-
Notifications
You must be signed in to change notification settings - Fork 4
/
edgestate1.nb
2156 lines (2118 loc) · 95 KB
/
edgestate1.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 97092, 2146]
NotebookOptionsPosition[ 95892, 2100]
NotebookOutlinePosition[ 96249, 2116]
CellTagsIndexPosition[ 96206, 2113]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"mat", "=",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"\[Epsilon]", "^", "2"}], "+",
RowBox[{"2", " ", "t1", " ", "\[Epsilon]", " ", "\[Xi]"}]}],
RowBox[{"t1", " ", "t2", " ", "\[Xi]"}]], ",",
FractionBox[
RowBox[{"\[Epsilon]", "+",
RowBox[{"t1", " ", "\[Xi]"}]}],
RowBox[{"t1", " ", "\[Xi]"}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"\[Epsilon]", "+",
RowBox[{"t1", " ", "\[Xi]"}]}],
RowBox[{
RowBox[{"-", "t1"}], " ", "\[Xi]"}]], ",",
RowBox[{"-",
FractionBox["t2",
RowBox[{"t1", " ", "\[Xi]"}]]}]}], "}"}]}], "}"}], "/.",
RowBox[{"{",
RowBox[{"\[Xi]", "\[Rule]", " ",
FractionBox[
RowBox[{
RowBox[{"2", " ", "t1", " ", "t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}], "-",
RowBox[{"2", " ", "t1", " ", "\[Epsilon]"}]}],
RowBox[{
RowBox[{"\[Epsilon]", "^", "2"}], "-",
RowBox[{"t2", "^", "2"}]}]]}], "}"}]}], "//", "Simplify"}]}]], "Input",\
CellChangeTimes->{{3.638517128637165*^9, 3.638517297270706*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"\[Epsilon]", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ",
SuperscriptBox["t1", "2"], " ", "\[Epsilon]"}], "-",
RowBox[{
SuperscriptBox["t2", "2"], " ", "\[Epsilon]"}], "+",
SuperscriptBox["\[Epsilon]", "3"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}],
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]], ",",
FractionBox[
RowBox[{
RowBox[{"\[Epsilon]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["t1", "2"]}], "+",
SuperscriptBox["t2", "2"], "-",
SuperscriptBox["\[Epsilon]", "2"]}], ")"}]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}],
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ",
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["t1", "2"], " ", "\[Epsilon]"}], "-",
RowBox[{
SuperscriptBox["t2", "2"], " ", "\[Epsilon]"}], "+",
SuperscriptBox["\[Epsilon]", "3"], "+",
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}],
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ",
