-
Notifications
You must be signed in to change notification settings - Fork 4
/
SOC.nb
785 lines (772 loc) · 27.6 KB
/
SOC.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 28109, 776]
NotebookOptionsPosition[ 27619, 754]
NotebookOutlinePosition[ 27975, 770]
CellTagsIndexPosition[ 27932, 767]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"k1f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"s", "-", "\[Pi]"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"5", "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k2f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Pi]", "-", "s"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"3", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"8", "\[Pi]"}], "-",
RowBox[{"2", "s"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"5", "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"H", "[",
RowBox[{
"t1_", ",", "t2_", ",", "t3_", ",", "t4_", ",", "k1_", ",", "k2_"}], "]"}],
":=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t3"}],
",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t3"}],
",", "t2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t4"}], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]], " ", "t1"}], ",", "0", ",",
"0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ",
"t4"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t3"}],
",", "t2", ",", "0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t3"}],
",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t4"}], ",",
"t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t4"}], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}], ",", "0"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t3"}], ",",
"t2", ",", "0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t3"}], ",",
"0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",", "0",
",", "0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t4"}], ",",
"t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ",
"t4"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t3"}],
",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t3"}], ",",
"t2", ",", "0", ",", "t1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t4"}],
",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",", "0",
",", "0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t4"}],
",", "t1", ",", "0"}], "}"}]}], "}"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t1", "=", "1.0"}], ",",
RowBox[{"t2", "=", "2.0"}], ",",
RowBox[{"t3", "=", "1.0"}], ",",
RowBox[{"t4", "=", "1.0"}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Eigenvalues", "[",
RowBox[{"N", "[",
RowBox[{"H", "[",
RowBox[{"t1", ",", "t2", ",", "t3", ",", "t4", ",",
RowBox[{"k1f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}], ",",
RowBox[{"k2f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}]}], "]"}], "]"}], "]"}], "]"}],
",",
RowBox[{"{",
RowBox[{"s", ",", "0", ",", "5"}], "}"}]}], "]"}]}], "]"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.657615762703267*^9, 3.657615859074904*^9}, {
3.6576159143527193`*^9, 3.6576159278839912`*^9}, {3.6576165709331417`*^9,
3.657616605373621*^9}, {3.657616773187023*^9, 3.657616807401143*^9}}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxd2Hk4VnkfBvDHnsfyLNZKRFlaVO80JMn5xZRRkqQpLYMsLUhUM1MqQqMU
SRspoUULKllLnWOthMRIjC1biEqWkOVtOu/32/XO+edc599zfp/r3PetucXL
1lWUw+GEi3A4/9wvHdoi+R8XX9M74/9cKozvanfHdxpZ1FUdJ8H9hyqM9FD0
M485RdRi4npQvUuZ8c71O9HlU0HNO+ZeZPJGiZlz9fTL1ORqSlrc4lrcC0Wm
1XqbWoNRI1UlzdM8m6vAnJ/055Q4x2aqYfBDbdCwkFnok3lHrLiNCi83jpu2
