-
Notifications
You must be signed in to change notification settings - Fork 4
/
Four_intrinsic+Rashba.nb
2487 lines (2478 loc) · 130 KB
/
Four_intrinsic+Rashba.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 133203, 2478]
NotebookOptionsPosition[ 132866, 2461]
NotebookOutlinePosition[ 133222, 2477]
CellTagsIndexPosition[ 133179, 2474]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"k1f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"s", "-", "\[Pi]"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
FractionBox["1",
SqrtBox["2"]],
RowBox[{"(",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
FractionBox["1",
SqrtBox["2"]],
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["2"]}], ")"}], "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k2f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Pi]", "-", "s"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"3", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"4", "+",
RowBox[{"2",
SqrtBox["2"]}]}], ")"}], "\[Pi]"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
FractionBox["1",
SqrtBox["2"]]}], ")"}], "s"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
FractionBox["1",
SqrtBox["2"]],
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["2"]}], ")"}], "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"H", "[",
RowBox[{
"t1_", ",", "t2_", ",", "t3_", ",", "t4_", ",", "k1_", ",", "k2_"}],
"]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{"t1", "+",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
"0", ",",
RowBox[{
RowBox[{"-", "t4"}], "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"t1", "-",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
"0", ",",
RowBox[{"t1", "+",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",",
RowBox[{"t1", "-",
RowBox[{"2", " ", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",", "0", ",",
RowBox[{"t1", "+",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
RowBox[{
RowBox[{"-", "t4"}], "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"t1", "+",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{"\[ImaginaryI]", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"-", "t4"}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{
RowBox[{"-", "t4"}], "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]]}], ",",
RowBox[{"t1", "+",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}], ",",
RowBox[{"t1", "+",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
"0", ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"t4", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "+",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]]}], ",",
RowBox[{"t1", "+",
RowBox[{"2", " ", "t3",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",", "0", ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}]]}], ")"}]}]}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox["2"], "2"]}], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{"\[ImaginaryI]", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}], ",",
RowBox[{"t4", "*",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "-",
RowBox[{
FractionBox[
SqrtBox["2"], "2"], "\[ImaginaryI]"}]}], ")"}]}], ",", "0", ",",
RowBox[{"t1", "-",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",",
RowBox[{"t2", "*",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ",",
RowBox[{"t1", "+",
RowBox[{"2", "t3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}]], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", "*", "k2"}]]}], ")"}]}]}], ",", "0"}],
"}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t1", "=", "0.8"}], ",",
RowBox[{"t2", "=", "1.0"}], ",",
RowBox[{"t3", "=", "0.01"}], ",",
RowBox[{"t4", "=", "0.1"}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Re", "[",
RowBox[{"Eigenvalues", "[",
RowBox[{"N", "[",
RowBox[{"H", "[",
RowBox[{"t1", ",", "t2", ",",
RowBox[{"\[ImaginaryI]", "*", "t3"}], ",", "t4", ",",
RowBox[{"k1f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}], ",",
