume identification
\item Subdivision of the tumor into spots organized in layers of different depths corresponding to different beam energies
\item Transverse scanning by deflecting the pencil beam via a pair of magnets
\item Longitudinal scan by varying the energy of the beam
\end{itemize}
\end{columns}
\vspace{0.5 cm}
{\color{blue} Monitoring in real-time beam parameters (direction and \textbf{number of particles} delivered) \newline is extremely important in order to distribute the dose accurately}
\end{frame}
%I rivelatori controllano il trattamento, sulla base di queste informazioni viene controllata la posizione, la direzione e l'energia del fascio in tempo reale
%Come si comportano dei rivelatori al silicio?
\begin{frame}
\frametitle{Beam monitoring}
\begin{columns}
\column{0.04 \textwidth}
\column{0.2 \textwidth}
\begin{center}
\includegraphics[width=0.95 \textwidth]{IMG/Ionization_Chamber.PNG}
\end{center}
\begin{center}
\includegraphics[width=0.95 \textwidth]{IMG/Solid_State_Detector.PNG}
\end{center}
\column{0.38 \textwidth}
{\color{blue} Ionization chambers}
\newline
\textbf{Advantages}
\begin{itemize}
\item Structural integrity
\item Radiation resistance
\end{itemize}
\textbf{Disadvantages}
\begin{itemize}
\item Slow response times $\approx 100\:\mu s$
\item Limited sensitivity (>$10^4$ p)
\item Indirect measurement of the number of particles (mandatory to know the beam energy)
\end{itemize}
\column{0.38 \textwidth}
{\color{blue} Solid state detectors}
\newline
\textbf{Advantages}
\begin{itemize}
\item Fast response times $\approx 1-2$ ns
\item Ideally, sensitive to the single particle
\item High spatial-temporal resolution
\end{itemize}
\textbf{Disadvantages}
\begin{itemize}
\item Complex and fast readout electronics
\item Damage from radiation
\item pile-up effects at high\newline rates
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{UFSD/LGAD sensors}
\begin{columns}
\column{0.35 \textwidth}
\begin{center}
\includegraphics[width=0.9 \textwidth]{IMG/LGAD_Signal.PNG}
\end{center}
\column{0.65 \textwidth}
\begin{columns}
\column{0.4 \textwidth}
\begin{center}
\includegraphics[width=1 \textwidth]{IMG/UFSDLGAD.PNG}
\end{center}
\column{0.6 \textwidth}
\begin{center}
We need \textbf{thin} detectors to have \textbf{short} signals (pile-up reduction), but thin detectors also have low \textbf{SNR}
\end{center}
\end{columns}
\begin{itemize}
\item \textbf{U}ltra \textbf{F}ast \textbf{S}ilicon \textbf{D}etector/\textbf{L}ow \textbf{G}ain \textbf{A}valanche \textbf{D}iode
\item Charge multiplication in $p^+ / n^{++}$ junction
\item 50$\mu$m sensor thickness (active region)
\item Internal gain of \textbf{10-15}
\item Trapezoidal signal of $\approx$\textbf{1.5ns}\newline
{\color{blue} Capable of detecting single particle }
\item LGAD allows to increase SNR
\end{itemize}
\end{columns}
\end{frame}
%mettere figura delle strip che usiamo noi
%Per spessori piccoli il segnale è piccolo
%Abbiamo bisogno di sensori piccoli perché la frequenza massima a cui possiamo contare dipende dalla durata del segnale
%Servono spessori piccoli per avere segnali veloci
%Idealmente dovremmo usare i pixel
%LGAD mi permette di aumentare il rapporto segnale-su-rumore
%Aggiungere segnale dell'LGAD
\section{Move\_IT}
\begin{frame}
\frametitle{MoVe\_IT INFN project}
\begin{center}
{\Large \color{blue} MoVe\_IT = \textbf{Mo}deling and \textbf{Ve}rification for \textbf{I}on beam \textbf{T}reatment planning }
\newline
Prove the ability of \textbf{LGAD} detectors to discriminate individual protons and to count their number up to fluxes of \textbf{100} MHz/cm$^2$ with an uncertainty of {\color{blue}less than \textbf{1}\%}, (\underline{clinical tolerance required})
\end{center}
\begin{columns}
\column{0.6 \textwidth}