S8jkVUXbeOl2UvVJxlaV84TMf06MmapadlM2Rv4xw3JCxqLNuGHeuo+U32Hj
wsivz2/105f2dfVQZU3v/9pwTMj4jhybn72/l1KyV33VeELISAnat9vN7KeU
a3fktCgIGYkSCQuZRwPU2WU+z3sWC5gvpUkeEd6D1CFZ0wRGhM+0rkueqK4+
TM1JuOwZNUeOWXJ0p+fTpC+UgWfb3lJfLnN2LFPa3GGU2lRbM2DOm8BsVMuz
qu0do1qtQ1pM2yUZWWZWl9ZaDpE3D0i1CJNkXA3i++1nixDp5BlmurGSzO+H
/rCd2i9CAt8XOSg6TWCOdJ6uKC0VJTsSph/x+MhlrGbybsheECPeu8Mf6AfI
MaFJhoyVkziZpZW3/103jylac2Vkz0IJcuqCctkbJQHDlHidmC0mSfovZfww
q1LApOw4TIrrJEl6x1gq10DIqK+gjHamSpGyeocFG/hCxnx8U+DlAxPIn9Pe
bX00U8i4vKI/Za6VJkZmo8vVQ4WM6eGANKepXHJXc27Ekj4hE+HV81D2LZfM
Cnhm8dNxBabJ/1rb5ccyZKGl4dFyZ0XmnWuWS26wLLlz0l7f4ycl5qOnUKrE
SY7UHzzle81ImUm2fD7ipi9P5rfVVS/nqjBt2+YZivXLk277+NaCmyrMpNs1
p4NLeMQk3cigZkSFCXT0iS9ZwSc15ttc676et88jE0NXZPGJvmrn3OWHlRm9
h+ejiqYLSO7G1RaNrYqMgXPBKsExATGVXu44zUmBYS4qqRb3C4j+6gNViv4C
Ro9RCrHeKCSFjz819snzmJUSXVPKHwtJ/JZnaru/vu+Pf7fkPZupQCKOjP7s
+E6K8boYqnDspAJZtEy9QdVainncqzM0Pq5A9i4/4hbz9fuBj4FvPnjoI0Nx
u5VnPw99NFr+cV/nKQ99mPtEGw748NCHcGLc1E5VHvqwvXnKrEOdhz62Nch1
6rzgoQ8RyWSd8GA++uCm/t2WpytAH8tmyJ98e0mAPnoOBu8pyRGgjzCXimMX
WvjoY0+sVVCQG++7j/oLr/cvl0UfK6brxQoXSKOPe05/vWtQl0QfSVl5dhlZ
YugjbVW979o4MfShtNdadbdQAn2k55RHmul89+HMdZgV8Nt3H/wdbwrF2sTR
h01FhIt9sBj68Gy9tO9Ruhj66DJSerwqSQJ9XLdazylfOgF9XAguLJINkEEf
4XSw2kZ/efSx2GOZrmcCH31UT72hsum6AH049Dd6SZ8RoA/eAlENDa4AfTTn
KSVcD+Sjj6W3V4TXcfjoIySn36Z4JQ99lL2NWp+yhoc+WvPTZA7W89DH6Efm
/c/6fPQREHo1WXMxH324R6udtxPy0Yd/etz5I3P46CNi1wSHxJl89LGq9VJq
9T159LFk96nx0FAZ9GGjETIl9LYU+uArJPXe8hNHH3/SzhlPikXRh4lf0Klb
fEn00fKgMOtEogT66J257/983Bz7BoQGH4Wpo3JqzWM0+BioeeuRdPILDT7C
r5TemLvjMw0+zA42yKTo9dLgw+/5W+N1xt00+Ch+sCj9ukIrDT7UDDs81Fe9
psGHXe/cssGGRBp8aB5wvCTKT6LBR/FZp0/um+Jo8DGx41B00tkyGny8H27a
1m3fRIOPsGiTlilXP9Dg40l0kqlCyAANPlJ2+W6gj43S4EPKKKdlbbwI+tCe
E1npPl8UfUw8kLGmyFIEfcT80O9Z+QcHfWzgBvVPVOOgj4376hae2S6CPtod
h6oOuoqij1mTb7QN3BVBH6tpmzDbvWM0+PiBu6d5k9sgDT7MmxZYNhr00OCD
LNQ3LA9rpcHHjD82TzkUVUGDjyB+bMf2/Yk0+IjlLkuJjUmhwYf/RZH6HrkX
NPgY43NDJ12po8GHtPPnwnmDbTT4mFapXyel85EGH4/mxEl37+yjwUf+ZX2/
mY8HafBR8oROHpk7QoOPGEfJkTtJYzT4MNutycT3jtPgI2+//abm6jEafMif
u7nYo2yIBh8fq7T8lW16aPBx/c4ptSGfdzT4iIg9Xu09c4AGHzlL2i9k5o/S
4OOh+/3VaYu++1hkOiMpbAUHfeSe8/anX4/T4GOLhtjXdMVBH/e3rdToKovN
Bh+Ox3W38e9nZ4OP0kSZN8VB6Sbgg3F/ELprU6QJ+Jiaq25W0nfPBHw0JLf3
CbwumoAPoZayS59Gejb4+MWn+Zn0nSfZ4GN5ON/txaqabPDBrakylqOvoI+0
7DZXtzmX0EeC9o/VT0LS0YffPduIuPJI9LFVJ0X7wSvmu4/xvaLaUa/Qh8gd
t+5XQ63oQ6+KW+C5tYcGH2Ll5vedQz7T4GNuv7bI5qcjNPhYEljdUblqnAYf
KdJr+sVVvvtQ0U42KMkZp8HHHasdntKRX2jw8eXv1SGLg/pp8KG5ojMo/MV7
9FHQ3JTpuLYZfazIrzIKW/YSfXAG1WqqB+5ng48xZUNd1XXh6OPHrQs7/Wvj
0UfF4X7LwqJk9HHoh+abE8oY9DEpPqT39uZ89LHFPXpGi34B+hjVdLIYrMhF
H5OJ06ETPhno457ruDU3PBx9WP9yfvRptB8FPvbrrVRwSHWhwEed1ryB0Pl9
puDj5TRtLwv/3yjwoX2p/vzo2A0KfMxbeE4+h3sTfdyxNB476Z6BPmy2xE5f
/ikPfRh+rhMZjmtHHwFiDwzdXL56/p+PKxLttgYfhmnw0dERoOzw8ruPtvyh
b/8L8MGpLU+TiPrugx/rpGoncR193DrTt/Wzaj76KPDuOzNwIw992ArzMvTm
FaKPgIcbrGfcLUAfnP1hSVMjj5mAD5PHvwzf1880AR9mOaa+tvVZJuBDlfVB
gQ/nU5WWyyMPU+Bj49YmHa2f4inwcVNtwdOOrQEU+Lg8cbvY7uSnFPjgmu80
jq2op8DHdvHZtz/PfkeBj4gyG4uwR70U+Gha4f+r0uwhCnzEcxxm1oWPUuAj
1W74ucBtnPqXDwI+FFgfFPhIZH1Q4GOc9UGBDy3WBwU+nrA+KPCxlvVBgY99
f+1Qeba02AR8JLM+KPAxi/VBgY/nrv0+o3k3KPCRWHvtwozIdAp8nLXT4I0m
51DgQ2Otnk+ZagkFPlpd0ormdVRS4OMlp9FpQdRrCnw8rnyvqFNWSYGPNVv2
SRorlKMPX3GlRT7LnqIP17juUIf8KxT4KLALHN3yPht9jFSddC/bXoY+Ovyf
H786XkuBj+Cz+h/mH3pBgY/Op950e2AlBT4qJ5/OMkh/R4GP4FTtyZIpfRT4
IG3KxxZTXyjwkTWq+Fb9zTgFPi7S33xQ/8pX1L/yFQU+pP7+lq8o8BHB5isK
fPzM5isKfJxh8xUFPgrYfEWBD3U2X1Hgw7rvW76iwIc2m6/QxxeBJ88rJhV9
NP6cxo3bWIc+RG7v5NsVdKKPRX5rK0439KKPsuPM0pX7htCH4gZXX4lbY+jD
3u3crLwjIgR8ZOxcY/XyuCgBHzlZWldEz33NTf/zEZX/RPT3fRwCPlzZfIU+