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]], ",",
FractionBox[
RowBox[{"t2", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "2"], "-",
SuperscriptBox["\[Epsilon]", "2"]}], ")"}]}],
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{{3.638517289585937*^9, 3.638517297847479*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Eigenvalues", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"\[Epsilon]", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ",
SuperscriptBox["t1", "2"], " ", "\[Epsilon]"}], "-",
RowBox[{
SuperscriptBox["t2", "2"], " ", "\[Epsilon]"}], "+",
SuperscriptBox["\[Epsilon]", "3"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}],
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]], ",",
FractionBox[
RowBox[{
RowBox[{"\[Epsilon]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["t1", "2"]}], "+",
SuperscriptBox["t2", "2"], "-",
SuperscriptBox["\[Epsilon]", "2"]}], ")"}]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}],
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ",
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["t1", "2"], " ", "\[Epsilon]"}], "-",
RowBox[{
SuperscriptBox["t2", "2"], " ", "\[Epsilon]"}], "+",
SuperscriptBox["\[Epsilon]", "3"], "+",
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}],
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ",
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]], ",",
FractionBox[
RowBox[{"t2", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "2"], "-",
SuperscriptBox["\[Epsilon]", "2"]}], ")"}]}],
RowBox[{"2", " ",
SuperscriptBox["t1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]]}], "}"}]}], "}"}],
"]"}], "//", "Simplify"}]], "Input",
CellChangeTimes->{{3.6385172994920397`*^9, 3.638517313144236*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]],
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}], "-",
SqrtBox[
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["t1", "4"], " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}]]}], ")"}]}],
",",
RowBox[{
FractionBox["1",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]],
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}], "+",
SqrtBox[
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["t1", "4"], " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}]]}], ")"}]}]}],