RowBox[{"k2f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}]}], "]"}], "]"}], "]"}], "]"}],
"]"}], ",",
RowBox[{"{",
RowBox[{"s", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",",
RowBox[{"-", "1"}], ",", "0", ",", "1", ",", "2"}], "}"}], ",",
"None"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "\[CapitalGamma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "\[CapitalChi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "\[CapitalMu]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "\[CapitalSigma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "\[CapitalGamma]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "M"}], "}"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<k\>\"", ",", "\"\<Energy(a.u.)\>\""}], "}"}]}]}], "]"}]}],
"]"}]}], "Input",
CellChangeTimes->{
3.6653192576437798`*^9, {3.6653201514726057`*^9, 3.665320158136545*^9}, {
3.665320505286292*^9, 3.665320507393359*^9}, {3.665320561242758*^9,
3.665320710329031*^9}, {3.665320745091723*^9, 3.66532086651654*^9}, {
3.665337665198621*^9, 3.665338397004168*^9}, {3.6653384272376127`*^9,
3.665338428826357*^9}, 3.665338506552129*^9, {3.665338541589383*^9,
3.665338543930698*^9}, 3.665338585743226*^9, {3.665338670571362*^9,
3.665338671284482*^9}, {3.665338985423087*^9, 3.665339047980958*^9}, {
3.665339277557065*^9, 3.6653393496619663`*^9}, {3.66533986046308*^9,
3.6653398611518707`*^9}, {3.6653399248276167`*^9, 3.665339974521246*^9}, {
3.665340005338765*^9, 3.6653400865916357`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV2Xk8VF0YB/AZMzGDrCWJomzZikRSzkmFFKEiUnYpsrVokXZERIQkvNIi
FalkKeeGsm9JsmXf9zXLzJ339A+f72dmzr3nnOf53cPIOHpZuHBRKJSX+Me/
308CHLnVna/otd7T7WB3TaFEm5HtVtLWYKJgd2LM4BRqMgnxlZY+Bbaoaa7Q
nphCfobWAsukL4FqwVfN4ewpZFAMbf+uuwtq/G+8ihWfRm9uat6aWPcIjB/Y
H8w6OI06Hd6Kja5LA0YlP6MCiqbRFXN3++F1uYCyEzSl5cwg5sLjMg+1ckA/
5Drr2DuHfAqv3RvxrQcGQGrgW8s8UkuNqvvwtgnE9PkrHI9bRCviNv8lypqA
m+l0skPSIloKrZKs6mkCGTfohx2eL6LSszxuvRLNYOmevZXFh0XkuPsKuTKo
GURUxJ5crFlED7sclf3sWoCwZJa7HfcSYklr3NERagNSijtdnb2WUNeKmld7
ldvAr2G6cNn5JVTG8Kg1N2gDeiVHAxX9l1DMxLM1p/3bAEPOt7gxeAltJlZn
xQ+0gaEEo+1//1tCTnbU9iXiD3j89fFV7fol1GvqJtm+rQN0cPWTaeostOK7
h2zA3g5wIvHQIEWbhfR3+qhIWWDf2k5a7GChZOXLO465d4DiqYdJAwYsZMu4
Z9v4pAN4HRUNaTrGQj++ZiTUcHWChPXaR2pvs1CB5l9JorITRKnbr11Wz0Kj
6Uuydk2doM36cuGXRhaS3EBRJXs7QcbdQSufVha6JMzcuYPTCXxYjmZlvSyk
OSZxPEe9C3B/id+/Y56FXr3Qe5IZ0wVSTM6IqEqyUaxEoNR/9t3gXetM0iZ7
Nprrrn5h6tkNaB9uZsQ7s9HhN6s0WFe6weO7lDiOGxuJwDQDq9huoGCsM5rt
w0b3XCq9lld3A5OdBldabrLR9UyRwku6PUB8a1/x4lM2cjNIcrUQ6wWUBb7k
oE42+i44MMHZ0Avi0x1/KfWykVzT5itv1HuBJC01u2SAjbrcC+8zTHqB7g/k
NTbORraRvTkFt3rBkU3tyeNsNjJrVeZTnuwFm4WPDCNxEun45mTQKvvA1XYf
3oh9JKrl6J7waeoDwq17KNYHSOQahvjb+/pAZnrUpzUHSfTg5fdTedR+sDxu
wjX8MImG/vzc4KPdDx7c25KhaEeihP2TsX9S+sHBpN0ym8+SSKPpnMGBzH5w
Ql2xOPo8iUpd52dyv/QDsboMiWk/Es3c4Jg//N0PbJ5eaU/wJ5FJznL+AwID
4NsIzEq9QyJSVul67qUBcOG1cMPtGBJFZ71RUwgaAHEMZavbcSRSgupt0dED
oKZG5sbVeBJZHtu23TtjANxJZZXZJpIoI9JgRr53AGge3ChV84xEBuvKU6Kn
BgBtsbPi8QsStb42MeeiDIJrTkekHNNIxCg9/LZNYhA8sqE8b3lNInvS0S3a
bBBMjvzZefM9ieZC+8S4TgwC96nGyTUfSXRv9elvXu6DwLuzd3dGNolyNX3W
7w8cBIXyIkRhLolE3K+1Uj8PgkPNP5hPEImKGh+beSkMAeu1jr5ry/F8HI/M
zG4ZAh07Xx7ZWYHXe1Qgzh8OgX2/vFMtK0nES7vZftd6CLBOyd26WE0iMzU3
z9TQIfD01FvdSz9ItD5XRkQ5bgjsJyJ83Ovxeu5u+fgudQg87jIXOvqTRLHW
puyCL0OApqoTJP2LRH9ua95rGh8Ccj9dLDybSJQpOLbJnjUEJEvI71uaSXQz
/kV9H2MYnMpTTpnGlsuUWDMjMwxEnLVCHVvx/Lf/LLisNgxWDUTGCbfh/fwW
5kjVHQbvuK/y5WN7tFBeCRweBpof+WXYf0ik55pn8tB+GLxh6xQ9bCeR0OTZ
yTVnhkG/GaNcsYNE77n7t20MHAbnLr+k63WS6HZkcmvGg2Hg07t8G4FtKWlz
XStpGMTc0q3Z0UWiRfWqkt05w6DOXk5RrptElZ8D3cuLh8F9ruuDEdiJhlDQ
vG4YND1uX/4X2/vHQlZj2zBYli/20KqHRLuOv7c8MTQMVhosBGRhiwx4LPbM
DQPdy7YVPL0k6vGVT3SnjYCEYbHLVtjBwY96L0qOAM/AKXYvto3oobscxRFA
DSr5IdtHIpVEftXArSNgu+8x5glsUvF7Lb/+CKgJDv0vErvm/bVzUaYjQNJe
6zHCTtbTEZc4NgI+derO9WP7lk3lJ58cARL7r2bx9pNoz+HXdgrnRsBh1bYa
BWyxdhfa2+sj4KkHMAXYA6fWvdAMGwHr4V1Vc+y8md/G+Y9GwDn1/84cx753
7cHYrucj4Iqkl4Az9nHeAw9Ks0bAnFqroAu22sNlWgfRCFAc+OFjj02RRk0N