trL5ioCPRjZfEfBhxOYrAj4s2HyFPvTYfIU+lrD5Cn2Ys/mKAh8GbL5CH2Fs
vkIfn+v3pll1pqGPhitD21tjKtCH4183GrIr3qAP7VKzmGvtHejjgDA7boFG
D/oY35NQMV29H33IaYknBqweQh/P410+Htgzgj4ES272jzwYQx/Gpg35mb3j
6CMyXaYls3QMffgFMbJavw6hj0QTiuo814M+CswX5VxL7kUfixM+NMm6jqCP
0S/y6w6Xcgj4aBPdVX87mkPAh5Nj7e/GNRwCPlbpiH/SDOIQ8CGt9S1fEfDR
zvZzAj5y2H5OwEc9288J+DBl+zkBH9PZfk7Axxq2nxPwcYLt5wR8cNl+TsCH
KNvPCfiwYPs5AR+l6bEvJ6YKCPgI2pSwXxjFJ+AjSjLYe4OnPAEfMut2bU7T
lSHg4+rS5qJCuwkEfByOk6YW90oQ8DHpufnE9YvE0UfY5Ja+F+li6OPmrIC5
LuPi6CPFv2p3rZ4k+ljP9nP0Icf2c/Rhy/Zz9OHO9nP00cf2cwI+cth+TsBH
CNvPCfg4yvZz8q9+TsDHS7afE/DhQnfHHPp6rsCHc1uBQ8tDPgEfe7tKpX5K
4BHwEShLFc9ukyPgo3343HhmoCzB/epg7rtYZVkCPn6b0hw+Gi9LwMeFT5aj
1o/kCPhYayl6/nWjPAEfj+LyD3hX8gj4COh+lFK7jUfAh5iRO+nIlyPgQ6vL
MXXvXS4BH6Umtj/aNUgS8MHtuTw7sFaUgA/7WxIyc4+JoI9h+o9zL3eLoY+w
pl/djnqIow+TDSq3p22QQB9exr7/9HP0cZ/dd9FHPLvvog8zdt9FH4Tdd9GH
Grvvoo82dt9FHwXsvos+TrL7LvpoYPdd9GHF7rvow2eNdGH3+Hcf98JNj+qY
CtGH7tsFGQkyQvQRHZ3vp+csQB9395b5x3nx0cfUk44PjWzl0UfpDl1N3xgZ
9NExLfiu0mJp9OG85bJvjbcU+iBn4wNbq7/7GDP7tu+iDw6776KPE+y+iz4O
svsu+vBg9130MYPdd9FHJLvvoo9P7L6LPjLZfRd9NLD7LvrYesFvku6PQvTx
JHjnm6ECIfpYZrMpa6+9Avo4WP5kz7UvCuij8cXq/ou5iuhjqpFG0ubjSuhD
y7zglZqrMvqwud1x/Z66CvpoGIzr2pysgj4sDPKZphEV9DE7puuKK62CPmx+
k9+3L0kZfZyfL31q0FAJfXD+TIxKuaiAPrRXFpYvixWgDz0xYbmJHQ997PqU
8zg+VwZ95J5cH1b+egL6EDHLqmjgSKGPj8aB33z8F9N85Xk=
"], {}],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 5}, {0., 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.657616630624943*^9, 3.657616680141459*^9},
3.657616816749673*^9, {3.657616871921791*^9, 3.6576169025419283`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "t3",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}], "]"}]}], ")"}]}], ",",
"0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{" ",
RowBox[{"\[ImaginaryI]", " ", "k2"}]}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", "*", "t3",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}], "]"}]}], ")"}]}], ",",
"t2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "t4", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", "*", "k2"}], "]"}]}], ")"}]}], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]], " ", "t1"}], ",", "0", ",", "0",
",",
RowBox[{"\[ImaginaryI]", "*", "t4", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}], "]"}]}], ")"}]}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[ImaginaryI]", "*", "t3",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}], "]"}]}], ")"}]}], ",",
"t2", ",", "0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "t3",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}], "]"}]}], ")"}]}], ",",
"0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"\[ImaginaryI]", "*", "t4", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", "*", "k2"}], "]"}]}], ")"}]}], ",", "t1",
",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "t4", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", "*", "k1"}], "]"}]}], ")"}]}], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}], ",", "0"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", "*", "t3", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", "*", "k2"}], "]"}]}], ")"}]}], ",", "t2",
",", "0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "t3", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", "*", "k1"}], "]"}]}], ")"}]}], ",", "0"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",", "0",
",", "0", ",",
RowBox[{"\[ImaginaryI]", "*", "t4", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", "*", "k1"}], "]"}]}], ")"}]}], ",", "t1",
