-
Notifications
You must be signed in to change notification settings - Fork 1
/
SfLib.v
250 lines (199 loc) · 6.64 KB
/
SfLib.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
(** * SfLib: Software Foundations Library *)
(* $Date: 2013-07-17 16:19:11 -0400 (Wed, 17 Jul 2013) $ *)
(** Here we collect together several useful definitions and theorems
from Basics.v, List.v, Poly.v, Ind.v, and Logic.v that are not
already in the Coq standard library. From now on we can [Import]
or [Export] this file, instead of cluttering our environment with
all the examples and false starts in those files. *)
(** * From the Coq Standard Library *)
Require Omega. (* needed for using the [omega] tactic *)
Require Export Bool.
Require Export List.
Export ListNotations.
Require Export Arith.
Require Export Arith.EqNat. (* Contains [beq_nat], among other things *)
(** * From Basics.v *)
Definition admit {T: Type} : T. Admitted.
Require String. Open Scope string_scope.
Ltac move_to_top x :=
match reverse goal with
| H : _ |- _ => try move x after H
end.
Tactic Notation "assert_eq" ident(x) constr(v) :=
let H := fresh in
assert (x = v) as H by reflexivity;
clear H.
Tactic Notation "Case_aux" ident(x) constr(name) :=
first [
set (x := name); move_to_top x
| assert_eq x name; move_to_top x
| fail 1 "because we are working on a different case" ].
Tactic Notation "Case" constr(name) := Case_aux Case name.
Tactic Notation "SCase" constr(name) := Case_aux SCase name.
Tactic Notation "SSCase" constr(name) := Case_aux SSCase name.
Tactic Notation "SSSCase" constr(name) := Case_aux SSSCase name.
Tactic Notation "SSSSCase" constr(name) := Case_aux SSSSCase name.
Tactic Notation "SSSSSCase" constr(name) := Case_aux SSSSSCase name.
Tactic Notation "SSSSSSCase" constr(name) := Case_aux SSSSSSCase name.
Tactic Notation "SSSSSSSCase" constr(name) := Case_aux SSSSSSSCase name.
Fixpoint ble_nat (n m : nat) : bool :=
match n with
| O => true
| S n' =>
match m with
| O => false
| S m' => ble_nat n' m'
end
end.
Theorem andb_true_elim1 : forall b c,
andb b c = true -> b = true.
Proof.
intros b c H.
destruct b.
Case "b = true".
reflexivity.
Case "b = false".
rewrite <- H. reflexivity. Qed.
Theorem andb_true_elim2 : forall b c,
andb b c = true -> c = true.
Proof.
(* An exercise in Basics.v *)
Admitted.
Theorem beq_nat_sym : forall (n m : nat),
beq_nat n m = beq_nat m n.
(* An exercise in Lists.v *)
Admitted.
(** * From Props.v *)
Inductive ev : nat -> Prop :=
| ev_0 : ev O
| ev_SS : forall n:nat, ev n -> ev (S (S n)).
(** * From Logic.v *)
Theorem andb_true : forall b c,
andb b c = true -> b = true /\ c = true.
Proof.
intros b c H.
destruct b.
destruct c.
apply conj. reflexivity. reflexivity.
inversion H.
inversion H. Qed.
Theorem false_beq_nat: forall n n' : nat,
n <> n' ->
beq_nat n n' = false.
Proof.
(* An exercise in Logic.v *)
Admitted.
Theorem ex_falso_quodlibet : forall (P:Prop),
False -> P.
Proof.
intros P contra.
inversion contra. Qed.
Theorem ev_not_ev_S : forall n,
ev n -> ~ ev (S n).
Proof.
(* An exercise in Logic.v *)
Admitted.
Theorem ble_nat_true : forall n m,
ble_nat n m = true -> n <= m.
(* An exercise in Logic.v *)
Admitted.
Theorem ble_nat_false : forall n m,
ble_nat n m = false -> ~(n <= m).
(* An exercise in Logic.v *)
Admitted.
Inductive appears_in (n : nat) : list nat -> Prop :=
| ai_here : forall l, appears_in n (n::l)
| ai_later : forall m l, appears_in n l -> appears_in n (m::l).