\begin{itemize}
\item Single proton counting
\item Custom detector built ad hoc
\item Area \textbf{3x3} cm${}^2$ with \textbf{144} Strips
\item Max proton flux= $10^8$ $\frac{p}{s \cdot cm^2}$ ({\color{blue} Error < \textbf{1}\%})
\item 50$\mu$m sensor thickness (active region)
\item Two orthogonal directions
\end{itemize}
\column{0.4 \textwidth}
\begin{center}
\includegraphics[width=0.7 \textwidth]{IMG/Detector.PNG}
\end{center}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{ABACUS\_v2 ({\small \textbf{A}synchronous-logic-\textbf{B}ased \textbf{A}nalog \textbf{C}ounter for \textbf{U}ltra fast \textbf{S}ilicon strips}) }
\vspace*{-2mm}
\begin{columns}
\column{0.2 \textwidth}
\begin{center}
\includegraphics[width=2.45 \textwidth, angle=90]{IMG/ABACUS2.png}
\end{center}
\column{0.8 \textwidth}
%\begin{center}
% {\color{blue} \textbf{ABACUS\_v2}}
%\end{center}
\begin{columns}
\column{0.5 \textwidth}
\includegraphics[width=0.99 \textwidth]{IMG/ABACUS_channel.PNG}
{\color{blue} Channel structure }
{\footnotesize
\begin{itemize}
\item Low noise \textbf{Charge} Sensitive Amplifier (\textbf{CSA})
\item Fast discriminator for \textbf{binary} readout
\item Discriminator driven by \textbf{2 DACs}
\begin{itemize}
%the discriminator threshold is setted with an external value and, in order to uniform the channels an internal DAC is used.
{\footnotesize
\item[$-$] External 16b DAC $\rightarrow$ global Vth
\item[$-$] Internal 6b DAC $\rightarrow$ Th tuning
}
\end{itemize}
\item \textbf{CML} converter (propagate signal)
\item \textbf{Fast} reset signal (reduce dead time)
\end{itemize} }
\column{0.5 \textwidth}
{\color{blue} Chip specifications }
\begin{itemize}
\item Die size \textbf{4.95 }x \textbf{1.935} mm$^2$
\item \textbf{110} nm CMOS technology
\item \textbf{24} channels
\item \textbf{I2C} controller for digital configuration
\item Max frequency >\textbf{100} MHz
\item Input charge \textbf{3-140} fC
\item Dead time <\textbf{10}ns
\item SNR>\textbf{10}
\item Full digital I/O interfaced \\ with \textbf{FPGA}
\end{itemize}
\end{columns}
%%%
%\begin{itemize}
% \item \textbf{Fast} reset signal (reduce dead time)
%\end{itemize}
%%%
\end{columns}
\end{frame}
\begin{frame}
\frametitle{FPGA (\textbf{F}ield \textbf{P}rogrammable \textbf{G}ate \textbf{A}rray)}
\begin{columns}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.7 \textwidth]{IMG/FPGA_PARTS}
\end{center}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.6 \textwidth]{IMG/FPGA2}
\end{center}
\end{columns}
\vspace{2mm}
\begin{itemize}
\item A FPGA is a digital integrated circuit that can be programmed to implement any digital~functionality after manufacturing – hence the term \textbf{field-programmable}
\item In principle, \textbf{programmable infinite times} with no limitations
\item \textbf{High flexibility}: it can be implemented \textbf{any digital function}
\item \textbf{Fast} and \textbf{cheap} prototyping: \textbf{out of the box} solution: no layout or masks
%\item {\color{orange} Power hungry, slow compared to \textbf{ASICs} and expensive on large-scales}
\item \textbf{HDL} (\textbf{H}ardware \textbf{D}escription \textbf{L}anguage) such as Verilog or VHDL are used to implement~and simulate the desired digital circuit
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{FPGA main tasks}
\vspace*{-2.7mm}
\begin{center}
\includegraphics[width=0.85 \textwidth]{IMG/Block_Diagram.pdf}
\end{center}
\vspace*{-5mm}
\begin{center}
{\Large \color{blue} What does the \textbf{FPGA} board do?}\\[3mm]
\begin{itemize}
\item Receives the \textbf{outputs} from the ABACUS chip
\item For each channel counts the \textbf{number of pulses} (thus the number of particles) and the pulse duration
