-
Notifications
You must be signed in to change notification settings - Fork 1
/
Rel.html
657 lines (524 loc) · 48.7 KB
/
Rel.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<link href="coqdoc.css" rel="stylesheet" type="text/css"/>
<title>Rel: Properties of Relations</title>
<script type="text/javascript" src="jquery-1.8.3.js"></script>
<script type="text/javascript" src="main.js"></script>
</head>
<body>
<div id="page">
<div id="header">
</div>
<div id="main">
<h1 class="libtitle">Rel<span class="subtitle">Properties of Relations</span></h1>
<div class="code code-tight">
</div>
<div class="doc">
</div>
<div class="code code-tight">
<br/>
<span class="comment">(* $Date: 2013-04-01 09:15:45 -0400 (Mon, 01 Apr 2013) $ *)</span><br/>
<br/>
<span class="id" type="keyword">Require</span> <span class="id" type="keyword">Export</span> <span class="id" type="var">SfLib</span>.<br/>
<br/>
</div>
<div class="doc">
A (binary) <i>relation</i> is just a parameterized proposition. As you know
from your undergraduate discrete math course, there are a lot of
ways of discussing and describing relations <i>in general</i> — ways
of classifying relations (are they reflexive, transitive, etc.),
theorems that can be proved generically about classes of
relations, constructions that build one relation from another,
etc. Let us pause here to review a few that will be useful in
what follows.
<div class="paragraph"> </div>
A (binary) relation <i>on</i> a set <span class="inlinecode"><span class="id" type="var">X</span></span> is a proposition parameterized by two
<span class="inlinecode"><span class="id" type="var">X</span></span>s — i.e., it is a logical assertion involving two values from
the set <span class="inlinecode"><span class="id" type="var">X</span></span>.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Definition</span> <span class="id" type="var">relation</span> (<span class="id" type="var">X</span>: <span class="id" type="keyword">Type</span>) := <span class="id" type="var">X</span><span style="font-family: arial;">→</span><span class="id" type="var">X</span><span style="font-family: arial;">→</span><span class="id" type="keyword">Prop</span>.<br/>
<br/>
</div>
<div class="doc">
Somewhat confusingly, the Coq standard library hijacks the generic
term "relation" for this specific instance. To maintain
consistency with the library, we will do the same. So, henceforth
the Coq identifier <span class="inlinecode"><span class="id" type="var">relation</span></span> will always refer to a binary
relation between some set and itself, while the English word
"relation" can refer either to the specific Coq concept or the
more general concept of a relation between any number of possibly
different sets. The context of the discussion should always make
clear which is meant.
<div class="paragraph"> </div>
An example relation on <span class="inlinecode"><span class="id" type="var">nat</span></span> is <span class="inlinecode"><span class="id" type="var">le</span></span>, the less-that-or-equal-to
relation which we usually write like this <span class="inlinecode"><span class="id" type="var">n1</span></span> <span class="inlinecode">≤</span> <span class="inlinecode"><span class="id" type="var">n2</span></span>.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Print</span> <span class="id" type="var">le</span>.<br/>
<span class="comment">(* ====><br/>
Inductive le (n : nat) : nat -> Prop :=<br/>
le_n : n <= n<br/>
| le_S : forall m : nat, n <= m -> n <= S m<br/>
*)</span><br/>
<span class="id" type="keyword">Check</span> <span class="id" type="var">le</span> : <span class="id" type="var">nat</span> <span style="font-family: arial;">→</span> <span class="id" type="var">nat</span> <span style="font-family: arial;">→</span> <span class="id" type="keyword">Prop</span>.<br/>
<span class="id" type="keyword">Check</span> <span class="id" type="var">le</span> : <span class="id" type="var">relation</span> <span class="id" type="var">nat</span>.<br/>
<br/>
</div>
<div class="doc">
<a name="lab232"></a><h1 class="section">Basic Properties of Relations</h1>
<div class="paragraph"> </div>
A relation <span class="inlinecode"><span class="id" type="var">R</span></span> on a set <span class="inlinecode"><span class="id" type="var">X</span></span> is a <i>partial function</i> if, for every
<span class="inlinecode"><span class="id" type="var">x</span></span>, there is at most one <span class="inlinecode"><span class="id" type="var">y</span></span> such that <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">x</span></span> <span class="inlinecode"><span class="id" type="var">y</span></span> — i.e., if <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">x</span></span>
<span class="inlinecode"><span class="id" type="var">y1</span></span> and <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">x</span></span> <span class="inlinecode"><span class="id" type="var">y2</span></span> together imply <span class="inlinecode"><span class="id" type="var">y1</span></span> <span class="inlinecode">=</span> <span class="inlinecode"><span class="id" type="var">y2</span></span>.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Definition</span> <span class="id" type="var">partial_function</span> {<span class="id" type="var">X</span>: <span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) :=<br/>
<span style="font-family: arial;">∀</span><span class="id" type="var">x</span> <span class="id" type="var">y1</span> <span class="id" type="var">y2</span> : <span class="id" type="var">X</span>, <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y1</span> <span style="font-family: arial;">→</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y2</span> <span style="font-family: arial;">→</span> <span class="id" type="var">y1</span> = <span class="id" type="var">y2</span>.<br/>
<br/>
</div>
<div class="doc">
For example, the <span class="inlinecode"><span class="id" type="var">next_nat</span></span> relation defined in Logic.v is a
partial function.
