forked from ricohasgithub/DriveWGoogle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
signRecognition.py
116 lines (94 loc) · 4.89 KB
/
signRecognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from imutils.perspective import four_point_transform
from imutils import contours
import imutils
import cv2
import numpy as np
# define the dictionary of signs segments so we can identify
# each signs on the image
SIGNS_LOOKUP = {
(1, 0, 0, 1): 'turnRight', # turnRight
(0, 0, 1, 1): 'turnLeft', # turnLeft
(0, 1, 0, 0): 'moveStraight', # moveStraight
(1, 0, 1, 1): 'turnBack', # turnBack
}
camera = cv2.VideoCapture(0)
def defineTrafficSign(image):
# pre-process the image by resizing it, converting it to
# graycale, blurring it, and computing an edge map
image = imutils.resize(image, height=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 50, 200, 255)
# find contours in the edge map, then sort them by their
# size in descending order
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# The is_cv2() and is_cv3() are simple functions that can be used to
# automatically determine the OpenCV version of the current environment
# cnts[0] or cnts[1] hold contours
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
displayCnt = None
# loop over the contours
for c in cnts:
# approximate the contour
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
# if the contour has four vertices, then we have found
# the thermostat display
if len(approx) == 4:
displayCnt = approx
break
# extract the sign borders, apply a perspective transform
# to it
# A common task in computer vision and image processing is to perform
# a 4-point perspective transform of a ROI in an image and obtain a top-down, "birds eye view" of the ROI
warped = four_point_transform(gray, displayCnt.reshape(4, 2))
output = four_point_transform(image, displayCnt.reshape(4, 2))
# draw a red square on the image
cv2.drawContours(image, [displayCnt], -1, (0, 0, 255), 5)
# threshold the warped image, then apply a series of morphological
# operations to cleanup the thresholded image
# cv2.THRESH_OTSU. it automatically calculates a threshold value from image histogram
# for a bimodal image
thresh = cv2.threshold(warped, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (1, 5))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
# (roiH, roiW) = roi.shape
#subHeight = thresh.shape[0]/10
#subWidth = thresh.shape[1]/10
(subHeight, subWidth) = np.divide(thresh.shape, 10)
subHeight = int(subHeight)
subWidth = int(subWidth)
# mark the ROIs borders on the image
cv2.rectangle(output, (subWidth, 4*subHeight), (3*subWidth, 9*subHeight), (0,255,0),2) # left block
cv2.rectangle(output, (4*subWidth, 4*subHeight), (6*subWidth, 9*subHeight), (0,255,0),2) # center block
cv2.rectangle(output, (7*subWidth, 4*subHeight), (9*subWidth, 9*subHeight), (0,255,0),2) # right block
cv2.rectangle(output, (3*subWidth, 2*subHeight), (7*subWidth, 4*subHeight), (0,255,0),2) # top block
# substract 4 ROI of the sign thresh image
leftBlock = thresh[4*subHeight:9*subHeight, subWidth:3*subWidth]
centerBlock = thresh[4*subHeight:9*subHeight, 4*subWidth:6*subWidth]
rightBlock = thresh[4*subHeight:9*subHeight, 7*subWidth:9*subWidth]
topBlock = thresh[2*subHeight:4*subHeight, 3*subWidth:7*subWidth]
# we now track the fraction of each ROI. (sum of active pixels)/(total number of pixels)
leftFraction = np.sum(leftBlock)/(leftBlock.shape[0]*leftBlock.shape[1])
centerFraction = np.sum(centerBlock)/(centerBlock.shape[0]*centerBlock.shape[1])
rightFraction = np.sum(rightBlock)/(rightBlock.shape[0]*rightBlock.shape[1])
topFraction = np.sum(topBlock)/(topBlock.shape[0]*topBlock.shape[1])
segments = (leftFraction, centerFraction, rightFraction, topFraction)
segments = tuple(1 if segment > 230 else 0 for segment in segments)
if segments in SIGNS_LOOKUP:
# show original image
cv2.imshow("output", output)
return SIGNS_LOOKUP[segments]
else:
return None
while True:
(grabbed, frame) = camera.read()
defineTrafficSign(frame)
# if the `q` key was pressed, break from the loop
if cv2.waitKey(1) & 0xFF is ord('q'):
cv2.destroyAllWindows()
print("Stop programm and close all windows")
break