\item For two adjacent channels counts the number of coincidence \textbf{AND} and \textbf{OR} (for pile-up correction)
\item Sends the data to a \textbf{PC} via \textbf{Ethernet}/\textbf{UDP} protocol
\item Configuration of \textbf{internal} and \textbf{external} DACs
\end{itemize}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Experimental setup}
\begin{frame}[plain, noframenumbering]
\begin{center}
{\Huge \fontfamily{qtm}\selectfont \color{blue} \textbf{Experimental setup}}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Test boards}
\begin{columns}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.99 \textwidth]{IMG/TestBoard.pdf}
\end{center}
{\hspace*{1.5cm}
{\color{blue}ESA-ABACUS read-out board}
\begin{itemize}
\item \textbf{6 ABACUS} chips
\item Able to read \textbf{144} strips
\item \textbf{3} FPGA (Kintex7 KC705) needed
\end{itemize}
}
\vspace*{1cm}
\column{0.5 \textwidth}
\hspace*{1.5cm}
{\color{blue}ABACUS\_v2 test board}
\begin{itemize}
\item 1 \textbf{ABACUS} ASIC chip
\item \textbf{CML} output to \textbf{FPGA}
\item \textbf{I2C} input to internal DACs
\item Possibility to \textbf{simulate} signals sending test pulses (TP) to even or odd channels
\end{itemize}
\begin{center}
\vspace*{0.5cm}
\includegraphics[width=0.6 \textwidth]{IMG/EsaAbacus.png}
\end{center}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Experimental setup}
\begin{columns}
\column{0.65 \textwidth}
\begin{center}
\includegraphics[width=0.95 \textwidth]{IMG/TestBench.pdf}
\end{center}
\column{0.35 \textwidth}
\begin{itemize}
\item Fast Pulse Generator
\item Oscilloscope
\item Power Supply
\item Xilinx Kintex7 FPGA
\item Test Board
\item PC with LabView
\item Level translator
\end{itemize}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Personal Contribution}
\begin{frame}[plain, noframenumbering]
\begin{center}
{\Huge \fontfamily{qtm}\selectfont \color{blue} \textbf{Personal contribution to the project}}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Personal Contribution}
\begin{itemize}
\item {\color{teal} Creation of a \textbf{debug} tool for the FMC connectors}
\item {\color{teal} Creation of the level translation device for communication with the \textbf{FPGA}}
\item {\color{teal} Firmware implementation of the read/write logic for internal DACs configuration \\ in the \textbf{ABACUS2} chip}
\item {\color{teal} Addition of a \textbf{latch} in order to save into a \textbf{register} the current state of every counter}
\item {\color{teal} Addition of a \textbf{timestamp} in order to obtain a more accurate rate calculation}
%\item {\color{red} Addition of a configurable \textbf{mask} to calculate via firmware the \textbf{sum} of only certain selected channels}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Firmware Debug Tool for FMC connector}
%\small
\begin{columns}
\column{0.65 \textwidth}
\begin{center}
{\color{blue} XILINX KINTEX7 KC705}
\includegraphics[width=1.0 \textwidth]{IMG/KC705.PNG}
\end{center}
\column{0.35 \textwidth}
\textbf{FMC}{\tiny (\textbf{F}PGA \textbf{M}ezzanine \textbf{C}ard)} connector
\begin{itemize}
\item \textbf{LPC}= \textbf{L}ow \textbf{P}in \textbf{C}ount
\item \textbf{HPC}= \textbf{H}igh \textbf{P}in \textbf{C}ount
\item \textbf{LVDS} output
\end{itemize}
\textbf{Debug}
\begin{itemize}
\item Set every pin as an \textbf{output}
\item Switch state (0/1) with a DIP switch
\item Measure voltages with multimeter
\item Levels: high $\approx$ \textbf{1.5} V \\ low $\approx$ \textbf{0.7} V (\textbf{LVDS})
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Level translator}
\begin{columns}
\column{0.35 \textwidth}
\begin{center}
\includegraphics[width=0.8 \textwidth]{IMG/level_translator_front-min.jpg}
\includegraphics[width=0.8 \textwidth]{IMG/Diagram_cropped.pdf}
\end{center}
\column{0.65 \textwidth}