</div>
<div class="code code-tight">
<br/>
<span class="comment">(* Print next_nat.<br/>
<span class="comment">(* ====><br/>
Inductive next_nat (n : nat) : nat -> Prop := <br/>
nn : next_nat n (S n)<br/>
*)</span><br/>
Check next_nat : relation nat.<br/>
<br/>
Theorem next_nat_partial_function : <br/>
partial_function next_nat.<br/>
Proof. <br/>
unfold partial_function.<br/>
intros x y1 y2 H1 H2.<br/>
inversion H1. inversion H2.<br/>
reflexivity. Qed. *)</span><br/>
<br/>
</div>
<div class="doc">
However, the <span class="inlinecode">≤</span> relation on numbers is not a partial function.
<div class="paragraph"> </div>
This can be shown by contradiction. In short: Assume, for a
contradiction, that <span class="inlinecode">≤</span> is a partial function. But then, since
<span class="inlinecode">0</span> <span class="inlinecode">≤</span> <span class="inlinecode">0</span> and <span class="inlinecode">0</span> <span class="inlinecode">≤</span> <span class="inlinecode">1</span>, it follows that <span class="inlinecode">0</span> <span class="inlinecode">=</span> <span class="inlinecode">1</span>. This is nonsense,
so our assumption was contradictory.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_not_a_partial_function</span> :<br/>
¬ (<span class="id" type="var">partial_function</span> <span class="id" type="var">le</span>).<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="id" type="tactic">unfold</span> <span class="id" type="var">not</span>. <span class="id" type="tactic">unfold</span> <span class="id" type="var">partial_function</span>. <span class="id" type="tactic">intros</span> <span class="id" type="var">Hc</span>.<br/>
<span class="id" type="tactic">assert</span> (0 = 1) <span class="id" type="keyword">as</span> <span class="id" type="var">Nonsense</span>.<br/>
<span class="id" type="var">Case</span> "Proof of assertion".<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">Hc</span> <span class="id" type="keyword">with</span> (<span class="id" type="var">x</span> := 0).<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">le_n</span>.<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">le_S</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">le_n</span>.<br/>
<span class="id" type="tactic">inversion</span> <span class="id" type="var">Nonsense</span>. <span class="id" type="keyword">Qed</span>.<br/>
<br/>
</div>
<div class="doc">
<a name="lab233"></a><h4 class="section">Exercise: 2 stars, optional</h4>
Show that the <span class="inlinecode"><span class="id" type="var">total_relation</span></span> defined in Logic.v is not a partial
function.
</div>
<div class="code code-tight">
<br/>
<span class="comment">(* FILL IN HERE *)</span><br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
<a name="lab234"></a><h4 class="section">Exercise: 2 stars, optional</h4>
Show that the <span class="inlinecode"><span class="id" type="var">empty_relation</span></span> defined in Logic.v is a partial
function.