FSMgTRxoWmL/eHXxqu3vETDRudzKADt1q4ZMdw++XrZq82bsC8Rw8anJEZBp
Ff5lJbbh/mduE+wRIN0kTZ3F8xH/dYLfj3cUvE5oTK3GHrIXz2SLjQKBw89f
pmB/Hq47dHvDKFCm3OT3wQ6/EPqXd/MoqJ6wr9XBtqfufRy5YxTYFW+fYeH1
Vr9H6onvGwW5JxkX87A1TrGc31iOArl9CXQPbE2DxRB951Hg1Nw5LYa9dcN8
ZqPPKOg2atibj/dXizL3y+PaKOgKP7d4FHtb2zSLGjYK1pxFwhO4PnTyJtfH
xo8C1+BPodexd5wb9fz6cRQ8Ci14EYbrTc98ONqyaBT4xTXt48UGaoN5w7Wj
IEw0z/Q6rk/9gR5usZFRoGT49/pRXM9Gtq2Jp9ePgYenF4NzcT8Y6zQXczaN
AVO5Sn0q9n6x30PRO8fAzrRBO33cT6a19Vro6BjYsO5McSbut8N7KqpF74+B
YyOfdfQacf3LlM28TBgDo0k8wua4f63I7xJ6r8aA/bWYA8cbcD3mFLq6fRsD
TllrJx1w/9ur5JGfl8ZAHxE2s6aGRI7MHFkL5jjQBClTC1Ukcur7aNwvNg5K
W5wt63C+uCa/ixHWGAc+vBUHPXAeeaxIU3N1Gwf9Z22FDn0jkefk88NL58eB
W46YPquIRF7VqZcjbo0D5102LYmFuH6Dk7/nJY4DD3hvby3Ot7MuiSMHX48D
ywzuVXYFJDqnnyDSmzsOTh5eb97/mUR+rNgTgg3jQP+RG6UH5+PFpoe3U7vG
QbiJ6oWjOSS6nB31SmdiHDAcSo58x3l6JSqytpo9DmQMgpNUcd7q5RguvVs2
ATIf8a48g9+PnhuE+/NPAMNta3XS8fjw4V4ZQ9EJ8G60om6BwP3uu9uwVXoC
rL+hlV1SRqJCe/3m5woTwMND8LUBzlP9g7vO+KhNABPn4tMNOE/3qIAo7h0T
4GmQ1EMZvD+GfdvbN1tNAD7dXY1e43i96n+OBB2fANqmYgdFZ3BeEZ6Lf5wm
wIsDW22K5kn0NT5lZZj3BMjyl3hsxMVBugd5DwzenQDbbxi1da/koE05TTn/
fZ4ADgPcm/UAB60KufhAZP0kIE01pcMecZCWn0jyKcVJcIH5uzogiYMOO79+
Q6hNglMe5ujiMw6K1Oso9dSdBLxTTb2333EQ37Qhp/zwJNhx7FbDYhkHcY6t
8rgVNAkEvHms9Fkc1K+avXdmZBLYD6XAPA0Ksf7qGRflafx+QUNjphaFsK2U
veO4MAkS5KOibXQoRO3pqOLaZVNgwDHqMw1SiLwX3rvfrJ0CfImqEl4mFOKe
jPIuV7MpUJj51zHZjUKor0ze8fv9FOBe3KEil0whrrDubvl8eRrEMF6LfxOm
EjzCA6cOK80Cn437Ss24uYhlVcsM+b7Mgdl87tNSv7kI/jMJTm1Fc0D3w7H9
Pi1cxIrlW65nlM+B6yH9y4r+cBGyJva5h37PgZ9FuSy7Xi5iT1WecsL0HFhI
5nlzbYqLuFnlJaSq9BeoKvZxH+anEZTqpibT2L9AjBEhsEuPRjA8veekE/+C
pBdbn+/fRSOEBHhEp1P/ghUXOmoP7aER0qaaB2Kz/gLZiKRGW2MaAarDC9qr
/oK/JQIXzC1pRED17qfe9HnwiLbpeNEZGrFU/cbjgc88oJttJ77E04i1dQ6P
91ycB1y+HfdOP6ER+vUry+cC5oHxuojqFck0IqTxqsKxe/PAYoNLusMzGiHe
YdK14cU8iFAZftqaQSO0JketPrbOA6kJeQfLYhrhLaq2+7fhAjjx1X6l2TCN
iF7Z5RNiugAeXH0093KURnxaFZO848gCyFhxWpYzTiPINSQ72XEBHKiwc3g6
QyPCZKtzTl1dAEsrx3dVsGnEq62eaktZC2DuJvk2VpBO9Fq9Xb127SKgO8+o
SKrTiedH2YW2sotA6lKd6qIGnXCzPuDxWGkRJJkW5DZo0okhm6ECce1FoC05
43VnG52YOC7vLGq2CNbmH9YvAXSC5ZT4lnFzEbQPWvbXm9AJUe/w3dO9i0C2
xiqH341O/PRuG1EfWQTZXtsa4k/RiRgflRjvqUWwaXDJTd6dToifLR8YJRfB
/va5qa2edGLtBe7wgVVLoPVM2A2tc3RCyT/gd9u+JZDGd1n0yzU6sSvY80zp
myUgG3k8pjWaTkhktVuFf1gCe2WKNm+JoRMzLWb6h/OXQPnJXV8CY/H8Nm1Z
1VG6BM5qnX4lG08n+Bv/En+7l4C92PB33SQ68UvuxgoFCRYou6P16NdLOpFx
cIockWaB3HcR4qw0OhF8yWkwS4EFToSo3VybTid0q/YW6G1lAV4dbxGbN3Qi
+Ryvm6UZC3BNTEu8fkcn3Iui8u8EssBURKpXfi6d2DNKf74/jAVgyqB9Rh6e
36oLEcLRLCBpvrA1OZ+O++2oy5P/WOCAOyPk4hc6oSUiJfjxMwswvKVqaV/p
hOCO8IXLRSywQbGv4Q/2gAunG5azAHMw73N2IZ14nNuZU9nIAqvTd6kcL6YT
FIfnjj1TLFCUvCbkdgmdaApZZfJqgQVUV0bdNyilE1kfgrW9KWzwcjLt7LIy
OuHCcOdnLWeDVYmxvy6V04nyjE3ZohvZ4K52L2dHFZ14SOYwd9thy829UPmB
10/hm+dDFzaIhXGsLOzbB+vq+93ZIJSREaVVTyd8kwef3LvIBq30B8Fbf9IJ
U30JjV+RbKAQ/i1Y5Bed+HZaPlYxjg3iXRNHbmLviNJgXU5kg21/siInsJV6
jL+vS2cD68+0pKJGOsEdeMXmVDEbaJi+LjRqohNX3wah/HI2oH0tVHmKPfMr
Slagjg2G+sQaF7G7FF6PZbWxwbUy3pH/mumEtVnOoWU9bNArcMFyErv2YnGO
1RAb+IhnU/Ra6AQqa73JmmODpNgjK2qwtaYG+k3ZbKDVG3RVtJVOvJWYPfAf
jQS3n2vKH8FOcF++ykCIBB3b32ytxRaNXu0fJ0YCtOlQArONToR8lusckiRB
RouCPsS+uFwv/f5GEkQmrNn/DHt8q7FQ1yYSRIlLvq3Hdj1heV5TiwQhqwXM
ONhtgY7NgTvw52N7Niv+oROHMzxBkz4Jtp6NMjPFrmi8nKq8jwSHzwlm+GDr
U4KYAQdJsH6/6YEH2HmKUZ61R0jgd99AMRNb3Typfr0tCZqJcf0K7JeX0red
dyRBgIF+Qje2dMqnJyVuJBDz0tZcwI4tL+KS8CJBuXcZL387nRCYrjnpcZ4E
u09Nr5PEvrOmtbLgCgnOHX93diM2a/eAuvBNEjzXoXBrYp/1mIlxCiaBV13b
L13soWgK62M4CR61G/VBbIcv/A6MhyRQ5N6luRv7d6/4d5vHJDCt/k7oYx8U
kFN+8x8JHF62hALs71rqEZwXJOgcvvFQB3un3c5Z87ckONX4uW0z9oegfTap
H0hQEhHhLIetnHkEzeWRoE2WS2kVdspvB9l9X0mQGbRKjRt7NdXz7uMSEvhH
N3pP4flGbLw8NlpFgifLjadasHksAg/BnyQ+v/plFWIHXH6Q86AZr9ePU++e
Y8+mJEr1dpBASUF5PAjbo+LVTe1+Eqxa/O7uin1MsuhA6zQJjKUImTXYQ2cm
pz4u4vVJC/wy+q8e0LpH96kccDc2SeoLdoyjf6++IAc8M1mjbIEt9+FVqKQY
B7jdf/V7FfaHZU3qc5IcwCffa9yM6+3Hy60BaUocYMZVdPVfPTosOsneUucA
QCToCWBP7H9QbruNA8ii8OIiXM8C42NiQgYcsGSuJS2Hbbz1ZcYFBw6Qeqsp
8RX3S1PgryNmbhzA4Ljx2GO7/aazNnpxgGxiRd7SbzoReMXBqM0f38+bgnMb
sQu/SnTujuOAebbY9hO4X81F9wVJJXFAcofX8e4GOtHh7Kf69xkHKGQdN3LB