\begin{center}
\includegraphics[width=0.5 \textwidth]{IMG/probe/09-08-2021_clock-specks.png}
\end{center}
\begin{itemize}
\item ABACUS DACs I/O = CMOS \textbf{1.2}V single-ended
\item FPGA I/O = CMOS \textbf{2.5}V single-ended
\item Resistive \textbf{voltage divider}
\item 2x \textbf{2N2222} NPN transistor in TO-18 package
\item 3x \textbf{1}k$\Omega$ resistor 1/8W
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{FPGA Firmware}
\begin{columns}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=1.0 \textwidth]{IMG/Tera10kc705.pdf}
\end{center}
\column{0.5 \textwidth}
\begin{itemize}
\item Original firmware written in \textbf{VHDL} by R.Wheadon (INFN-To)
\item GbPhy = Custom \textbf{UDP} Protocol
\item LCD-Controller = display informations such~as:
\begin{itemize}
\item[$-$] Firmware version
\item[$-$] Board number
\item[$-$] Project name
\end{itemize}
\item Tera10-I/O = Input setup and counters
\item Tera10-Controller = controls for reading and activate channels
\item Hardware-Controller = setup internal and~external DACs
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{ABACUS\_v2 internal DACs setup}
\begin{columns}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.7 \textwidth]{IMG/InternalDAC.pdf}
\includegraphics[width=0.7 \textwidth]{IMG/TableLSB.PNG}
\end{center}
\textbf{LSB} value $\approx$ 0.94 mV for \textbf{Vref\_LSB} = 600~mV
\column{0.5 \textwidth}
{\color{blue} Internal DAC setup}
\begin{itemize}
\item Initialization sequence \textbf{0xA5A5}=
\newline
1010-0101-1010-0101
\item \textbf{16bit words}= \newline 2bit command + 6bit address + 8bit data
\begin{itemize}
\item \textbf{command}
\begin{itemize}
\item \textbf{11} = write
\item \textbf{10} = read
\end{itemize}
\item \textbf{address}
\begin{itemize}
\item \textbf{5bit} address from \textbf{0} to \textbf{23}
\item \textbf{LSB} is Vth$\pm$ (not used for now)
\end{itemize}
\item \textbf{data}
\begin{itemize}
\item \textbf{2MSB} not used
\item \textbf{6LSB} data for the internal DAC \newline from \textbf{0} to \textbf{63}
\end{itemize}
\end{itemize}
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Firmware - DATA}
\begin{itemize}
\item The \textbf{FPGA} communicates with the PC using Ethernet/UDP (\textbf{U}ser \textbf{D}atagram \textbf{P}rotocol) implemented in the \textbf{GbPhy} project
\item Each UDP packet is \textbf{64} bit long $\rightarrow$ \textbf{32} bit used by GbPhy and \textbf{32} bit of user data
\item \textbf{32} bit data =
\begin{itemize}
\item \textbf{4} bit $\rightarrow$ firmware target (0x4 for HW command)
\item \textbf{8} bit $\rightarrow$ firmware command (0x11 for DAC config)
\item \textbf{20} bit $\rightarrow$ firmware data
\end{itemize}
\item \textbf{20} bit firmware data =
\begin{itemize}
\item \textbf{3} bit not used
\item \textbf{2} bit baseline DAC command
\item \textbf{6} bit baseline DAC address
\item \textbf{8} bit baseline DAC data
\item \textbf{1} bit baseline DAC selecet (each FPGA can control 2 chips)
\end{itemize}
\item To perform a Read/write operation the initialization sequence must be sent first\newline every time
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Firmware - FSM for internal DAC configuration}
\begin{columns}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.95 \textwidth]{IMG/FSM.pdf}
\end{center}
\column{0.5 \textwidth}
\begin{itemize}
\item FSM (\textbf{F}inite \textbf{S}tate \textbf{M}achine): states for the~serial data communication
\item \textbf{32} clock pulses sending data=
\begin{itemize}
\item \textbf{16} bit = initialization sequence
\item \textbf{16} bit = data
\end{itemize}
\item \textbf{32} bit waiting the response
\item Set Data End Communication is always zero
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Example Xilinx Vivado simulation}