</div>
<div class="code code-tight">
<br/>
<span class="comment">(* FILL IN HERE *)</span><br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
A <i>reflexive</i> relation on a set <span class="inlinecode"><span class="id" type="var">X</span></span> is one for which every element
of <span class="inlinecode"><span class="id" type="var">X</span></span> is related to itself.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Definition</span> <span class="id" type="var">reflexive</span> {<span class="id" type="var">X</span>: <span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) :=<br/>
<span style="font-family: arial;">∀</span><span class="id" type="var">a</span> : <span class="id" type="var">X</span>, <span class="id" type="var">R</span> <span class="id" type="var">a</span> <span class="id" type="var">a</span>.<br/>
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_reflexive</span> :<br/>
<span class="id" type="var">reflexive</span> <span class="id" type="var">le</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="id" type="tactic">unfold</span> <span class="id" type="var">reflexive</span>. <span class="id" type="tactic">intros</span> <span class="id" type="var">n</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">le_n</span>. <span class="id" type="keyword">Qed</span>.<br/>
<br/>
</div>
<div class="doc">
A relation <span class="inlinecode"><span class="id" type="var">R</span></span> is <i>transitive</i> if <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">a</span></span> <span class="inlinecode"><span class="id" type="var">c</span></span> holds whenever <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">a</span></span> <span class="inlinecode"><span class="id" type="var">b</span></span>
and <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">b</span></span> <span class="inlinecode"><span class="id" type="var">c</span></span> do.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Definition</span> <span class="id" type="var">transitive</span> {<span class="id" type="var">X</span>: <span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) :=<br/>
<span style="font-family: arial;">∀</span><span class="id" type="var">a</span> <span class="id" type="var">b</span> <span class="id" type="var">c</span> : <span class="id" type="var">X</span>, (<span class="id" type="var">R</span> <span class="id" type="var">a</span> <span class="id" type="var">b</span>) <span style="font-family: arial;">→</span> (<span class="id" type="var">R</span> <span class="id" type="var">b</span> <span class="id" type="var">c</span>) <span style="font-family: arial;">→</span> (<span class="id" type="var">R</span> <span class="id" type="var">a</span> <span class="id" type="var">c</span>).<br/>
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_trans</span> :<br/>
<span class="id" type="var">transitive</span> <span class="id" type="var">le</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="id" type="tactic">intros</span> <span class="id" type="var">n</span> <span class="id" type="var">m</span> <span class="id" type="var">o</span> <span class="id" type="var">Hnm</span> <span class="id" type="var">Hmo</span>.<br/>
<span class="id" type="tactic">induction</span> <span class="id" type="var">Hmo</span>.<br/>
<span class="id" type="var">Case</span> "le_n". <span class="id" type="tactic">apply</span> <span class="id" type="var">Hnm</span>.<br/>
<span class="id" type="var">Case</span> "le_S". <span class="id" type="tactic">apply</span> <span class="id" type="var">le_S</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">IHHmo</span>. <span class="id" type="keyword">Qed</span>.<br/>
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">lt_trans</span>:<br/>
<span class="id" type="var">transitive</span> <span class="id" type="var">lt</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="id" type="tactic">unfold</span> <span class="id" type="var">lt</span>. <span class="id" type="tactic">unfold</span> <span class="id" type="var">transitive</span>.<br/>
<span class="id" type="tactic">intros</span> <span class="id" type="var">n</span> <span class="id" type="var">m</span> <span class="id" type="var">o</span> <span class="id" type="var">Hnm</span> <span class="id" type="var">Hmo</span>.<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">le_S</span> <span class="id" type="keyword">in</span> <span class="id" type="var">Hnm</span>.<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">le_trans</span> <span class="id" type="keyword">with</span> (<span class="id" type="var">a</span> := (<span class="id" type="var">S</span> <span class="id" type="var">n</span>)) (<span class="id" type="var">b</span> := (<span class="id" type="var">S</span> <span class="id" type="var">m</span>)) (<span class="id" type="var">c</span> := <span class="id" type="var">o</span>).<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">Hnm</span>.<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">Hmo</span>. <span class="id" type="keyword">Qed</span>.<br/>
<br/>
</div>
<div class="doc">
<a name="lab235"></a><h4 class="section">Exercise: 2 stars, optional</h4>
We can also prove <span class="inlinecode"><span class="id" type="var">lt_trans</span></span> more laboriously by induction,
without using le_trans. Do this.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">lt_trans'</span> :<br/>
<span class="id" type="var">transitive</span> <span class="id" type="var">lt</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="comment">(* Prove this by induction on evidence that <span class="inlinecode"><span class="id" type="var">m</span></span> is less than <span class="inlinecode"><span class="id" type="var">o</span></span>. *)</span><br/>