Jnl+Xnr1ngNCrhWdt8N5sN00TES4hgMeBoZrquL8KEvKzxlq4IDyYtv4uDo6
cXRy8ERxKwdYlPiVUbD79MWXJXZzwKKhZKFLLZ04H22Q7jfEAe1GwbdLaugE
ve+cufkkBzSsWBKSx36g/fSv0jwHjIGPJ29U0wmZu3VP6BwO+PNiPrgJ59nR
UY7MOBcFMsbH483x69Jiq2aPcVNgUQTa9Be7X0+ttJRJgWssBsMf4fEuRNh6
pghRYG+WUfpPfP3oLbl5R9ZS4CrrM0dkcd7Z2taGFcpQ4EVbXa1M7A13+u03
yVEgarzWvg3PN+vXSh6mCgU+TX8QAvF61F7yPfRZhwKNdTR3bsT5FpdyV37j
Tgr8epVq+xjbriJ54SGkQDmV97t48XqPSdYkeRlSYFWtiMMfbH5CeWT9EQrc
Lb9l2A7nWdcj89JrRykw6NPel9nYn876pbYeo0Cza1VGvHi/HRWKbGMcKbBJ
PX/LS2xt6uC2aRcK1DLovjqFzd8isNLsFAUOddPTdXD9fAq3qWJ6U+CR1m9v
CrDvuV1Pcz1Lgc8yNt9iYTvqP79TdIECldnKutq4PrUlKx2kL1NgpFtygyc2
/9zkzqtX8XwL/CyeYnfVrJJovk6B0rMJ735if0rbOad1mwJTlVhTXLg/HI/f
fTsRQoGFv9dKWmJv084IMQmnwD5rgnYFe7lwg+urSAocHrKqSsDuGlrU53mI
r3++8WI+dk6x9DrnOAq04dXgbsQOSzRYIh5ToH3PsfPj/8a/6NEolUSBLi7G
3+m4/7dZPHh/OYUCX62amRfDXq6Sc7/xGQXGvzFbLo/dteyPu2YaBb6mWtM0
sHPaaUaRrynwshhPy3bssNyNsmMZFPhYzDL6X545Rh2k7H9PgZ8P62/6l2fb
zpxvfZFNgYn7y9L/5dlyw8c59DwKFEwcZP7Lsy7pr9EOXyiQJfZ037Z/4y/2
eRcQFOiRNndaDTv8J7/JmmIKTPDuOyOD7fRWY+PFEgqcyzhvIfxv/OCjyxrK
8fzrX4qTeH4CjgGd6tUUaOR5h+jH7tZN/RJeR4F5O0WMq/+tz8ryR8M/KdBT
3urjO+zw8fHzRr8pcGDrca5/zwunspUWz1oo8ECKmrrXv/V/qqvG1U6BMeW/
du37N/5VB167LmwtR03pf+NbBvXl9+Lrx/5hzOD9zNn8plB8kAItv9ugYuxw
3vrE8yMUaF3SZ/UA26ln/vKPcXy971E/bLEF4vZsuTeH93/PY88BXE89PqcF
BxcosHpEKiINO3d/xPBeNgV29wtHn8R25rQ85dCo8P3iq93NuF63N1Gv2/JQ
4c/wG+Ph2ILvFWxzeamQ30slAGLnuZ5dcVaYCm/0eu6Jx/0QAR9N1Kygwl3m
u/z1sV0kUKWKOBUmfzge24/zTqia907fWjz+xJyfIrbL1pRZaxUq7B4I6LuN
+zEkfKXg1U1UaBJ3p2cN9tv+YMVkDSr8T0FOLRPn39wjr2N926gwje9Tai3u
72Byx1ffvVT4REl4wyTOg9dWmc0Pjagw7nfRDV/s2swNMzn7qXCRV1t1Euff
aideBY45FQaP0Nz7cN69Kmm8F3qCCm93jQRm4vyplt7//K0DFV5+amEmiT11
qQDVOVPhtE3zyTs4r3RVnk2tcqfCvEzhmwdxvlVG+B5N9aPCarP/3IrweW7M
ernslwgqnP9zSFXpG50QeX99Z0cUFRJO/pOn8XlRi3/GkhZLhTkFOjxpRXTi
WkHz3X1PqDBhi7eiFD5fCm14Od6QRoV8p0aNegvohMaIfv5YIRUGupjqzX6i
E5Z7s38Kf6dCXzVXXT7sy4kbxzTLqLDw1fnwtdl0oshMSOZKDRUyyI/aOz/g
88zHtkCeViqUNg5JssmkE34BFy2kZ6nwXLySgBg+fyuO+PMHzVOh2j4PpaHn
+HxgfeP76BIVvpg1UM5/hutza8j2fC4u6LktrfXQUzoxP/x4vaUQF4zweMJn
n4ivb42mQpW54JtNZbw9Ufg8WVL0ekqNC0bzUF8HPqATzZqlrtYaXLBVjNSR
j8TrJ1TXLK+Dxzt5Z61tOD7PfO8q/GrABcXMylc/DcbPf03uqL8OXNCic92J
RH86oZbCa3LChQvq8/8VFrpCJ/4ICvJ8c+OCSmbanwMu0QkwvOrKAy8u+Dkm
cs7iAj6Pp2x0Ur3KBfdusVnZ6EUnbgqabHGK44IuDa0PTR3xeWooqr66mgtW
HL5XxdmDz9ONveVLdVxwaW5lhMZu7GLtQsUGLhhn/fGr4y78+cSWzJstXPCI
ybLz+Tvx/VlsCNca4IJGPP2bTLXw8yovyyiRSoOaqTqPF+Tx8zyk7ssZTRqc
u4NyznDTiQNKgi/542nQHfx6v/SFRliXer3c+IQGx2wUexLyaYSra+1Lg2Qa
PLmaVa+bSyOup0SmXX9Og8n77OZ8P9CIDxIr0meyaLCskO30/RWNkORb/ba1
ggZt03b85oqlESPD6z+8ZtOg+BR9RzP+eznsjRZxwIEOV92pWTJeSSPKDz1l
ndNZBguOtA1P63IRRJXXPRUaNxSJWRT8aEMlsk7fgJVt3JD79YsabkcKoelo
XyrfyQ1fmJ8vPXqCQmRbA7MbPdywvWPg22sbCpFrxLbTGuaGGXO/aMcOUQhC
/tK15HluWJm+hufHHgpR1eVdcE6UB97Tv31FS5FCDNjY75DaxwMfhD4+FNjF
QactQLHfAR7ouPRNq6eFg0b2rT3w4yAPNEwb4exr4KDxba3Hgix5oNvounrV
Ug6aEzt6ZdKJBy6jGJy3ectBtPqDed8CeOC5D7773fw5aO1+sM3zAw9U39TH
7ybNQWNf3dnhn3jgZhPLCLc1HIS2xRVm5PHA7a9ObDsnxkH28pMHJgkeuH61
8rU3/ByUQn3qcK6KB76mfHuZvkAi34s18g9reWCLVqgwc5ZEu8eXhj/W88BF
zVfvfCdI1NN6+MLfJh6Ys8JPxr2fRAo53KGX+3ggk1y8NtNAonm1LWaPB3ng
no06zp/qSFT6zG7l5xEeWLjnSWRQFYlOR+UksafwfGn6B82+kWg7b6/z2jke
yN0xtB6fmxHfDWElsMADNd7d+n7wC4la/+4ct2PxQKMO52POuSR67Xn6w3UO
D+za9Jkr6COJ/HtjLv3HxYAit0PFNmaTyMS2SK9wGQNWtcdJJH4i0dr6cVo3
gwG/60wELcefH9snWUbjZ0C5GIsTfnkk2ixX3RYozoDlbSFVfYhElITFlBdr
GPDHRNIbTXw/dSIKbqVrGTCgxH7W/9//HynXp5hyDFicIpDPKibRxxZ1njB1
PL7n9dW5ZSQKtDhR+UaTAVVXm6k3l5PIsiwkslqbAZWs9TJmK/D6ZHevEdJj
QHXV0tY11Xj+Dx5ujjJmwHcXRRdlf5CIl1k4+94E37+uud7qehK1XBvL+2nG
gPG/ffp5fuL5njHcK2bFgPyLDSd/4vUuMFqwfuTEgKd/l0kpNZEoHMmty3Nl
wA9+H+9MYttpWfQ0n2JA1PrI/H0znp9suqekNwN+3D6xQr4V7y/H9laSPwN6
NEcalv4hUXKIxCDtOgMasIdivdpJxFr529TtFgO+XvHFVKiDRNkqhyTUQ/B8
1UPHd3aSSCRH6PrDMAZs0HBvKsf22l3duxDBgHnr7m007yKRos2+d4Wx+P0m
Hqx93SS63cu9SuExA56pkrr2GbvTu9g/NJEBY7JnTir2kEiPdaNr/D8GJJPG
ssOw44OA0eFnDPhgiNdjBHtOhP0m5yUD3vtqHLSnl0SHEvNEpV4z4KTEO0YM
dubGi5duZGB/0p/owOb/uLW9N4sBFeS49eT6SOQGp/cYZzOgfD5tyhH7W0Xm
q7e5eD0S9/LHY6+38hQS/cKAVl8b75VjB3QpX/AjGDCks+TsDHbzmcGWliIG