"}"}]], "Output",
CellChangeTimes->{{3.638517308013175*^9, 3.638517314110606*^9}}]
}, Open ]],
Cell[BoxData["\[IndentingNewLine]"], "Input",
CellChangeTimes->{3.638517308257946*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t1", "=", "1"}], ",",
RowBox[{"t2", "=", ".5"}], ",",
RowBox[{"\[Epsilon]", "=",
RowBox[{"-", "1"}]}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]],
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}], "-",
SqrtBox[
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["t1", "4"], " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}]]}], ")"}]}],
",",
RowBox[{
FractionBox["1",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]],
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}], "+",
SqrtBox[
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["t1", "4"], " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}]]}], ")"}]}],
",", "1", ",",
RowBox[{"-", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"-", "\[Pi]"}], ",", "\[Pi]"}], "}"}]}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.638517321666951*^9, 3.638517352711561*^9}, {
3.638517439481579*^9, 3.638517489159639*^9}, {3.638517845342407*^9,
3.638517906281682*^9}, {3.638520804032405*^9, 3.6385208041323843`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw12Xk0F9//OHDr6zXKni2vYUiUSFF9SmEmLahokxIJFS2SveyipGyRkC1b
9iwRktybfctOEhKyvWUJ2cL3Ouf3++t1Hue8zsydO/c+l7mSpvfO3WBhYmKK
YmZiWv89ocV9ZFmSAwrPmv4UHWFAwVvuU5g4B9QtWFVhIPf5TEULiXJANd+6
0zhyRorJya1CHLCyqnqzOPL96pYFRX4OWK07FyGBrD5yJInk5oCMtNOtUsjc
2Pvz2hs44IvG9tJtyN+2yTAb0DjgvOHjW/LIiRphmTdZOKCgk0GVIvI9c8zQ
YRWDBb263fuRDz5x5Hi0hMGslrspasi05LH8oL8Y/LEzXu44cnOlwfXXfzC4
/9LvGzrIUUP1fG8nMFimdeLiReSbNDVQNIbBtGe5a8bIq8ckRDv6Mcg8Hmzv
gFxzI6hqoBeDyb+X1T2RQx6z2E93YXA788WqAGS5isFGzlYMbjtfPpuK/Hfw
gqtoIwYPzFVEFyKXslXt2F6HQTOr8JUq5EtHUx8fKcOg9MTTnyPIUtdF95wF
GBTtDLmxhDzh5dtn9BGDtNuasZyjDPi47O4hp1wMdvm6KO9BfqeuNJ2dgMHs
mIpFH2RX04SYktfI6RWKsciangKn6iMxWCfFIVGI/OPz36ThFxh0ciaIMWTO
wx8NxR9hMDeu/Y3eGAN+NZbfIO+Bnm+EDLBFjveILlB2wWDbWwv5IGRl6M5/
wQ6DNlwVTxuQzcij1b7X0XwFG1ae/Y8BFa++t39ljMEKsuayHfI/NxmpZEMM
Zi4ZJIYhvyjB3Ep1MfjzcLReHzJU/bJn8SgG1TpE9zmNMyBDRe+1mTQGxSqW
yxt/M+A1qx1nCUkMhs3ff8Q8wYDpiassnTgGF3Q4hPciH+JKNtMSwOC95K68
SGSD3vmd8qwYrNff0mg3yYCRHq+Kp/vocOvOAgOdaQYcyLtrmdZNh51ORgf9