<span class="id" type="tactic">unfold</span> <span class="id" type="var">lt</span>. <span class="id" type="tactic">unfold</span> <span class="id" type="var">transitive</span>.<br/>
<span class="id" type="tactic">intros</span> <span class="id" type="var">n</span> <span class="id" type="var">m</span> <span class="id" type="var">o</span> <span class="id" type="var">Hnm</span> <span class="id" type="var">Hmo</span>.<br/>
<span class="id" type="tactic">induction</span> <span class="id" type="var">Hmo</span> <span class="id" type="keyword">as</span> [| <span class="id" type="var">m'</span> <span class="id" type="var">Hm'o</span>].<br/>
<span class="comment">(* FILL IN HERE *)</span> <span class="id" type="var">Admitted</span>.<br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
<a name="lab236"></a><h4 class="section">Exercise: 2 stars, optional</h4>
Prove the same thing again by induction on <span class="inlinecode"><span class="id" type="var">o</span></span>.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">lt_trans''</span> :<br/>
<span class="id" type="var">transitive</span> <span class="id" type="var">lt</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="id" type="tactic">unfold</span> <span class="id" type="var">lt</span>. <span class="id" type="tactic">unfold</span> <span class="id" type="var">transitive</span>.<br/>
<span class="id" type="tactic">intros</span> <span class="id" type="var">n</span> <span class="id" type="var">m</span> <span class="id" type="var">o</span> <span class="id" type="var">Hnm</span> <span class="id" type="var">Hmo</span>.<br/>
<span class="id" type="tactic">induction</span> <span class="id" type="var">o</span> <span class="id" type="keyword">as</span> [| <span class="id" type="var">o'</span>].<br/>
<span class="comment">(* FILL IN HERE *)</span> <span class="id" type="var">Admitted</span>.<br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
The transitivity of <span class="inlinecode"><span class="id" type="var">le</span></span>, in turn, can be used to prove some facts
that will be useful later (e.g., for the proof of antisymmetry
below)...
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_Sn_le</span> : <span style="font-family: arial;">∀</span><span class="id" type="var">n</span> <span class="id" type="var">m</span>, <span class="id" type="var">S</span> <span class="id" type="var">n</span> ≤ <span class="id" type="var">m</span> <span style="font-family: arial;">→</span> <span class="id" type="var">n</span> ≤ <span class="id" type="var">m</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="id" type="tactic">intros</span> <span class="id" type="var">n</span> <span class="id" type="var">m</span> <span class="id" type="var">H</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">le_trans</span> <span class="id" type="keyword">with</span> (<span class="id" type="var">S</span> <span class="id" type="var">n</span>).<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">le_S</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">le_n</span>.<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">H</span>. <span class="id" type="keyword">Qed</span>.<br/>
<br/>
</div>
<div class="doc">
<a name="lab237"></a><h4 class="section">Exercise: 1 star, optional</h4>
</div>
<div class="code code-space">
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_S_n</span> : <span style="font-family: arial;">∀</span><span class="id" type="var">n</span> <span class="id" type="var">m</span>,<br/>
(<span class="id" type="var">S</span> <span class="id" type="var">n</span> ≤ <span class="id" type="var">S</span> <span class="id" type="var">m</span>) <span style="font-family: arial;">→</span> (<span class="id" type="var">n</span> ≤ <span class="id" type="var">m</span>).<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="comment">(* FILL IN HERE *)</span> <span class="id" type="var">Admitted</span>.<br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
<a name="lab238"></a><h4 class="section">Exercise: 2 stars, optional (le_Sn_n_inf)</h4>
Provide an informal proof of the following theorem:
<div class="paragraph"> </div>
Theorem: For every <span class="inlinecode"><span class="id" type="var">n</span></span>, <span class="inlinecode">~(<span class="id" type="var">S</span></span> <span class="inlinecode"><span class="id" type="var">n</span></span> <span class="inlinecode">≤</span> <span class="inlinecode"><span class="id" type="var">n</span>)</span>
<div class="paragraph"> </div>
A formal proof of this is an optional exercise below, but try
the informal proof without doing the formal proof first.
<div class="paragraph"> </div>
Proof:
<span class="comment">(* FILL IN HERE *)</span><br/>
<font size=-2>☐</font>
<div class="paragraph"> </div>
<a name="lab239"></a><h4 class="section">Exercise: 1 star, optional</h4>
</div>
<div class="code code-space">
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_Sn_n</span> : <span style="font-family: arial;">∀</span><span class="id" type="var">n</span>,<br/>
¬ (<span class="id" type="var">S</span> <span class="id" type="var">n</span> ≤ <span class="id" type="var">n</span>).<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="comment">(* FILL IN HERE *)</span> <span class="id" type="var">Admitted</span>.<br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
Reflexivity and transitivity are the main concepts we'll need for
later chapters, but, for a bit of additional practice working with
relations in Coq, here are a few more common ones.