dAqV+7oK17/2wvNdsIQBK8W5zmtiR992fpFazoBCWd73jbEnBNcvZ1Yz4FbT
QCEb7AOP233P1DGg/3vreUfsNPknv+t+MmC1H83w3/cl3Fk2elq/cX1SE1n/
vi9x3CmeGt/CgNKBe1f/+76koLSByfmD90tA/Mke7DWHo7ycuvD7z24NVsG+
2G7WUNLLgMF2qHk59s/TAroqgwy437wpegDf/+a5iuSIEQbUePQy+zN22I27
3LPjDOh77DAM+ff9Cb+hh/U0AzpHLNMwxzaIo//4MseAY/T+UGHslA2F2usX
GVD0mJxpBV5fzttrTwLZDHiFd/xiAHbOt0W3g3QmvHKrn1GH92uFeU71ex4m
zD3j7+mN7dN6XlOcjwk/TbvtZGIrTU9wOoSZ8MfxjeIKuB4CA9667F3JhFny
vrKvcf10Mz0q0sSZcLUlK14JO0G6P8Z3HROyVtaXiOJ6m09PZf1az4RNjk8D
AnB9HtF2dNSVZ0K1iM/JXbh+BUzbVOmqTDh0u1chFtf36ab4KLfNTFg5ExTW
30aiEuejC5VbmNA9Ns5OHfv6lfrih9uZ0MdJz/hdC84f7kilxZ1MqKF93qkf
94/OA9OIE7uYMC/q+JAY9tTLsmMKRkz4Yj5e3/E3iZx/oamcI0zYNxov/wr3
q1Bn+cPuo/h1q6zGz7if84cbtgnYMqHllHldGe53EepIgJMjE06c8E36UUsi
pCzOJ+DFhI2rAzOTKvH9am14u82XCcOG12fcxvkhtkvN3Ok8E15bz5l3+vf9
ieWe2JwreLxNo17CpSSSuOG9wSmYCfVOa80qFJHoe+iV72GhTPj7m83Rdpxn
PjGBp3LCmXBbfT0zksD5nJ6QsfwhE8p1nrbuxnl74Vepbs5/TPjrudCn3Tk4
/5RlDi/PZ8Idx41rp9Nx/mip/NUuYEJOvLOJ2Svc37u04x2/MmHVHynpFy9x
v1iadHwqYUJZ+/Olu5+RSOXGJQ/Hn0zI3mCwRSeRRMG/6m5/GmXCDffnh1bc
J5FmZ6tC1wQTvk5S4FoVRqL24f5y/hkm3Cle7icaSiItKinkuMiELhEN15cC
cT0oKz3h5+GF6uGWa4IDcF7cuPnRQZoXNlKqqdEeJPq7I8HBfwMv/Lj3wUaj
0zgP5j8uj5XnhYxh2tTcSRJt8B50qVThhU/aH53c40Qihp2ZmLYOL/57OWI+
0ZpE9TvW+vFb8ELYXmp6aC/Oi/ncbZ9u8cKovixGgTiJZD7U99QF4vGkLr0t
WYnzwGs0YuQuL7x0x3B5pQh+/vRLD8pE8ELVbRcWivlJpPEr6NG9BF5I665I
9aOQiP3+yKLDR174YfKuSGcfGz3wmszn7+eF+kEFlIoMNmoECQz3IV7oOv7g
0Z90NpIUMjxSNsoLhWVuS4+8YKMXmQljd2Z4YfRxS3ImiY0+TxrKcKh8sOnO
LZmC+2zUdzYxcFKSDw7tMDDZ5MlG2y/uN/9lwQdTK5YYcfJsdM1o7ommJR+M
Kj9uNiLDRsXi/w09sOaDddF8Odul2Ohg7tytg/Z8MIbHevybKBs5L/6XXXqG
D+r5/twUQ2GjcP/5NfnBfPCd3Y+odU0s1HX9WV9SAR9sO9t2ofsOC12ofeJd
/JUPxn66Jth6nYV4pWMWB4r54FVm5deaKyykgQIFNCr4oJvjvcsvfVjoFvuk
VnEjH6w+5ee17jgLyV5WChyY4INPDb145LawkOvZDDn1Dfzw/d2hhISWJTTs
kutcGMQPpwXvemSvXUL85fr3lUL54edNUnoU8SWkolaZ+yCcH9a97Z/ZI7yE
POb+CDg95IeNE5ukEW0JjQTSc2lP+WHk7uC6CwOLaOTFweV7C/hhJR9341zm
Ihob7P1YMsMPtxtLFh7WW0QTZ0R4qhyWw2ee5+jX9y+gt/sqWK6qAlCwWR3s
PvEX9blt1qLNCsBzYtZ3Ruxm0bjwC0OXeQFYt3m+xNBqFs3nSVmXLAnAHT6D
F1JNZxFzOZ9/KJcgPNVtftpx5yxSedf7VVRIEN7+M9M7JTGLzi7Em8gqC8KU
pFulF3/NIErIMpe9DoJQr5oYzz44g5hb/C+8cBaERbbbj502nEEirVNBTDdB
eOgAXXQ9mEEb1DpeVXkKws6GyepEtRlk8CNv4oi/ILxV4neodvkMCpPw9neN
FYSavxfKlKqmkUR6c1RQlSC8pq4uecVsGvnWJ3Zl1ArCnvsL2R77plHZkqP6
73pBuFl4C9tZfxpdPDBcrdgsCJvPuXWd0pxGjaNLzPI+Qbjrv6uuJeLTSE2M
ODo1KAjTJfk/TAhPo0C92y8kRgXhgPorSxm+aaR1n3+v+7Qg9CvhG41jT6Hw
T7VRUXOCsE7zCLNjbgr1tkd35S8Iwkr5jxVqE1NoB8NavYclCNeKjhneGZxC
xnECkJsiBG1WUedWdU+hC6+9T8ZTheC1Q+7jufj1FOJHuBpNCLav9vrhhD+/
OBDTZsktBC987fCrwddL01l35QW/ELwve2Ydz+ppxGjZlG20WgimbNRJYOP5
a45HtrVKCMHjAbsuyxydRva0GbqPpBA0pWskm9hNoxzlnEOP1gnB2br0yoIz
0+ikP5wclBOC4pGdlfTQafRdylwlVEMIqnUrrVhXMo1u2fumVO0Xgv9tLin1
3TuDZkjJ+FsmQvDKn3MpxqYzyPVJSaTOQSHo1IfClK1mkHGz5I1nFkKwa0DB
gXEK7+/hErur1vh13W/HVMJmULKhpJTqSSF420DttGDjDPqi9j323k0hKLDf
q5/wnkV/WavD9ucKwV/fNz8++GkOKebHPiqXFYaiF7oCVjguoK1O3w4K3xWG
p5+V1eweWEJEwkrxyllhaBAv/qwX568isTLE9JgILMoGVzmeFMJk2YjUjwIR
OBFYfot6kUpMtPQUlSmJwky+LLB4nouYCtjw1VZFFNqJfJNzvcRFzMg4Foyr
ikLR6eGeGn8uYv5ke85KdVFoTcgMJ9ziIigzTW8ctEVhzzQfRSqSixDir4ld
2C0K36mLPPyQzkVs3pHrvvG4KESLjk267VyEV0KY6N37ojB5z4TzdUAjKqmy
48aRovDtpliPd/o0QulkXjl/lCh0V625276XRvSo99+IiBGFIlO61C0HaMTR
EjgR+0QUOr3cVZ59lEboT01XPk8Xhe8/jy5s9qERYkY2gcUlojBV0CVtMIlG
nH0z4RBYJgqP+A2+zE+hEbUiQTuNKkTh33CplJBnNCK07f1MRbUorOm1CliX
TiMoZ5c71TeIwpB1SSWy2TRi6AkBurpF4ah9w0hCBY0wpFmtSe0VhQku6xT1
qmlEqtvonEu/KDzjE2nWWksj7LZIvB0cEoWk/IiL4C8a8bP0rOTkpChU9H0W
ZtZBI9TVeOezpkXhvSQLqaYuGhEelVx/blYUhv3ZEX2il0bsO1EVMj8vCo9G
92jaD9GI50VOrnmL+H6OahxvHaER9I2Lu/xZorC5tO3UkXEa4RAeIaVHikIb
K3WbikkaUTAtv8DhiMJy+4uqejM04n/A/bS9
"]], LineBox[CompressedData["
1:eJwVWHk8lN8XHmbMIMYgkhRKlkibRKl7qSwtKqlsyRpFtpRdFFmKEqWyy1IK
bWT7um9CqKRQkUq2kGXesWSZeef3/v7h83zOfc+955znnHufUXbytnAVpFAo
yeSf///PCHeib3IJ2RWX11HA6+OgTJux7SeUrIGu0uILzx4O6joY76ekdAYc
MWrP7O/koAATa6aQUhBIrAk+MdLEQcb10O6fYhx4WrF9//FSDiq+rHOFrXgP
/KetzqsP46DfjiWy44qPwIv7XVHWyhw0+oDvPDb8CHTe+CPdt4KDOIOHn/19