keVGD0tc66TDHuuXo/XIH8+OebU10qGh1Eqhzh8G/L7l0MmCEjocfvtayHAG
ja+i+5tLFB3mTZbER8+h8S1m++4Lp8OXk/9sR5HTdz5WnXhBhy0a7/n/9xeN
L3Rn3FVfOqyzLy5oRjYwd7up7kSHXbmiEfwLaHwcEvP0S3ToUsEaULSErq9z
TeDFJjo8lEl5xzHhMNynyCCEhw75npp/X0MWKuNLeLmRDr2OTHcbMeOQ9wBU
DGelw1EpjUFxFhzStoidjp6hQRulqJUkVhxOzXU8TW6lwX1SOTJfaTisjD6x
9vEFDVqOJ0S/58Lh0c64458CabCzqBCT5cbhZ/5F/xJfGvzkpy0SjVz8JBn/
7EWDf2wGpJ7w4DDHmu1gpS0NKm2V+mXKh8OoYyV2TedpMNtvtvmAIA5tfiuO
DW6iwRj6Fl1DMRwG9+gdXuKhQV7HX5t/Ir/74hzOw0mDFcHDdmbiOJx+W3H8
IBsN2h5wG7UhcGhlqZ8QOMsOn3wuKw+WxOG9SQ/Dg+3skElOk3lCGocW040N
gaHskC+l0Jp3Fw7N5u7mHtzMDiPN/5rNqOOQZWmOe1mAHQbqRBxPPYLD16uu
tz/yskPSvvTT1aM47KQHSKpg7JBd5LtVwzEcnhDNDFSdZ4PmRp973mniUIGc
uEO1s8H8lEOWYTo4nPex3Ho8iA0qie9Rrb+MQx/83suzHGzwo4uhX60dDpmb
FTv9N7JCl/vaPcppOExJ/LDHd4EZ/oi8sFQzisPffZmefmNM8G7Qd142eTG4
6ULddbOeNdBfOZgfcUcMJsuUze37uAI8grIvzGaLwVF+Nc0zn5YBLp80Vzcl
Bm81vXhoU7MIoJZAxJOd4vBove24UPo8cP0inG5hIQ6/9HeI0HLmwIU7b5gj
EsRhzv5yh/t+M2CQZd/wcpc4bLni93HKehqI0Dpn73ASUF01y+vW/ATIfhdr
3b6PgKGHLs/MvR8DsWBa8NYVAt5gknbmTxoDmYwIsT/IeysmWXaFjoFI3qR2
JyMCNus85r/pMAYunG7S871KQE7TbMWu/42BxlsVUSkmBPT0oVmVFIwCQUM+
pbYbBLRsfzfu/WEE6DeZG0zeJaDGvY1Dwp+GQAFmGrLXlYCYt6l7X/oQuBhI
6eQi10Z9EEmNGAL8fw6kKroRUKfW/OTBB0NAMOG6+k53AupKl2cb7hkCDx5t
Y5Z4SEDj7y7Ocam/QIina8bMIwI6aUzwyoUOgimBuOjzfgRUMTqWNvNoELwv
dbKpRF6xizpSbDsIrFbGhw/4E9Aj/oSD9tlBcNLVPw8PIOCTlaTv9zgHwfJ5
k7YfgQQMyb2alOc5AJ55ecvpviBgJtF8SO1eP4gs4ZGae0XAJc6rAheN+sGG
Hl2ZyxEEPLY0Pn5Pux+80jnxpQS5uw2LiZPrByMiqrQnkQTc8IxiYh/5CV4q
s23dFE1As9ms8jrjn8BJWpVLNJaA4jUB2vrn+kCAzSef/jcEvJ2Py9gc7gPV
rOKrh5II+D4hbfXZ7j4Quzwt9BL5lFtlVjF3H1ha+K10PJmAs2b/pKjQH6BP
mVMgMYWAbw99z/jypBecs4h31ElH1/8VXjJyuxtwqCnUXMlG8zddz7h6sht0
sPnZJiHHrzA5tst1g76fB79MIMsI3dpTOv4dxKb7BLjlEFBBQzkl0vI7wAob
NCPeEVA19VuQjk0XYA25GlmaR0DDu6I38hw7QcnkTG5HIQFjHHVKd1zuBDXG
ohqCHwjY99iTiDvYCdK0XJ+eR74eM/bNf/krcPT7y2hEvtNYpGPu+hUc8Eu9
X1qE3qeiwQHRhx1gIeMtR0QxAV/NRW708GkDXdXWLzkhAeGbEV8dszbwrX/Q
4RjyyIV9nGJH28Bre/1FV+QD+Q2cRWut4FPCsZ+/kTscmLlnHVqBfr+Eas1n
AvIvmPHevNECjq7GbLUsI+DBlNzn/zvSAk7xsgnFIZtcYuJjl2wBbKM3UlqR
swtf8cV3NwOjFfHs/eUEPO1Yz999vhnUWBqfXEb2W1IUPKPeBDjwmWyrSgLm
pbm9FJdoAhpGG99FI+e/D5XrWm4EkZpiurXIFxxq5AVsG0G0807nLVUEDJ5X
2OVj0gAumy3rNiBzLi3usVKrB7UHFfcL1BBwbTVQlVqoAu51eu8v1REwsVQ/
1KywCvBptr+5j6zlLTXp96AKNCg7HwlFfsFVEPttoRIE6qt6tyBvw3tZbRcr