\begin{center}
Finite State Machine \\
\includegraphics[width=0.9 \textwidth]{IMG/Simulation1.png}
\newline
write internal DAC channel 4 \\
\includegraphics[width=0.9 \textwidth]{IMG/Simulation3.png}
\newline
read internal DAC channel 4 \\
{\hspace*{-5mm}
\includegraphics[width=0.9 \textwidth]{IMG/Simulation4.png}}
\end{center}
\begin{itemize}
\item The DAC behaviour is \textbf{simulated} by a \textbf{Verilog} module
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Writing Internal DACs for threshold-tuning}
\begin{columns}
\column{0.5 \textwidth}
{\color{blue} Input}
\begin{itemize}
\item Initialization sequence = 0xA5A5
\item Write command = 11
\item Address = 100010 = 10001-0 = channel 17
\item Data = 00111111 = 63
\end{itemize}
\column{0.5 \textwidth}
{\color{blue} Clock Specs}
\begin{itemize}
\item Period = \textbf{98.44} $\mu$s
\item Duty cycle \textbf{33}\%
\item Packet duration $\approx$ \textbf{6.4} ms
\end{itemize}
\end{columns}
\begin{columns}
\column{0.75 \textwidth}
\begin{center}
\includegraphics[width=0.667 \textwidth]{IMG/probe/09-08-2021_ch17-write63-baselinedac1.png}
\end{center}
\column{0.2 \textwidth}
\hspace{-20mm} \vspace{8mm}
{\color{green} clock signal}\\
\hspace{-20mm} \vspace{-4mm}
{\color{yellow} input data}
\column{0.05 \textwidth}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Reading Internal DACs for threshold-tuning}
\begin{columns}
\column{0.5 \textwidth}
{\color{blue} Input}
\begin{itemize}
\item Initialization sequence = 0xA5A5
\item Read command = 10
\item Address = 001010 = 00101-0 = channel 05
\item Data = 00000000
\end{itemize}
\column{0.5 \textwidth}
{\color{blue} Output}
\begin{itemize}
\item 11 = read
\item 001010 = 00101-0 = channel 05
\item 00110101 = 53
\end{itemize}
\end{columns}
\begin{columns}
\column{0.75 \textwidth}
\begin{center}
\includegraphics[width=0.667 \textwidth]{IMG/probe/09-08-2021_ch05-read53-baselinedac1.png}
\end{center}
\column{0.2 \textwidth}
\hspace{-20mm} \vspace{5mm}
{\color{green} clock signal} \\
\hspace{-20mm} \vspace{5mm}
{\color{yellow} input data} \\
\hspace{-20mm} \vspace{5mm}
{\color{red} output data 2.5V} \\
\hspace{-20mm} \vspace{-7mm}
{\color{blue} output data 1.2V}
\column{0.05 \textwidth}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Results}
\begin{frame}[plain, noframenumbering]
%\frametitle{results}
\begin{center}
{\Huge \fontfamily{qtm}\selectfont \color{blue} \textbf{Preliminary results}}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Threshold scan}
\begin{itemize}
\item Internal DACs configuration allows to adjust the threshold for each channel
\item Example: ch \textbf{1}, global threshold scan with fixed injected charge and \textbf{10} kHz test pulse rate
\item {\color{blue}Blue} curve: trimming DAC code= \textbf{0} = \textbf{0x00}
\item {\color{green}Green} curve: trimming DAC code= \textbf{63} = \textbf{0x3F}
\item S-curves shifted as expected
\end{itemize}
\begin{center}
\vspace*{-5mm} \includegraphics[width=0.35 \textwidth]{IMG/tscan_sketch.png}
\includegraphics[width=0.55 \textwidth]{IMG/ThScan_ch0.pdf}
\end{center}
\end{frame}
%\begin{frame}
%\frametitle{Pedestal distribution-1}
%\begin{itemize}
% \item Pedestal voltage value for odd channels
% \item {\color{blue}Blue} dots with baseline dac=\textbf{63}
% \item {\color{red}Red} dots with baseline dac=\textbf{0}
%\end{itemize}
%\begin{center}
% \includegraphics[width=0.59 \textwidth]{data/DAC_V_REF_600mV.pdf}
%\end{center}
%
%\end{frame}
\begin{frame}
\frametitle{Pedestal distribution}
\begin{itemize}
\item Extrapolated DC \textbf{CSA} output voltage values for selected channels
\item {\color{blue}Blue} dots: trimming DAC code= \textbf{0} = \textbf{0x00}
\item {\color{green}Green} dots: trimming DAC code= \textbf{63} = \textbf{0x3F}