Inductive next_nat (n:nat) : nat -> Prop :=
| nn : next_nat n (S n).
Inductive total_relation : nat -> nat -> Prop :=
tot : forall n m : nat, total_relation n m.
Inductive empty_relation : nat -> nat -> Prop := .
(** * From Later Files *)
Definition relation (X:Type) := X -> X -> Prop.
Definition deterministic {X: Type} (R: relation X) :=
forall x y1 y2 : X, R x y1 -> R x y2 -> y1 = y2.
Inductive multi (X:Type) (R: relation X)
: X -> X -> Prop :=
| multi_refl : forall (x : X),
multi X R x x
| multi_step : forall (x y z : X),
R x y ->
multi X R y z ->
multi X R x z.
Implicit Arguments multi [[X]].
Tactic Notation "multi_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "multi_refl" | Case_aux c "multi_step" ].
Theorem multi_R : forall (X:Type) (R:relation X) (x y : X),
R x y -> multi R x y.
Proof.
intros X R x y r.
apply multi_step with y. apply r. apply multi_refl. Qed.
Theorem multi_trans :
forall (X:Type) (R: relation X) (x y z : X),
multi R x y ->
multi R y z ->
multi R x z.
Proof.
(* FILL IN HERE *) Admitted.
(** Identifiers and polymorphic partial maps. *)
Inductive id : Type :=
Id : nat -> id.
Theorem eq_id_dec : forall id1 id2 : id, {id1 = id2} + {id1 <> id2}.
Proof.
intros id1 id2.
destruct id1 as [n1]. destruct id2 as [n2].
destruct (eq_nat_dec n1 n2) as [Heq | Hneq].
Case "n1 = n2".
left. rewrite Heq. reflexivity.
Case "n1 <> n2".
right. intros contra. inversion contra. apply Hneq. apply H0.
Defined.
Lemma eq_id : forall (T:Type) x (p q:T),
(if eq_id_dec x x then p else q) = p.
Proof.
intros.
destruct (eq_id_dec x x); try reflexivity.
apply ex_falso_quodlibet; auto.
Qed.
Lemma neq_id : forall (T:Type) x y (p q:T), x <> y ->
(if eq_id_dec x y then p else q) = q.
Proof.
(* FILL IN HERE *) Admitted.
Definition partial_map (A:Type) := id -> option A.
Definition empty {A:Type} : partial_map A := (fun _ => None).
Notation "'\empty'" := empty.
Definition extend {A:Type} (Gamma : partial_map A) (x:id) (T : A) :=
fun x' => if eq_id_dec x x' then Some T else Gamma x'.
Lemma extend_eq : forall A (ctxt: partial_map A) x T,
(extend ctxt x T) x = Some T.
Proof.
intros. unfold extend. rewrite eq_id; auto.
Qed.
Lemma extend_neq : forall A (ctxt: partial_map A) x1 T x2,
x2 <> x1 ->
(extend ctxt x2 T) x1 = ctxt x1.
Proof.
intros. unfold extend. rewrite neq_id; auto.
Qed.
Lemma extend_shadow : forall A (ctxt: partial_map A) t1 t2 x1 x2,
extend (extend ctxt x2 t1) x2 t2 x1 = extend ctxt x2 t2 x1.
Proof with auto.
intros. unfold extend. destruct (eq_id_dec x2 x1)...
Qed.
(** -------------------- *)
(** * Some useful tactics *)
Tactic Notation "solve_by_inversion_step" tactic(t) :=
match goal with
| H : _ |- _ => solve [ inversion H; subst; t ]
end
|| fail "because the goal is not solvable by inversion.".
Tactic Notation "solve" "by" "inversion" "1" :=
solve_by_inversion_step idtac.
Tactic Notation "solve" "by" "inversion" "2" :=
solve_by_inversion_step (solve by inversion 1).
Tactic Notation "solve" "by" "inversion" "3" :=
solve_by_inversion_step (solve by inversion 2).
Tactic Notation "solve" "by" "inversion" :=
solve by inversion 1.