wJ30V7Ia9Wj8yvK1b5bKgMJkxrDEF7R+/s1tqS8qAws2r9MOIr+CwPmPUxnY
xPlBVBd5QOP8TnK5FCxbm7B4I9/Xc3reufwZLFR4T/5CVht+/lZoCYDZLVsO
hzYQEIXPq9ecAHDnedyRhtwyV8CbvVQCMpa5NwNkM7YftlrLn8D+trA3Q8gB
kjsPuvz7CDJDXbsVGwnYmQL/q3b5CDoDRb4fQd6yWzdacKUIBAV0eV9Azldz
Zspa+QBq4lp/3UfuNaip/LlaAKI1Ij4XIm8fMHyg4F4AekLuylYj29yeknVe
ywffZ8zVviLTHIX9BZjywZmJ5nuzyAqhN85rMOcBuQ3OUzuaCPhAbJEt5GEu
mNj85PN+5NJEv/w+5lzw5UQReRRZLzd3sxPLOzAoHHrEENm1ibkvgzUbfAyT
uuWDLC8SLjTPmQVuuNVaBSNfDZS/G8KfCQjT5u1RyOWuF0QbxTLA8ra11Ezk
v7OjVhZS6SCZS8a2AFnWwq2KQzYNOM1njAPkgMvJdkf3poAzvV1Tjciw+VDd
T+VkENL70Pkr8oxmk6Q7mQR8Rn3ye5Ev7V9s+HAiEXhLF6iOI/tm+ktfPJMA
7uv3Pv2DXCK9xWX2Qjz4FX3DewFZSuCk7C6TWHD3Sshz1mYCpguBtfAvMWCt
61AMhszLPpLR2hkFlu8eMeRCtp/hvcw9GAHshNNr+ZC7firTtSbDgU2nzagg
Mtlkmue1FAqGcyIKNyMnlvialLC/BAWJWw6IIW94m8e9yPsCvMvZcFMC+V5k
z8c9eBAI/3ZOUwo5ZRNXS7dOABAVW+6URraZMpI/d+MZaHFhFd2OrPIl27vK
2RtoLd7ZuAOZnsbyUyXYE8wF730rhxzPlepw/awrUDlxZU0eeX/VKbnTbvbg
HjHErIAcxvwT2OrdAbX8jXnr9hg9cy7Y+CJw2ioisgu5EHpYbMwiyZe6n+XW
PZGoycYZdY2UTqidXP9/f7iHNiPOmhTk3Xt93To/usN32zmSmpErPjuRu4Px
P/EJHuTjo9uM1u/Pn18bttP/Efl0Y87A+ng1vz1QLXTwIecmIzbLIrv9kxlQ
N/YjjacH12TW5zPwdvnQ1ufkUZ7A0K3IdnGHhTM2B5N8Wq96JJF5ckVuW3OH
kFIxrO3iyGnlk8X/Yw0ly7gaXBjIxzoqef7Nh5HbwhbahJH7hqNNP4+/Iu2V
vXo2IQttPIWd6ogmuSoK1zYg5+BSBnx1r8kzGdc205BlhFf0/vsRS95KsRxg
Qobb21Kz2+JJ465En7n19ZhDnt/UmEB+4Gq6NolscDD9n31NItl1xmByZH09
n/Q8fagkiexmChb+vr7e234vRBcmkxW3VfNakYOu6Mcz5aaQz3s1mevX98u9
3XMVyWmkRY97xkdk0+DeiDNBmSQvh6VGGDLzv0dyf2KzSLbMIT8/5KZ3gr1a
l7JJ+5Opdg+RrfBiy//Mc0gTM06528jZk9hzhSe5JPFNa8/6/vXYanhpjTuP
5F7j85VFPqOfJdEUmkce27D1MQN5qvRCjnXSe/JfpbTxKooHu0PjW/IqCsj4
8Nc5AJmpbi7isXYhWZCcz8hCblrTvKbXXkhyPhPeHoNsdWtyZn7wA2kP87c5
I2erqAgeYismuUtvl+5GDp8eSzeWhOTDkeQbz1C8Y/IT4NW6AcmBBwaztsg3
ZdTsFFMhuafukvQV5AMGQSosip9Jq4LdlgrIneX7vyRQpaRk9YXIehRvRcIf
TQxdLScDvByuzaN47qGUea4xoZz8+7dS6DvySP3X/ILhcjJc18SiBLmQWc7d
514F2Tdou+qFfOlOM88O90oykZuvZANyuJq44t2YajK7UimdhvJFmr2wan1P
NSm3Y2/DUC0BizN4teTEashPshGvK5F/irKajEbWkJhciPZj5B3zw89vvKol
xUIOd6yifFWclTN1JaSePFkSENFfTcCGobR/xa31JNO1voRPyH1iiRi+6Qup
FBVmEI7M7hcq0RX0hWRI7O84haxz0/mMXmADKdavspCD8qHV8y2Xth1rInPv
Ok5aoPy5KEf0dlxvQhFv1w91ZM8qxnXvR02k5mltVxHkkFUBq19lTaRTVkl5
aQUBP1jQfRLUm8n8q24em5BZtMYLCKqFLJMOSX+D8vsL5nxhkUNtpPqWm81+
qF743+Irp3tX2kjD+pOyushdU649le5tZMCPK5IMZIm+Ywn25W1keg73n2SA