\item Average $\Delta V\approx$ 22 mV
\end{itemize}
\begin{center}
\includegraphics[width=0.55 \textwidth]{data/DAC_V_REF_600mV-Copia.pdf}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Conclusions}
\begin{frame}
\frametitle{Conclusions and To Do List}
\begin{center}
{\color{blue}\textbf{Conclusions}}
\end{center}
\begin{itemize}
\item New \textbf{FPGA} firmware extensions added for the configuration and readout of the ABACUS\_v2 chip
\item \textbf{Successfully} tested with simulations and in laboratory
\end{itemize}
\begin{center}
{\color{blue}\textbf{Future work and additions to the FPGA firmware}}
\end{center}
\begin{itemize}
\item Internal DACs \textbf{characterization} and verification of their \textbf{linearity}
\item Addition of a \textbf{latch} in order to save into a \textbf{register} the current state of every counter
\item Addition of a \textbf{timestamp} in order to obtain a more accurate rate calculation
%\item Addition of a configurable \textbf{mask} to calculate via firmware the \textbf{sum} of only certain selected channels
\end{itemize}
\vspace{1 cm}
\begin{center}
\textbf{Thanks for the attention!!}
\end{center}
\end{frame}
\begin{frame}[noframenumbering]
\frametitle{References}
{\scriptsize
\begin{thebibliography}{00}
\bibitem{1}www.researchgate.net/figure/Dose-depth-curve-for-monoenergetic-photons-protons-and-carbon-ions-courtesy-of-GSI\textunderscore fig1\textunderscore283521369
\newline
\bibitem{2}www.intechopen.com/books/novel-prospects-in-oxidative-and-nitrosative-stress/oxidative-stress-in-hadrontherapy
\newline
\bibitem{3}www.semanticscholar.org/paper/A-Millimeter-Scale-Single-Charged-Particle-for-Lee-Scholey/ae955a07a42e9c124a8473357cd485b0b9928090
\newline
\bibitem{4}www.semanticscholar.org/paper/Low-Gain-Avalanche-Detectors-(LGAD)-for-particle-Moffat-Bates/0477d7bc2c9a3b26ad776874598f56d7d5b54c45
\newline
\bibitem{5}MoveIt v2 design document, Giovanni Mazza, January 15, 2021
\end{thebibliography} }
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Backup}
\begin{frame}[plain, noframenumbering]
\begin{center}
{\Huge \fontfamily{qtm}\selectfont \color{blue} \textbf{Backup}}
\end{center}
\end{frame}
\begin{frame}[noframenumbering]
\frametitle{Additional Graphs}
\begin{columns}
\column{0.3 \textwidth}
\begin{center}
\begin{figure}
\includegraphics[width=0.95 \textwidth]{IMG/probe/09-08-2021_ch05-read55-baselinedac1.png}
\caption{\centering{\tiny ch05-read55}}
\end{figure}
\begin{figure}
\includegraphics[width=0.95 \textwidth]{IMG/probe/09-08-2021_ch05-read56-baselinedac1.png}
\caption{\centering{\tiny ch05-read56}}
\end{figure}
\end{center}
\column{0.3 \textwidth}
\begin{center}
\begin{figure}
\includegraphics[width=0.95 \textwidth]{IMG/probe/09-08-2021_ch05-read57-baselinedac1.png}
\caption{\centering{\tiny ch07-read57}}
\end{figure}
\begin{figure}
\includegraphics[width=0.95 \textwidth]{IMG/probe/09-08-2021_ch05-read58-baselinedac1.png}
\caption{\centering{\tiny ch07-read58}}
\end{figure}
\end{center}
\column{0.3 \textwidth}
\begin{center}
\begin{figure}
\includegraphics[width=0.95 \textwidth]{IMG/probe/09-08-2021_ch05-read59-baselinedac1.png}
\caption{\centering{\tiny ch07-read59}}
\end{figure}
\begin{figure}
\includegraphics[width=0.95 \textwidth]{IMG/probe/09-08-2021_ch05-read60-baselinedac1.png}
\caption{\centering{\tiny ch07-read60}}
\end{figure}
\end{center}
\end{columns}
\end{frame}
\begin{frame}[noframenumbering]
\frametitle{CML}
\begin{columns}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.95 \textwidth]{IMG/CML_line.png}
\end{center}
\column{0.5 \textwidth}
CML (\textbf{C}urrent \textbf{M}ode \textbf{L}ogic), is a digital design style used both for logic gates and for board-level digital signalling of digital data.