<div class="paragraph"> </div>
A relation <span class="inlinecode"><span class="id" type="var">R</span></span> is <i>symmetric</i> if <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">a</span></span> <span class="inlinecode"><span class="id" type="var">b</span></span> implies <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">b</span></span> <span class="inlinecode"><span class="id" type="var">a</span></span>.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Definition</span> <span class="id" type="var">symmetric</span> {<span class="id" type="var">X</span>: <span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) :=<br/>
<span style="font-family: arial;">∀</span><span class="id" type="var">a</span> <span class="id" type="var">b</span> : <span class="id" type="var">X</span>, (<span class="id" type="var">R</span> <span class="id" type="var">a</span> <span class="id" type="var">b</span>) <span style="font-family: arial;">→</span> (<span class="id" type="var">R</span> <span class="id" type="var">b</span> <span class="id" type="var">a</span>).<br/>
<br/>
</div>
<div class="doc">
<a name="lab240"></a><h4 class="section">Exercise: 2 stars, optional</h4>
</div>
<div class="code code-space">
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_not_symmetric</span> :<br/>
¬ (<span class="id" type="var">symmetric</span> <span class="id" type="var">le</span>).<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="comment">(* FILL IN HERE *)</span> <span class="id" type="var">Admitted</span>.<br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
A relation <span class="inlinecode"><span class="id" type="var">R</span></span> is <i>antisymmetric</i> if <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">a</span></span> <span class="inlinecode"><span class="id" type="var">b</span></span> and <span class="inlinecode"><span class="id" type="var">R</span></span> <span class="inlinecode"><span class="id" type="var">b</span></span> <span class="inlinecode"><span class="id" type="var">a</span></span> together
imply <span class="inlinecode"><span class="id" type="var">a</span></span> <span class="inlinecode">=</span> <span class="inlinecode"><span class="id" type="var">b</span></span> — that is, if the only "cycles" in <span class="inlinecode"><span class="id" type="var">R</span></span> are trivial
ones.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Definition</span> <span class="id" type="var">antisymmetric</span> {<span class="id" type="var">X</span>: <span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) :=<br/>
<span style="font-family: arial;">∀</span><span class="id" type="var">a</span> <span class="id" type="var">b</span> : <span class="id" type="var">X</span>, (<span class="id" type="var">R</span> <span class="id" type="var">a</span> <span class="id" type="var">b</span>) <span style="font-family: arial;">→</span> (<span class="id" type="var">R</span> <span class="id" type="var">b</span> <span class="id" type="var">a</span>) <span style="font-family: arial;">→</span> <span class="id" type="var">a</span> = <span class="id" type="var">b</span>.<br/>
<br/>
</div>
<div class="doc">
<a name="lab241"></a><h4 class="section">Exercise: 2 stars, optional</h4>
</div>
<div class="code code-space">
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_antisymmetric</span> :<br/>
<span class="id" type="var">antisymmetric</span> <span class="id" type="var">le</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="comment">(* FILL IN HERE *)</span> <span class="id" type="var">Admitted</span>.<br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
<a name="lab242"></a><h4 class="section">Exercise: 2 stars, optional</h4>
</div>
<div class="code code-space">
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_step</span> : <span style="font-family: arial;">∀</span><span class="id" type="var">n</span> <span class="id" type="var">m</span> <span class="id" type="var">p</span>,<br/>
<span class="id" type="var">n</span> < <span class="id" type="var">m</span> <span style="font-family: arial;">→</span><br/>
<span class="id" type="var">m</span> ≤ <span class="id" type="var">S</span> <span class="id" type="var">p</span> <span style="font-family: arial;">→</span><br/>
<span class="id" type="var">n</span> ≤ <span class="id" type="var">p</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="comment">(* FILL IN HERE *)</span> <span class="id" type="var">Admitted</span>.<br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
A relation is an <i>equivalence</i> if it's reflexive, symmetric, and
transitive.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Definition</span> <span class="id" type="var">equivalence</span> {<span class="id" type="var">X</span>:<span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) :=<br/>
(<span class="id" type="var">reflexive</span> <span class="id" type="var">R</span>) <span style="font-family: arial;">∧</span> (<span class="id" type="var">symmetric</span> <span class="id" type="var">R</span>) <span style="font-family: arial;">∧</span> (<span class="id" type="var">transitive</span> <span class="id" type="var">R</span>).<br/>
<br/>
</div>
<div class="doc">
A relation is a <i>partial order</i> when it's reflexive,
<i>anti</i>-symmetric, and transitive. In the Coq standard library