VgRyR+PX+ctyEO3s1P7R3U/AN5aKcNkSDlL104v841YKuuoDVhbN4kjX8PcM
++tzkPVCaMKlFUchRzwc/ipWgvcpATsUo3FEXNFd/ut6JUhjnNKKjMBRRLnA
58/zleDX7FHDiRAcRa24u7uqvQpczOkuG/HDUeJgvWpcTA0Q08r65OKIo+yg
VeOqkwjsNtsg6AJxJPll2kJcGwMXtZTV/A1wZOFtsyHGBQN+HlunE/Vw1Jmz
djj4EwY4Ia9jBjbiqJteY+30+DVwSY13Za3G0YpsZd2e369BhRFKu7gKR3b6
MVLH5eqApGunwLA8jn56WLwzi64DN1epeo9L46i/bdhg06k3AGuv60yi40jl
rPnyx7ffABXFA5qOVBydpr6cUXn/BtTU22jsoeCoMH3550zBemAf0KoCeGw0
vPVSiZx+PQj2kllnvcBGGh8H4m9514O5qxLHMv+x0Vn3fW5iBfVgMvl5p8oM
Gz0WeLr7ak89GF793Uxuio3G7ssoUaQbQNjXfoV2nI3W64Rwg8wagOjLrhwG
h428PvR+m7rUAK5dXB33YJqNnp42LjtX3gC4Tjf3d8+zEc5/nPRnrAE8Ndif
2UWeb/M9SS/HNY3gMOtu4kdhHPlvDtj33boRKBqpx5pJ4mjWxYj6sbERTNSu
nmSswdE2ovCXKa8RJB08U6GshaPAVPGaui1vwY/O0gnLrThabP7mX579Foy0
yS6dNsERZYP3UEZwEwh6ojT96RyORObTmj21W4B/3vU6nWoc6cV0Be9zbAGR
MiLAuh5H7jLLtNRTWoAmX/jN5Q84atx0K7F/vgXscHsoN/CL5MfZ2KM2De8A
8+0DfjeNgyg9/j9M7D6AA9eXgIBDHBTyqyBQcm8bYN1GP+KGOMi37tL1Mb92
MPx1Xda07DTSzkv+9LKkCxRaBm6zsJtFg+buCr/0ekGw5zXri5lzaGmjp0r4
3l7Q6PUsz6FgDhnt9NVaadELDmq7dRqXzKFszWADW49ecEnp93d67RyyE75u
9zWjF0hGfdU69mMOfX5dmv5R8DdI0FTwUl8xj2p1/ilg738DBb9lQ3eS51Gq
/NWVOQ79YI9qiZl4wAKa7W8tNPfqB+uaHyCv8AVkWbxsMzekH8S7WjxriV5A
UvCR8YnUfrDvCYvwTVlA113fe4u39gNBDdf5sGcLKOKpVF3QjgHALzt9Om50
AbkbZ522kB0EZX2uB+2tFlGjxDCbv2YQcCdF60RPLaK1XRtDijcNghKzqbPP
XBdRn0fdDeGDg0DyeuiRcb9FZJc0WFF7ZRDIUnL0FRMW0eEezSWa+CAw2uf0
+gy2iPT9Kkqp74fA0Zd3M66v5qI2/g57364hsNQr39BBnYtOJyCxX0NDIGlf
vqy2Nhfdeth4pkrgD+g0XXewQp+LRn92rPHd9gcUD4ZjVw9zUfp+PPVn7h/w
Y23MGdEwLiJU1kVUBg2DKLnpK7mfuCjlebG2WswwWHLO3aHyCxetg5t+pKQM
g9Q+P9DynYuO2+pt9ykdBll0JqV7kItKk4ynVQeHQXPCOrdn81zkQDi5pxwe
AUnzos93KfHQm69ph73VRsHtFol3Le48lOJ0bHpmyyjwDPlr1OnJQ6fHmXdD
4SgQzQ5y7vbhIVHq5V9x1qNAaZVeWkcgDx3WdvfKuzYKvqtbf4iN5aGfUTrX
uyZHwcaa3MjJAh5a2PTh7e6Kv+A/PaGsp7946H3NVY+W+r+A/arrPrOfhzJN
oMSRT3/B8uP2qm5DPGR48sVx+9G/QFv5xQhjnIdiY+8NBiqMgQgbf6bwAg/J
/nKllkSMgaspAgaC0gTadJ3YJWc2DqaKdFq6IIE2n+G6FB8fB+Y5WzXrdhNI
x3gh3shlHDy1nZHIMyaQLmX2i+elcVDsLuBkeYBABv7jXq/LxsER6z4ZtxME
MrXryTy7egLYAOsNlp4E2qffXc/fMAE8C50vdXgRaL/st9GUnROAb7vTzNyX
QOZt7brIagKw1yibal8kkOWed63SNyYA3mXfn3WJQA5aVUTN4gQI81FfYZZE
ICeRChULkUnwViOjySGZQM5DZfv+yE4Cw8SKP763CXQ6+9kdyc2TIIe1LCji
HoE8lz7SPu0+CVa2gx7zHAJ54QWWixcmQYljkejmBwTybs0LvnllEliOHC5k
5hPILza7sSpzEvQsqdV4+ZBA510zxw49mQRNqxEzrIhA/kbpUoOVk6Bina8D
eEKgAG6qvUTnJLjr7mP6tJRAgV23o/L6JkHxFvpP+2cECi5PLtJnTwJT+Z8/
6S8IFJKc1NbKmwTVrdn7Hr4k0K4Kk8VnQmwQNGnc4k+uRwXGiaFibFDTsiPK
uZhA8PZeZRNpNqg673LQ+RGBDP12m/QosYHlDe/nd8h46hyMugvU2OAxFM5u
ySCQ0SHDc77abCB3UBey7hNojxZIphuwwebyhG2fbhHIZGj7r40n2MB0XneP
djSZr/aOsZiTbJDoV2q77jKBojCvhZ/ObEBtuzusS+b/9f1cmQQfNrj5OvJr
ZBCBdhwSPTASxwZrDeaU+sh62hjkWcObbJCJbSRcyHoHauxyS73DBjJRbevn
zxCojOp3ee8DNrgu+Xb4mCuBNlR0VeTUsAFRo+HZb0fWP/9841wdG6j7Cl2a
siHrdUu841AzG1y1TcqQsSbQI0/DSV4nG4hIqpvfPEagJuvvXMseNnjELaWP
HCXQkPEF0Sd9bHB+9vsySwsCrVF+tNZmkg1KnHfGOR4i88HcveXZDBt8/6Au
SjMn+bTYA4W5bJB3d9XaSpK/4cMXzU8J4oCZlzIcsZ9AGZ0su3JhHDxT3O5k
u49ANXVFZ8QlcPB+7UymqRmBukv3BLjI4OR92FtkakqgufSfUdUrcKBhaZZk
a0KgZfGBt6RW48A7stgu8v/9EiCVfUYdB+5OlbJVe0l+uzwpxrRx4Gho3CRE
Yr8jxtXLtuIg8ZVVkMseAiXt6m3y2oEDyR2Km76Q/fdUM/hLgyEOfD6zZ2xI
3Cq3dEDBFAfqE/s/cIwINCZUgp83x0GPe2d1BomXTJnwWyxx8KbkRIMtidf1
/hZbbYsDNbG6MS0Sm34IkQ9yxMHEGnUdSRKfrpJRb3PDwY+E1+nCJI4uLN2q
5oUDmYwRVWkS56WY7Q73x8Erc8XPG0lcF9l/uDMYB+UOQhmOJO71CrPXisQB
76ZTdD6J+bbLPK/E4OAebXUsl8SrzJ4FdSfgoPbL0ZzT5PkNdPfHbErBQd7H
9e/7SWyzZjAl9j4OEozEqP5k/EGsS7m/snEgIn0eLCPzc5cn91S3EAc3epnB
H0hcPvr8v4RiHFhblRfdIfPb8fXAu4EXOMh64tHkR+Z/qn7o244qHHRvtG92
JOsj9Txi6BZGxiM/lutM1m9jlvz0SCMOOE55ZoFkfc8FmUvcbcfJ91Db+y6S
D9dPDytMduHgsbl7oirJl6Kjl9cZ9+Jg62zgn2iST3/Wl++dHsMBbP+kHEry
bXXYOVfNKRyMnzv5UtSSQHbvVaKd5nHgOcoZLCL52nY2ub5NiAOq+/J7FUk+
i1btG2CIccCBVVbR0yTf94oI0oAUByxe3x3RTfZDVaHP7uJVHPBihq7R7UCg
6Vk15wEVDjizNqx4yolA2sa/Lq/Q5IAua++tq8h+ejBwsC5uGwckBRXM5pP9
dl1Z0/D0YQ64nsotDTtPoEafPoeM4xyg9pPRqEDOVwp2L6LDjgPKHicqvg8k
0AV7YczoDAdYMCq22IYTyD5tcJfiZQ4wsfw+tC2evB9ksg2+veCAGzf2n/6c
R/anywk7iSoOOPZ9ONadnI8FL5ihxhgHKDY3rRQn56G8RVj1y/cc8G2pl2Ik
Oe9oN2y2Jw1yQAsjhGC9IdAXYRm9fcumAFZvH/ligEAsq/cnIldOARmJVdeV