6sOSdoVW7XbSyu+t4KcSVM86zx0LMO4gR5wPmbWj+oXp7147Nu9OUsJwclcJ
qo8Sf4t8NUjpJINeuQY4Imv8+qecW9tJ3j1ywn8vckBb+ZoJzzeyOSjuTmoB
AfFcXV8UHMn4TwbpAfkonlnZxTuld5GWG5P2a6D6y3Ist2mqqZtsGXj81CqL
gKt7d7xP/tNNRtJnb0si+7vHvjIS6CE3pClNNWcSMEPA37T+Yg/5N196SBF5
TM1sNrm3h9QYYfb4nUFA8xciIlfHe0koEG5xPg3th5iSrCGvPtJg22mlrkT0
vjWk5nVf95Psd2B1azgBo86f28Sd1U+6WFr42iHzGD/cVVXST2rdVl8VQJ59
8MNcubefHCbsZnXDCPgpLbJTTGyArHKWkWp+ifYjt0DRUMQAKXM+3LcomIAO
7WyuD0IHyfatJuFnUf3++doQS5T/EEl5rykFof6AEn/KlRozREapxOoJIMNO
OZH8rCHSkX27WBjqJ6C29c6m5iEyl3stONIF5bv9/y6yCQ2TzyS1t8Q6EbBo
I/9bi5hhUmMgpjXMgYDvclUvqmaNkN+4pd8ctkT5g/Vlem/TGPlNgFvbwxDF
Q0vVZt+6CbKF/nbH0/1o/zHCQwT0p0nH3bmuIdyoPqDoPD8dZkirdLjA0yMO
S07OVJlazZEXqpvtjdPE4VWRC6dNQ+bJY0M9CkuW4vBc7R5B4ZBFkrm7LLB3
jzikp++fLXu6TA6kM/q2z4tBU+2cuInUFZLcJ/BYKlcMcrcn+ze8WSNFl5+S
6TZicBfPhq1CQ0zU4eq2YsmdYlC5roXr8Cwztc/2MVfzGA7/W/wWenyKhSJl
T4Wdykb9NQdO92Vmozp/87roOeDQceNlryfsbNTmgDxtX3scenKFr3lxsFGR
8j7PIOpvX/AJLLjwsVFnmPU15G1xmL+Zc9RSko16/bKxE7PC4T/Zf7XnDrNR
RT7KeR23UH98ojtA9CEbFX1RgK/6Cuq/faOE0pjYKdPgb4SwBg5pnZxewWzs
lGNvqPLd46if3+o66YSxU6P3+FvKUD9+4NOV6pO87BTv0SQPG9SvN02IO/0m
2CknlcGe9sOovz8X17ObZKc4ow//ylNB/b9IUmKBKzsFt2OeHUo4rL8uxBf7
kJ0aCPFlqCIr5Xi7+jxmp7bSPNUSFXG4pmWup+/PTrVK8m2x243DcOft2HIU
O8W6K+OmqAIOa3vT7qgVs1PPNYoOPpTFocKbLKWKJXbKrH+/WJEEDkV6iiNY
1tipkMlp5m3IzIK1LBQrjRJ+IhgSQuCw7dFgS9FGGhXjJlRqLY5Dp+ubbbNx
GlWqffH0XhyHVVJeuZFqNMqGycCjSxiHxvF6e208adS2aK+8tzw4PNF1LSrL
m0bxB0/O70bew2/N9vsZjbL+ODOTx43mz9O3zfwFjTrlwiMMuHCYYQLtriTS
KHs/H/7ujThckNjxXrOSRhGv87YqYzgMer2yj9hAp8aadJoeMuPwePMTTICb
TmXiI05SyEss/N8xfjrFxeTaUMGEQ1MzGY8/m+lUu/t9a05kpZ2naytk6ZRR
VEZG3CoDthXFGllo0akNYvUy48sM6DO+Q9FEm07VVxs5hSOriL9n1TtLp54J
H3Q6hpz4sCaF1KdTydXP3eOWGNBe888f/lt0SuSUQJLJIgMKdRx58sGHTmlE
//BlmWfAWnqDfqYfnVLec7vow18GdFO+JJ/wnE65WMuGWyMPR1k0+4XTKU31
GZOBOQYsvPaSYZxCp6a8DPY0zjKg/vRQFq2aTrV03Zqu+sOA3FLWnst1dMoj
oFjmGXKp7rLuVCOdimSq49JG3lHIs/TtK53yLc2cbptmwCW3A0ffDtOp3eqP
BH5PMWAU57PO83SMEvSOG1SbZMBAsb0OJRsxSiHxvSUN2VOhd5MsL0ZBsd+d
DRMMaH5G6fSqCEblbbfUMUVWCumqSNmBUam75Utf/GZA6TePrm3ahVGcJ1rP
miKL5Cswu+3BKP/K7lJF5JWvnirnVTDq3VSqVus4A1Yz5HJXtDHKWZlrQgL5
o3z7mZvnMOrV/gy/v/8xYKaq+0SLHkbFWJVyfVn/vnq1VTblKkbZGrUUuCAb
JTjHnrPGqGen6jKHxhjwTJ602id7jJKZsL1ehnykovH7NieMervsuhKLvH1Y
SnjFE6P634l3GSHP7Kj3Tw7BKB9VDerXKAMOHXKQ43+FUaExeZtqkDtPSdS4
RGMUe5B63VvkEks7tnNJ6Hn7+YcdkbPdxeOL0zBq/D+XkybICc+ryW1ZGHW/