it's called just "order" for short.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Definition</span> <span class="id" type="var">order</span> {<span class="id" type="var">X</span>:<span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) :=<br/>
(<span class="id" type="var">reflexive</span> <span class="id" type="var">R</span>) <span style="font-family: arial;">∧</span> (<span class="id" type="var">antisymmetric</span> <span class="id" type="var">R</span>) <span style="font-family: arial;">∧</span> (<span class="id" type="var">transitive</span> <span class="id" type="var">R</span>).<br/>
<br/>
</div>
<div class="doc">
A preorder is almost like a partial order, but doesn't have to be
antisymmetric.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Definition</span> <span class="id" type="var">preorder</span> {<span class="id" type="var">X</span>:<span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) :=<br/>
(<span class="id" type="var">reflexive</span> <span class="id" type="var">R</span>) <span style="font-family: arial;">∧</span> (<span class="id" type="var">transitive</span> <span class="id" type="var">R</span>).<br/>
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">le_order</span> :<br/>
<span class="id" type="var">order</span> <span class="id" type="var">le</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="id" type="tactic">unfold</span> <span class="id" type="var">order</span>. <span class="id" type="tactic">split</span>.<br/>
<span class="id" type="var">Case</span> "refl". <span class="id" type="tactic">apply</span> <span class="id" type="var">le_reflexive</span>.<br/>
<span class="id" type="tactic">split</span>.<br/>
<span class="id" type="var">Case</span> "antisym". <span class="id" type="tactic">apply</span> <span class="id" type="var">le_antisymmetric</span>.<br/>
<span class="id" type="var">Case</span> "transitive.". <span class="id" type="tactic">apply</span> <span class="id" type="var">le_trans</span>. <span class="id" type="keyword">Qed</span>.<br/>
<br/>
</div>
<div class="doc">
<a name="lab243"></a><h1 class="section">Reflexive, Transitive Closure</h1>
<div class="paragraph"> </div>
The <i>reflexive, transitive closure</i> of a relation <span class="inlinecode"><span class="id" type="var">R</span></span> is the
smallest relation that contains <span class="inlinecode"><span class="id" type="var">R</span></span> and that is both reflexive and
transitive. Formally, it is defined like this in the Relations
module of the Coq standard library:
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Inductive</span> <span class="id" type="var">clos_refl_trans</span> {<span class="id" type="var">A</span>: <span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">A</span>) : <span class="id" type="var">relation</span> <span class="id" type="var">A</span> :=<br/>
| <span class="id" type="var">rt_step</span> : <span style="font-family: arial;">∀</span><span class="id" type="var">x</span> <span class="id" type="var">y</span>, <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span> <span style="font-family: arial;">→</span> <span class="id" type="var">clos_refl_trans</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span><br/>
| <span class="id" type="var">rt_refl</span> : <span style="font-family: arial;">∀</span><span class="id" type="var">x</span>, <span class="id" type="var">clos_refl_trans</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">x</span><br/>
| <span class="id" type="var">rt_trans</span> : <span style="font-family: arial;">∀</span><span class="id" type="var">x</span> <span class="id" type="var">y</span> <span class="id" type="var">z</span>,<br/>
<span class="id" type="var">clos_refl_trans</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span> <span style="font-family: arial;">→</span><br/>
<span class="id" type="var">clos_refl_trans</span> <span class="id" type="var">R</span> <span class="id" type="var">y</span> <span class="id" type="var">z</span> <span style="font-family: arial;">→</span><br/>
<span class="id" type="var">clos_refl_trans</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">z</span>.<br/>
<br/>
</div>
<div class="doc">
For example, the reflexive and transitive closure of the
<span class="inlinecode"><span class="id" type="var">next_nat</span></span> relation coincides with the <span class="inlinecode"><span class="id" type="var">le</span></span> relation.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">next_nat_closure_is_le</span> : <span style="font-family: arial;">∀</span><span class="id" type="var">n</span> <span class="id" type="var">m</span>,<br/>
(<span class="id" type="var">n</span> ≤ <span class="id" type="var">m</span>) <span style="font-family: arial;">↔</span> ((<span class="id" type="var">clos_refl_trans</span> <span class="id" type="var">next_nat</span>) <span class="id" type="var">n</span> <span class="id" type="var">m</span>).<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="id" type="tactic">intros</span> <span class="id" type="var">n</span> <span class="id" type="var">m</span>. <span class="id" type="tactic">split</span>.<br/>
<span class="id" type="var">Case</span> "<span style="font-family: arial;">→</span>".<br/>
<span class="id" type="tactic">intro</span> <span class="id" type="var">H</span>. <span class="id" type="tactic">induction</span> <span class="id" type="var">H</span>.<br/>
<span class="id" type="var">SCase</span> "le_n". <span class="id" type="tactic">apply</span> <span class="id" type="var">rt_refl</span>.<br/>