",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "t4", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}], "]"}]}], ")"}]}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "t3", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}], "]"}]}], ")"}]}], ",",
"0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", "*", "t3", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", "*", "k1"}], "]"}]}], ")"}]}], ",", "t2",
",", "0", ",", "t1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "t4", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k1"}], "]"}]}], ")"}]}], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",", "0",
",", "0", ",",
RowBox[{"\[ImaginaryI]", "*", "t4", "*",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], "*", "k2"}], "]"}]}], ")"}]}], ",",
"t1", ",", "0"}], "}"}]}], "}"}]], "Input",
CellChangeTimes->{{3.657615944272606*^9, 3.657615951072452*^9}, {
3.6576159878396053`*^9, 3.657615988726562*^9}, {3.657616034904067*^9,
3.6576162289942102`*^9}, {3.657616263628172*^9, 3.657616328388485*^9}, {
3.657616383250737*^9, 3.6576165528897467`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t3"}],
",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t3"}],
",", "t2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t4"}], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]], " ", "t1"}], ",", "0", ",", "0",
",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ",
"t4"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t3"}],
",", "t2", ",", "0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t3"}],
",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t4"}], ",",
"t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t4"}], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}], ",", "0"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]]}], ")"}], " ", "t3"}], ",",
"t2", ",", "0", ",", "t1", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t3"}], ",",
"0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",", "0",
",", "0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t4"}], ",",
"t1", ",", "0", ",", "t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ",
"t4"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t3"}],
",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]]}], ")"}], " ", "t3"}], ",",
"t2", ",", "0", ",", "t1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t2", ",",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]]}], ")"}], " ", "t4"}],
",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",", "0",
",", "0", ",",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]]}], ")"}], " ", "t4"}],
",", "t1", ",", "0"}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.657616554532391*^9, 3.6576166308947783`*^9,
3.6576168169352818`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"Eigenvalues", "[",
RowBox[{"N", "[",
RowBox[{"H", "[",
RowBox[{"t1", ",", "t2", ",", "t3", ",", "t4", ",",
RowBox[{"k1f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}], ",",
RowBox[{"k2f", "[",
RowBox[{"s", "*", "\[Pi]"}], "]"}]}], "]"}], "]"}], "]"}]], "Input"]
},
WindowSize->{808, 589},
WindowMargins->{{Automatic, -30}, {40, Automatic}},
FrontEndVersion->"10.1 for Mac OS X x86 (32-bit, 64-bit Kernel) (March 23, \
2015)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 9165, 270, 376, "Input"],
Cell[9748, 294, 6124, 111, 237, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[15909, 410, 5706, 166, 189, "Input"],
Cell[21618, 578, 5664, 163, 189, "Output"]
}, Open ]],
Cell[27297, 744, 318, 8, 28, "Input"]
}
]
*)
(* End of internal cache information *)