Sy9EC9nnHe78rwCjeNXjW3Fk57JKEfNijFqa3VdLR7Zss8pvhhiVwuT2ZmaE
Ac//LZ9OqsEofeGbGxqQj9PvBfI1YJTOiExIMfIBkc07XVowqjC6lSUDWfzg
3Ztnv2NUfsn2QH9kvpPCtOIfGLXbcSTDHZnN8HOCzCBG1b8vz7JZ/15vcedw
0AhGSZpVhZkhj7oK/lgex6hH9YvXDZC7A4CL2TRGrThfFz6L3PD6lmjzHEZt
v8STpYH8OXtT4aEljNr7klmeRM77/OlC0ipGdRccDlg/n0huMZ/hZeWg1F+2
t+9GjhjgC3Kmc1DM50tZ5JD9Zj8qDG3koITMOQVlkN3ZzerP8HJQ38IKOLcg
2wjx3v4owEH9W64cXT9Pub6tiC6zmYNyWVLJWD9vuXjg+pvnYhxU8gmG7vp5
zP87r6H+/3nN/wGuHcR3
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw12Xk0Vd/bAHDTvfcomZOEUpFMJUTEOZol8xBJIkOaaOBb5iiVIaSkiMxj
KFNl2NuNZMishESJkgxJZn6Ptd73r7s+66yz7z77PHvv5zlbws7F2IGNhYUl
lpWFZfn3sA733jkJTqy9yr6m3oKJVjv7jhHinLh4cWvosntvjz0REuHEaJ1f
Rx04O91Wd7MQJ/YZccyqBf/3rmVakZ8T+1l/odWA9/zYm0pyc+KQrKHBt2Bu
otBEbwUndvovyKgS/GmLFKsVnROPl+A9FeDkgw9zTrNx4sCmsJIysIsTcdx9
kcAHTs+WvAKr37rGeWOWwHn32PcVgulpQ0UR/wisUpJjkgdufmtlH/+HwLYZ
S0OZ4NiBer5nIwTu9ZvlTAGfpmuh10MENq1IyosDL+7fIPLhK4HXHlz9IBxc
4xBR/a2HwJ5Hf7TcBt+/yeY23kngIkffaD+wbFV/I1crgb9wCpRcAP/rN/MW
aSSw10ExYQcwk6NaRrqOwPMf6AvHwBb7Mm7ufUNg420PT+wHb7IXUTJCBH7v
o9+1CzwSENx7ooTAYfL0XnnwzTfnNTzyCVyaFHNdEPxiz47xvCQC+9W4SXUf
ZSJvu6S48ngCK57e118PPuQveKQ+hsCR8Y4yZeAvFf9SByMJXKbywSAWzKVd
clz8BoHbTr1jMQN/PCm3Qs4Pruc8ZNsDTvR7UrzLi8AxvptDFcC7sC+/2RUC
u1i/2E0HO5L73gXbEzja0pSRZ85EijaFbo9OEngim2n4CDzvI7Up7TiB56Yu
bPIHR5YTPkxTAp8xemdvDMaa75Vm9hHYLfi65W8zJlq32zzeUZLAT62PiK4C
n3KVMVovQeD2OhG3YVMmykpeZOsQJbCvYNveOrDGqjRHHUECH3nnvfcW2Kpn
Sl6OncBrhmmN0yZMFOP3qHS8l4Ept+1KTGMm+lZw/kJmNwObb7w9Ew2W/am9
4VQHA58r6lR1AZcYDQW0NTKwdAyHmAi4a6OGbnE5A2e/CQ91NoL+VXV/8opl
YBmmnMyoAfRvJi9YJRraf3vVvwycJX9TcySSgRU995oFgzWi5BNsghl4fB/t
rCTYysnn9B4PBt7vvfm4iT70j3PDFMOCgS9X3vKOOgLt658SjBRg4OT/zgiX
HGKi6Nuvre7zMLBt8Ybr3mChN3xJD1YycE/JsAcJ5lXDitHsDDz/03cj8yDE
+0YxgycTdLx6sPgA8wATjU1+uJPWSsfuEoGrcvYx0dsnh5dKIuk4KPr7hDLF
RPs6Eg6UhdFxxZnUnp8kE1Xwz4SWB9NxGWfryThw6a000YoAOn4ueESODn5+
kUP97WU6TmFt+d6kCfNnf/mVJhM6PrsiTtBEg4ku/VYc6heg4x+r2GdW7mSi
e5/NtWd56NjNcnSmUAXi9b1nNA8XHW+ptntiAx5/VnVAnYOO6RM19c+Vmcj1
gmVS2F8adjHnbTNSgvk96ndcvZ2GHX7WvfTbzkTnxhsbwqJo+MLGwMAYGYi/
yfP56mtp+NgVGf5WMSZim53knhOk4Y7qcZ8T4PhF7zMlvDRsEuQT/lOUiToY
dyV2EzT8TXpv0uI6JjoskhOmOcWB5cbnwjeLMJECOXKWaufA9Jt5n2yEmGjq
9oXNByI4sMWBE0FR3Ex0W9TlgREnBy4r+kIXXqxArM2KHaEr2bGN5uir0O4K
lJ78Sil4mhX/qz3trFNYgX735viHDLHgQY++ltWhFUjArM7e8fMSuslfFi7l