<span class="id" type="var">SCase</span> "le_S".<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">rt_trans</span> <span class="id" type="keyword">with</span> <span class="id" type="var">m</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">IHle</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">rt_step</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">nn</span>.<br/>
<span class="id" type="var">Case</span> "<span style="font-family: arial;">←</span>".<br/>
<span class="id" type="tactic">intro</span> <span class="id" type="var">H</span>. <span class="id" type="tactic">induction</span> <span class="id" type="var">H</span>.<br/>
<span class="id" type="var">SCase</span> "rt_step". <span class="id" type="tactic">inversion</span> <span class="id" type="var">H</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">le_S</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">le_n</span>.<br/>
<span class="id" type="var">SCase</span> "rt_refl". <span class="id" type="tactic">apply</span> <span class="id" type="var">le_n</span>.<br/>
<span class="id" type="var">SCase</span> "rt_trans".<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">le_trans</span> <span class="id" type="keyword">with</span> <span class="id" type="var">y</span>.<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">IHclos_refl_trans1</span>.<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">IHclos_refl_trans2</span>. <span class="id" type="keyword">Qed</span>.<br/>
<br/>
</div>
<div class="doc">
The above definition of reflexive, transitive closure is
natural — it says, explicitly, that the reflexive and transitive
closure of <span class="inlinecode"><span class="id" type="var">R</span></span> is the least relation that includes <span class="inlinecode"><span class="id" type="var">R</span></span> and that is
closed under rules of reflexivity and transitivity. But it turns
out that this definition is not very convenient for doing
proofs — the "nondeterminism" of the <span class="inlinecode"><span class="id" type="var">rt_trans</span></span> rule can sometimes
lead to tricky inductions.
<div class="paragraph"> </div>
Here is a more useful definition...
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Inductive</span> <span class="id" type="var">refl_step_closure</span> {<span class="id" type="var">X</span>:<span class="id" type="keyword">Type</span>} (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) : <span class="id" type="var">relation</span> <span class="id" type="var">X</span> :=<br/>
| <span class="id" type="var">rsc_refl</span> : <span style="font-family: arial;">∀</span>(<span class="id" type="var">x</span> : <span class="id" type="var">X</span>), <span class="id" type="var">refl_step_closure</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">x</span><br/>
| <span class="id" type="var">rsc_step</span> : <span style="font-family: arial;">∀</span>(<span class="id" type="var">x</span> <span class="id" type="var">y</span> <span class="id" type="var">z</span> : <span class="id" type="var">X</span>),<br/>
<span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span> <span style="font-family: arial;">→</span><br/>
<span class="id" type="var">refl_step_closure</span> <span class="id" type="var">R</span> <span class="id" type="var">y</span> <span class="id" type="var">z</span> <span style="font-family: arial;">→</span><br/>
<span class="id" type="var">refl_step_closure</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">z</span>.<br/>
<br/>
</div>
<div class="doc">
(Note that, aside from the naming of the constructors, this
definition is the same as the <span class="inlinecode"><span class="id" type="var">multi</span></span> step relation used in many
other chapters.)
<div class="paragraph"> </div>
(The following <span class="inlinecode"><span class="id" type="keyword">Tactic</span></span> <span class="inlinecode"><span class="id" type="keyword">Notation</span></span> definitions are explained in
Imp.v. You can ignore them if you haven't read that chapter
yet.)
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Tactic Notation</span> "rt_cases" <span class="id" type="var">tactic</span>(<span class="id" type="var">first</span>) <span class="id" type="var">ident</span>(<span class="id" type="var">c</span>) :=<br/>
<span class="id" type="var">first</span>;<br/>
[ <span class="id" type="var">Case_aux</span> <span class="id" type="var">c</span> "rt_step" | <span class="id" type="var">Case_aux</span> <span class="id" type="var">c</span> "rt_refl" <br/>
| <span class="id" type="var">Case_aux</span> <span class="id" type="var">c</span> "rt_trans" ].<br/>
<br/>
<span class="id" type="keyword">Tactic Notation</span> "rsc_cases" <span class="id" type="var">tactic</span>(<span class="id" type="var">first</span>) <span class="id" type="var">ident</span>(<span class="id" type="var">c</span>) :=<br/>
<span class="id" type="var">first</span>;<br/>
[ <span class="id" type="var">Case_aux</span> <span class="id" type="var">c</span> "rsc_refl" | <span class="id" type="var">Case_aux</span> <span class="id" type="var">c</span> "rsc_step" ].<br/>
<br/>
</div>
<div class="doc">
Our new definition of reflexive, transitive closure "bundles"
the <span class="inlinecode"><span class="id" type="var">rt_step</span></span> and <span class="inlinecode"><span class="id" type="var">rt_trans</span></span> rules into the single rule step.