R8j7ovBKQMWaKfDww5rFtHFyHu7llKtunAJVpVsvlc0S6OHlj1upZlPALf+d
V4AIH4Vw47bUBE+Bw3UXfJZv4qNWf+eU4MgpEBq6wbpEl4+Uxg1m9GKnwOxw
pt0hAz6q/zFZXnZ7CjzNGxQtM+EjMXRse+nTKRA38t5H9BQfZUYqG+YOTYGs
m8U2lTf46DW90jzWYhpELyvbLz3HRwzJ4TOW62aAkICGZZgXBRP6IGSy5L9Z
oCnH3V1yVABbbC32vOU7BxwedCv1GgtigydKlq9atQCU0+/JNClQsQIrXp2d
ygJwGd3VWqhIxdytD3imrVsAJ47PJkWvpmKjNqO1ctsWwH2qgc4OdSrGPqnq
In14AdBXalYkbqFiXOfMEuHLC+DTYUO3TjMqJu2TuHtqkFz/UmrXV38q1uHz
Y2zT2AJY6ukYcCGAit3x1brjw1kAWY3/EiSDqZjc+ZbhcYJc/2744O5LVGzV
RXri8LJFsOX515nrcVRsXWj4tx9mi2Bkz2zHqwwqZhjrda6peBEIsWzKneup
mPzzXycSXy6CAvfkv+ONVGz6+2Ejy+pFwK+I8rvQTMa3Ycuy3qZFUJng4BPa
SsXEvv7D/vUvgnwbIHz2GxX7sjZyqZo8F9iIx9yq+0vFPN4kV0df5YL1F4lv
DiwatmecVrA/gQv2x3+ZuCVFw1Ytu3hTMoULaoWObqpbSsPazlq5ZuRwgYaY
qp7cchqmK7VSoqyGC54MK2zKVaZhFMcCpwEOFwybT8xobaZht4kKkd2neADp
HLVZdoSGiak1eN125YGiqtPzHyxoWNShT+1/PHiAe5IpctmShvllj2RcD+SB
s8FXA/pO0DBzI/nNX5J4IGuZ1aUoexpGvxpic6aeB9LfRj894EHDwkpiUHUL
D+xZq8bs9qRh01+SVZifeOC/C5mfXbxoWJ/ak4nnP3jAsL05wc+XhqHmnsvc
WR74Vev7n1cADQsU3/X4hgYBPmq1xI5cpmGTW/ex+jYQwOiogtTBKBp22v74
BR1dAryoKp8vjqZhlqVeoMuIAJOVTb/dYmnYpiNZ7avtCHCtuJZRk0DDRlMo
3LJEAtzXCTAcTKVhtgpvDvRMEeBQ7ScrvSLSfg7nlC0Q4EBnw56Tj8n9keK9
GwJ8EDbmJ3LpCQ274xQ6aCTBB3V/FVdUltCwzw+3hj9axwebvmscZbygYfu2
Piy96MgHVf+KypZU07Cuq1+OHXbng+rR8jkeid2/0bga3nzQK1stPl5Dw66G
OJr+COWDh9c1n7yupWF1r+V/777LBwsy/k/31NGwI9JmMSuz+KAmjh+48g0N
63UJWP8vnw9EevJYUyQmGB1BRS/4QGfTn8cpDTRsu3mClORHPihn7Ih71kTD
mrOqK0Y7+QBLCn3t00zDrPAR+/oePgA25o1aLTRsyEhOKLOfD9SkXFMHSXwh
xfhxwCh5vlcXddLe0TDakP+RIzgf5NzZnnHwPQ27te3Bv3VzfDC/98wnLomV
4z5l0Ph8YPCopu3hB9L/OF95UpACo/yFL2iTWEl22YwtnQLt5DS0Isj1f3Zp
NzWJUKDkkeySVtL/xZt2XrksCgScUlkncv+ULZVVx1ZRIKvjbIjTWxpmZ9eW
UKdMgbfwg7fvN9KwNdF/HDaspUBHx4HQj2S8z7/IMES0KPCYr1/5hnqS/0F+
R2v0KTDo2aGeZozkM6Y5tvoYBd6+v9/QtZLk270jTZesKLBdS3HOq4KGvTof
kNdjS4GrzIqzLryiYU5qb+zuOFFgxI1LdUFlpD3R5oOIDwVqW7AdTz4j7Sfj
StjxFHhXrN351kMapretNP5gIgWWYy+OexTSMHHJztNFSRToIsuDhgU0rKJe
SdHlLgWeSMjl9T8g7VoVN77mk+fBfVSEskj7wpBPLUaBCT923ilPoWGJHWIH
V9RTYOqPDv1TyTTMuWSzRuBb8jxy7T20WzSM6RT+e1MrBZr76qwxuUHam2Us
8r9TYFrX6teFcaT97p4t12dJ/+1L3nSF0TDXrbkz1loC8Eq091YhFxoWnygj
EbZBAF44t9bb04mGlfyJVc/eLAAtcsJWfnKgYbP3vG2H9ARggPz57lsnaVgs
YfDab68A7A8yHfp3nIYVvf16/Zq9AIxrMmkzNaNhE9biKv/dFIAxKbZRolo0
TOpFxM7eZAH4PnjrDeV15PwRmz5OTRWAkqpUFV11GnaptjvOLEMAeneETJxQ
oWGsNQ8nOx8JQO63XQrhCjRs85hR9USdAEwRuB1/TIyGBYQHWijNCEBlt9EQ
3VEqpj4WKhYzJwAbvpxKaPtDxb5ZRzaOLwrAnF+9XW6DVExva/z2akFB+HtF
h3piLxWb+5u2+jhLEJ5yKsAqv1CxYGvEuaYpCAfe0/GEOioWrkNP/ucoCBXn
9bO33KVi0aPJ7a2tgjDicXPW2x1ULOrrYMviJ0HI3HXOYVKPxPXb6tQ7BeHJ
V3fFZHSp2OXM708vfxeE7pS+9TYbSX8WaxJ1hwWhq4vj63cqVOxi1XPTTAEq
vPLOMeugOHmfxX/675wOFf4cqQv/1iOIHVgn8VDsPhWWRT3cHnRREEso1sUO
ONKgh1N50K90Aazl6AOuv74QdKxd/648n4I9j+7rTjMQgseuCOSr5VKw+6+U
K+uAEOz+/SL6XiYFO7si+wLLWAjK6k1fikilYCL96ROPLYRgi/J3G7s4Cmbq
d6e3z0MIelCjpSzPUbCGm3H1hzOFYGCIr/R1XQr2pK4pNyBHCLrrb9+yaQsF
S5lmRGbmCUH9yuYn3zZQMBerqzvHioRg65V3P7U1KBhN6Up5zCshuH9ZWtb8
CgpmVBr6sLZNCD6qP0pIC1Iw7IP3dS0qHdZf2j0TnMNHOkvhklQ6HTL2DFhJ
pvHRQxtWvIAoHX4ZPnX2WQof3fjzNOYLiw7VKdv1JWL5yF6AczliFR2q6p4Q
MvbmI66Of1CHPh2uXkpf3gD4yCdkz9yunXT4cpVen8h2Php4vTTgEaTDuJQx
no0OH70zL/MPN6HDXSpfelZr8NF991lv9WN02DheLWEuzUf66YGnQ33o8PZt
CXP9UQI96TMdHDpPh/u1FaStBgmkpLHc5UgAHZoZ9U9F9xJIuLzSUTWcDlHi
smqJrwT69nHBru0aHaaWue3orSfQAdl337ffoMPPKpzKUIxAmF2aTf4tOnTT
7yjTqCFQ4cgOq+B7dLjmq3B7Gfn+u0gNO6pSSIfiuz0s0ki9PWp28HNiER3K
y5l7Ylnke/PmyiPzxXTozRo5/i+NfA+vrDVvfUmHmTaehmkpBFq6jW8WWEeH
dSm6zegqgWLDPjb1NdBh7AC3KeAKgbhvskwONtPhnqDqdqMIAvUfhntXt5Hx
dpllSAUT6PnZSPj+Bx125YkOpJN6VcfJoUn1Nx0OO0EfngepJ6zB4cgBOixR
nnP0Jd/Plaa8U7p/6VBu+O5YsguBtsOePzcn6FDpDQ0Zke/vmm3V3n9xsn6m
E2eEyPc5php0KXuODv2J1heNtqTeXGXFWFykw5UTYlcbyPf+G5ltN47x6fBy
7YHUbyfI9zhtJlOUzoDbccWOHaReMOW2q7qKMOCFYQ2t66SeaJl6XoLEGDAt
VV4BP0ygD30+tf7SDHhmxwOp+YOkXu4+ZPxRlgFjyu12pZN6pe2TdquGPAO6
f9Q7YEnqV4tm8eNRKxnwq6/DAWVS33RgYz9+KjFg0QmKOZXUP8cr3rnqqzCg
urjxqQVSL30tLRpPVmPAt2tOJtBJbFUYd2FiHQNK3vYcUCP1VXemO89UmwH9
j6d425P6y+6OSfSDTQx4T/GvXhGp134mqIoTOgz42jnUbAmJHaKFblvpMaDT
JeNHkaS++x06oPBiBwPuXqF/SpzETv5v8sQBA/bVb/EtIfXhgEeulrsRA/7+