\begin{itemize}
\item speeds between 312.5 Mbit/s and 3.125 Gbit/s
\item DVI and HDMI video links use CML
\item 50 $\Omega$ termination
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}[noframenumbering]
\frametitle{I2C}
\begin{center}
\includegraphics[width=0.8 \textwidth]{IMG/I2C.png}
\end{center}
The Inter-Integrated Circuit (I2C) bus is a two wire serial interface originally developed by the Phillips Corporation for use in consumer products. It is a bi-directional bus that is easily implemented in any IC process (NMOS, CMOS, bipolar) and allows for simple inter-IC communication. Connections are minimized by using a serial data line (SDA), a serial clock line (SCL) and a common ground to carry all communications.
\end{frame}
\begin{frame}[noframenumbering]
\frametitle{LVDS}
\begin{columns}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.95 \textwidth]{IMG/LVDS.png}
\end{center}
\column{0.5 \textwidth}
\begin{itemize}
\item Low-voltage differential signaling, or LVDS is a technical standard that specifies electrical characteristics of a differential serial signaling standard.
\item The transmitter injects a constant current of 3.5 mA into the wires
\item 100 $\Omega$ termination
\end{itemize}
\end{columns}
\end{frame}
%\begin{frame}[noframenumbering]
% \frametitle{Constraints}
% \begin{columns}
% \column{0.5 \textwidth}
% \column{0.5 \textwidth}
% \begin{itemize}
% \item
% \end{itemize}
% \end{columns}
%\end{frame}
\begin{frame}[noframenumbering]
\frametitle{UDP}
\begin{columns}
\column{0.5 \textwidth}
\begin{center}
\includegraphics[width=0.95 \textwidth]{IMG/UDP.png}
\end{center}
\column{0.5 \textwidth}
\begin{itemize}
\item \textbf{UDP}= \textbf{U}ser \textbf{D}atagram \textbf{P}rotocol is one of the core members of the Internet protocol suite. With UDP, computer applications can send messages, in this case referred to as datagrams.
\item UDP uses a simple connectionless communication model.
\item UDP is suitable for purposes where error checking and correction are either not necessary or are performed in the application.
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}[noframenumbering]
\frametitle{Reading Baseline DACs $\rightarrow$ code}
\begin{itemize}
\item \textbf{reading} procedure for 1 dac consist of \textbf{2 processes}=
\begin{itemize}
\item \textbf{16}bit shift register
\item sequence detector
\end{itemize}
\end{itemize}
\begin{center}
\includegraphics[width=0.6 \textwidth]{IMG/FSM_Read_States.png}
\end{center}
\end{frame}
\begin{frame}[noframenumbering]
\frametitle{VHDL}
{\LARGE
\begin{itemize}
\item \textbf{VHDL}: \textbf{V}HSIC \textbf{H}ardware \textbf{D}escription \textbf{L}anguage
\begin{itemize}
\item \textbf{VHSIC}: \textbf{V}ery \textbf{H}igh \textbf{S}peed \textbf{I}ntegrated \textbf{C}ircuits
\item Is a hardware description language (\textbf{HDL}) that can model the behavior and structure of digital systems at multiple levels of abstraction
\item Since \textbf{1987}, VHDL has been standardized by the Institute of Electrical and Electronics Engineers (\textbf{IEEE})
\item In February 2008, Accellera approved \textbf{VHDL 4.0}, also informally known as VHDL 2008
\item {\color{orange} VHDL is not a programming language!}
\end{itemize}
\end{itemize}
}
\end{frame}
\begin{frame}[noframenumbering]
\frametitle{FPGA structure}
\begin{itemize}
\item \textbf{PSM}: \textbf{P}rogrammable \textbf{S}witch \textbf{M}atrix = Whenever a vertical and a horizontal channel intersect, there is a switch box. When a wire enters a switch box there are programmable switches that allow it to connect to other wires in adjacent channel segments
\item \textbf{IOB}: \textbf{I}/\textbf{O} \textbf{B}lock = collection or grouping of basic elements that implement the input and output functions of an FPGA device
\item \textbf{CLB}: \textbf{C}onfigurable \textbf{L}ogic \textbf{B}lock = A typical cell consists of a 4-input LUT, a Full adder (FA) and a D-type flip-flop
\end{itemize}
\end{frame}
\end{document}