The left-hand premise of this step is a single use of <span class="inlinecode"><span class="id" type="var">R</span></span>,
leading to a much simpler induction principle.
<div class="paragraph"> </div>
Before we go on, we should check that the two definitions do
indeed define the same relation...
<div class="paragraph"> </div>
First, we prove two lemmas showing that <span class="inlinecode"><span class="id" type="var">refl_step_closure</span></span> mimics
the behavior of the two "missing" <span class="inlinecode"><span class="id" type="var">clos_refl_trans</span></span>
constructors.
</div>
<div class="code code-tight">
<br/>
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">rsc_R</span> : <span style="font-family: arial;">∀</span>(<span class="id" type="var">X</span>:<span class="id" type="keyword">Type</span>) (<span class="id" type="var">R</span>:<span class="id" type="var">relation</span> <span class="id" type="var">X</span>) (<span class="id" type="var">x</span> <span class="id" type="var">y</span> : <span class="id" type="var">X</span>),<br/>
<span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span> <span style="font-family: arial;">→</span> <span class="id" type="var">refl_step_closure</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="id" type="tactic">intros</span> <span class="id" type="var">X</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span> <span class="id" type="var">H</span>.<br/>
<span class="id" type="tactic">apply</span> <span class="id" type="var">rsc_step</span> <span class="id" type="keyword">with</span> <span class="id" type="var">y</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">H</span>. <span class="id" type="tactic">apply</span> <span class="id" type="var">rsc_refl</span>. <span class="id" type="keyword">Qed</span>.<br/>
<br/>
</div>
<div class="doc">
<a name="lab244"></a><h4 class="section">Exercise: 2 stars, optional (rsc_trans)</h4>
</div>
<div class="code code-space">
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">rsc_trans</span> :<br/>
<span style="font-family: arial;">∀</span>(<span class="id" type="var">X</span>:<span class="id" type="keyword">Type</span>) (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) (<span class="id" type="var">x</span> <span class="id" type="var">y</span> <span class="id" type="var">z</span> : <span class="id" type="var">X</span>),<br/>
<span class="id" type="var">refl_step_closure</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span> <span style="font-family: arial;">→</span><br/>
<span class="id" type="var">refl_step_closure</span> <span class="id" type="var">R</span> <span class="id" type="var">y</span> <span class="id" type="var">z</span> <span style="font-family: arial;">→</span><br/>
<span class="id" type="var">refl_step_closure</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">z</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="comment">(* FILL IN HERE *)</span> <span class="id" type="var">Admitted</span>.<br/>
</div>
<div class="doc">
<font size=-2>☐</font>
<div class="paragraph"> </div>
Then we use these facts to prove that the two definitions of
reflexive, transitive closure do indeed define the same
relation.
<div class="paragraph"> </div>
<a name="lab245"></a><h4 class="section">Exercise: 3 stars, optional (rtc_rsc_coincide)</h4>
</div>
<div class="code code-space">
<span class="id" type="keyword">Theorem</span> <span class="id" type="var">rtc_rsc_coincide</span> : <br/>
<span style="font-family: arial;">∀</span>(<span class="id" type="var">X</span>:<span class="id" type="keyword">Type</span>) (<span class="id" type="var">R</span>: <span class="id" type="var">relation</span> <span class="id" type="var">X</span>) (<span class="id" type="var">x</span> <span class="id" type="var">y</span> : <span class="id" type="var">X</span>),<br/>
<span class="id" type="var">clos_refl_trans</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span> <span style="font-family: arial;">↔</span> <span class="id" type="var">refl_step_closure</span> <span class="id" type="var">R</span> <span class="id" type="var">x</span> <span class="id" type="var">y</span>.<br/>
<span class="id" type="keyword">Proof</span>.<br/>
<span class="comment">(* FILL IN HERE *)</span> <span class="id" type="var">Admitted</span>.<br/>
</div>
<div class="doc">
<font size=-2>☐</font>
</div>
<div class="code code-tight">
<br/>
</div>
</div>
<div id="footer">
<hr/><a href="coqindex.html">Index</a><hr/>This page has been generated by <a href="http://www.lix.polytechnique.fr/coq/">coqdoc</a>
</div>
</div>
</body>
</html>