jzbg8n896hz5sm4vuV7Qvfr/enPYxsFgpRkDBl2lL/xfr561APUBBxhQv/hC
zv/16pjZqgOfDzFg9Izu86Uk9jLktWsdZUC13680dUk8qddjG3OcASOkLcTO
kdhnY3X/b2sGfP5w/5FKEnPU7nsYnGTAZQ1fZ+XJ8/krBk3dcWDAXXbL5pJI
PCtrFYI7k/aN8odWkfEFMrdRD7gxoCe9dxqReF5I9lrBWQYMk7H5fZHMTzBv
WkrAiwHb8z2X7Cbzx51uv2/ry4CPR9juKmR+w8eery73Z8ApxqsJeVKfUgaS
iliBDDhhE3tTlawPtf1QVUM4A0b12HNCyXpGtWgbKV1mwMqHf1PekvWm14m3
BEcz4M+yu3JqpD4Vffaua8N1BtTip4epHCH138Mix/gbDDg5X65fR/JJPDtu
ZOAWA870hl33J/nGumEyf+8eAy6x9ciRtSLQrauqkdPpDOjnJbiNTurRpeFC
IoeyGfBX4wZRUVKPLjv3Ro5WyIBlO8vo5iTfV+0Hel4vyfyxcwLryX6ZeO3B
S3zFgLEmLUGqnqRe07tbV1rFgPHrmLb3yH5zUMUP4BgDGk7a2jwj9WiuwANH
/w8M2PlGLqCQ1Jt+gR9Vb7cxoGjaXGFCJIF2Ty7+LWtnwAU/g8ErUSQ/eiwv
/utiwHnHNKlsUo+qVdCvBQ8x4IflPwRTUgk0p73lcNoIA4o701z+3SdQU/4p
mZoxBrR4YtV/JpPkS3JFFo/DgHzNzSgkn+xn0UGXVbMMqFNm2yP/iEBLIiXX
gXkGTNoqeK+J1K89/3ZOnuIy4Fja146op+S89Dr7MoLPgNp6lt6HXhIodPBO
UI6gMMxr7VryiJxvB+3e7KoTEoYfc5uXrH1O5qd9ktovLAzVD81eSCO/nzBT
aKaKCcMOLG+fWCmBajHTRBUJYXhfY0V8QDGBbmy7cHSvlDDcRsnR+fGYQBvX
tv64KicMl67jv0sl9TUlfSG3cIUw5Nd5Vo4VEOiTlJp70yphKH9sqbTB/3+v
pERwRNYKw2VDZmItOQQq+76JkbBJGL47oaz4gMzH9lu3NybvE4YPJQwl910j
88u3u5IVKgzdGinYOXcCZcfLj1AjhGFM1o7EH64kX2W+mbtfEYazmVXfjZ3J
+ah1VH5TvDCMuzYwK2RPIHUbs2d1qcKwr+PPLt2jBBIr2/pr8LkwLE+/9OCU
ATlvzjJ3aI0Iw9M6J691i5DxzL7LvjkmDHl2ovEhdAIlRMbRZybJ89w+tUqW
SiDju7TP/80Kw6oskyV6XB6qaFhwP0QTgVrONuIbJngoXenPHT9FEXj15LTf
aBsPuXxBnIpjIpBFe6CekcRDrN8tt/utRGB5/qqKygQeqv7bqce0E4G5tvtb
2uJ4SEpgLNzZSQTy3NYET0TyENKUW8L0FoGvByWUhn15SD7SZ41zrAgs067b
33mYhz5pKluKV4vAiogzDzNEeShUV+vftloR+GO3uoUYnYfUDbfdd3otAncu
b02/IMBD4ccP9r56KwItarhyenNcpBUZ5OnUIQIpapdaQge5KPbLp6hX4yIw
3F+VRkdctCvycpmjkijUG3CpUPTion8G6Y6ha0ThP4ExCb47Fz2dKxNPVRWF
7KMyjl3OXLTGZ8T1vZYofHaLMRNuzUXCpw7LbtMXhfkJnbTEPVzUbrAqQMxC
FAa8HO6oWc5F7nOVeq+uiEJfywvLTmOL6JY3Xi32RxQWNsmq6vAX0FeQLuwx
KgpFgt8MHplbQAosk2PN46Kwzy1f5Sy+gAqfpk9ET4vCc3uvqcf3L6Aa3ESZ
L7AEaiirRse+XUBD5zOv4gpLYH7Op/CIxAW0PXD/kS8WS+A/+T2p5+QWUF9E
/lBW7RL48uKHwBaFefTXtdKlLkYMXup6O1669B9in5NifHAUh7uvThZtzp9G
p46MeC26iMPxWk12Y9o0atXBvmi4i0P+y893rG9NoyeL5wqueonDjb0um4Mv
TSP3uOa9MEQcZgtFfHpkPY168yKiXqSIQ+9vZ168F59GH79PCNx/Kw6Fjm1V
C7kwhXahhjNNLeJwIkXCdspjCj3JTf80+0EcGon8yvBwmkLxZ/blHO0Qh/5Q
4Y7doSlk/C8fiv8Wh+d7YvcZaUyhWqmTlyIWxKHiP7WC9T84qMTsHff0eiYU
sghpUDTmIM2fT89Fb2TCvwv8CNyAgx763fn5YAsTWj66trJxCwflpjlivfpM
SAlsuxCozEG3x/9dsTFmwlxfWz0hHo5Ck1SWmJ9iwqnO/vO/XuJofq1oqKcT
E25w2y3Dfoyji1WTY/GuTJglZaJMf4Ajn/6q1rceTPhMuOXi7iQcOW89cssw
kAkzE50yl3jhqLdZl+oQwoSR/Yuyh11xZGev4B8ezoRfx+QoGXY4Oh7z51h1
FBMu5PeYHN2Po31dYcu3JjHhNapbjpUGjt6ec44/msKE49fs80WUcbRH0GzR
N5UJt75Xte+Sw9HrO9qeN+8z4ccP894dLBzt0lz6oySD/D6VdlBSBEfVaP7g
h2wmfMf9aFklgCM9y1+1fx8wocEdY7vVi2z0crh+g2ghEx7jyX74NcNGm8KK
stWLmPDBTabmYw4blUjelDQpZsJbJcKBxTgbrSu4cNn1KRPqTog3mpL2wu22
U1deMOG0b4Laxyk2UvkIXXLLmdBq6qfTN9JfjrNqJ1bJhGFRZ3HtOTZaNbfE
+FcNEzIHxZe/WmAjOeWvagpvmFBMYDu+loKj22U1d7c3MiExOxxACOJIal+u
iHUzE26u9O38I4QjsfPn/t7+yIS15suLBpbgiF9PLZXoYcLw4AuH3Ml8DLlv
1KXOMOHTYzezd23B0aRkoYnrHBNWvI5uY27D0VzVSuu3i0wYYCBzdWQ7jkTE
l4ReE5SAcRvXXq41wpHWs8HX0iwJeDnXW/2PBY7Oz98/qKIpAf/TCLmpf4Hk
R67kqavaEjCVE5PzMghHUftjfYY3ScDcHPmC7eE4upNxIfmJngTUXFNZ5BaD
oyrDw106xhJQx0/oovF9HFHihVz3OkrAbQUdNgp15P5bQi8WukjAltUiz8ze
kvH2cGJE3CXg9vt5By+/x9Ea7d6iD14ScHdZop3MVxwZf65iHwuVgKEp/Vjd
GI4S5H1CT6dKwN6U7cv15DlI/nF3cswHCXiBf3joRBgH+bVn9pW2SUAqtf/y
+Ssc1LzotOlbuwRcmRHDT43joMADf1vVuyVgvmHaycXbHPR1fFGkZUgCqmb1
zGmUcpC2LGbFGZGA2Q/yBuLLOOjqrqhC+XEJ+EXyzsbpag7SvSG212NKAgbr
fM391cRBia/akpNnJaDw2ZP5jh85aPBXSl/1vATsGAvH/nZykIGw9aYBrgS0
Ci38HdbDQfvuMiGdwoI1ifFJ/X0cdPGJj9t9ARbsOzVQbkbac7HPidpUFkxU
U3rxivx+YfjOj+N0cj17n8hjcr9H+oohhWIs2PpcSnyihIOEv28oN13OghJq
9ObvoRykM5n0o0eeBb30/U5UXeQgB+o0zVeBBUMyE0SzfTioQrPi6D1FFhSP
O1sa4cJBbqEQH1nLgu96uU9uH+CgxpVHtK5tZsGLgTVDtFUcdMXBL/fDfhY0
fvLkcH0DjqYJhftXDrLg/XAlXAjD0emMt0n6h1gw/PIau0NVZD93K0TmW7Dg
svN7/s6XkPW1fHsqzJoFj8KBXc/u4ijbRGHlejcWNHNNf99xjrQPNS7td2fB
gORlsg/dSX5F+YrdO0vuVzKvH+OMI7fXjYs0LxZMe1Ln5mGNI+0dvt09/iwo
32t7/9de0l/Xis+3LrKges+BvLWGpL/AxmbTQBb0YD02DDfA0ezLFZUvQ1hw
UkL4hifZH/9pN6Zev8yCD0Vtyz1Wk/4++NwwimJBKJf6+/wq0p/Hipi5aBbs