VIHSpN5MqpQsoHVCPU/9tCrQT36tQ4Zlc+jyQHt0ydoK5NwUef1SzQzi1Pru
aDSF0b76y8NCWVPINePzea02jN5//SBMfz6JbF9Lt44WYvRctdL9v5AJlNJW
ZDn+EKMW65CSsYvj6FRbw383vTHao5kb4Dw1gnLcI7mSnTCK0jg2MVk4hJ71
PP4yZoyRA4ukJ3/qEDo+4R6WAVauGmXbFjWE+vUVztqBm/Vv8p92H0K+MjKp
bUYYcdnlKXbuHEI1fcoyJYYY+d+mu5YX/0RH0n2cw/UxutD+Yjjw1Q/0rd+3
xOowRgddVg6sKRtAuR4slm57MCIC7Xx7swaQrfLlISVwbewr4YzHA6ji63jO
H22M9GuddNWvDiChP5zNrmBTycq840oDiFXV/poLhdHJLi/PhIzvqDSm0MJd
CyOPgyO8slH96FM5r3amOka7T+zPnLjRj6bvnN/mAl64Eru39HI/mrhzx1AZ
7Jd42F3PqB9l75iUgcUN3VpI7XLh6keVGmbURzWM7ufbpBb4f0P+c7RfvKoY
5axv1tBy+YoSxNwVMpUwmuWyETx64ivanqzp4A7ePzs87KL3Ff1OSKjfA+5u
I+ISZL+itmMq8t07MFoRRLHQfvShz9KHVPjAjn9zK+tO9qE/NYsnbmzHSLzm
rp6lcS9qqe5khMljdKZIVOqSdi96se+Wni24MClzMWh7L5K6EvBGCXzE521u
KXcvKrliS32Sw+iv4/wmKuoLujV20VsK/EyjK/v9rR5UrPORrVYG2v8eXf7j
TDf6WespoyIN4zdev85GtxulrZAQ5wUnLrBca5ftRk7DERq/tmAkJeSsxBzu
QhuONU4kgBUO7kqPudCFAq8FWvKBNTM+Rehf6kRT5ubTU5IYHT8v4lBwrQNd
Tqb+69+EUdw1fabMsQ501Gb0aSW496b/+gT1DmQsu+NvMtg+buhT6NxHNG19
fo0j+Gzja30n749I1TTEcGgjvE9FKzWR6x/QpVS2kFkJjB5Nxqz0u92Gbl5t
E1XfgBFO+RGs79iGdrzX2SUG/mGmwiW2rw1NJNkHsoDVihq4Xi+1orxrAS+q
12P0wZ2V+697K2ov22FsAeafduQ97dCCLqVUP/MXx0g9PT98594WdH5vWetp
sK0FCx9NogUd59ktYwDOe/mIL7G7GX13bzgtCja4Vs/fbdKMpFmE5V6JYRQy
q7jacE8T8n3ZUjMnilFBps8D8Q1NqH00aqofXFQYJds514iupdSaNYDN3Gvk
BC83otd+HkkJ4HtTCttu2zagX4daAg6DuWZnlFy16pHcWvGjKeswWloM06Sm
q1E7+VTLVwSjZKZllOPLahQ0TUS6gHUCN42GXK1GR/67yXcSHLmq+Omn6bco
jLcoRBu8RbSH/fJMFaKpdXvSwQa75GpTZt+g6yeu7o5eC/EzP7mx/vUbNL34
QjEY/Agjzz8eb1B2/IShD/jbQRN5cg7yoMqAVQ7g/8w9wjvmKtCgZa2PMlhr
MPyZ0CxCjvH62l3CGMHyaXPKAyGWX+EfmsAtk8W8ebPlaKLn/YO3YEeOL5d1
5sqQAaVy7wX4roS8utd8CaLPpPuHgDvS8a93XiUo7WauUwB443bTJ6sXXqOe
+Sx3D3CRlidL7sIr9MbzBr8zuMeq5m3fYjEKWEzWPgSW/nb8qoJvMRLgO+JO
gS+dGdvquVSELo/3t6mB6dfWhAqyFKEqzSEeGbBClIPJQdYCpOy705sbfFVs
huP+9Xy0+owNKwFmJocU9bLmo4J091xWsHl+/loPthfI9P6FO5NrMPJuYu3N
Zs9D093XlL+A5YSjhaa4clHb7xSJTrBNmNz5+/w5iCYlqtoOrvQ2E2kUy0aa
/d8768D//v50PbcpCzV2qTlXg7ee86nm3JqJVva0rX8Dvnss7co+5XSkzDJI
KwHjZo26vl1pqDj5uEoxeOJQk4QvmYoOWYuE5oMtVGcaXh1ORgcUzhdmg4Nz
QiWPGiYhrx7WwAxwueRGr79miYhs+eyTCt4kqLt1m+1TlNRw5udTcJYQWop+
H4e4/NdZxYF5aT+yWzti0a8G/skYsNsE7zHu/scoO9yw+BG4s28XQ2c0Gkmn
tCU8BJNNdgUBs1EoaDiu4AE4uTzYtpz2ALnr5I5Gglc8K+Ce4Y1EE09pJvfA
LjGfS5REI9DFzoSecHC6wKqWbv27qPBLwL0w8KWxE3LGDkGI8STrwl3w7vd5
gdWegWiAZe3lUDAjk61v9z1/5DZfFx8CTlyV4W5v5I24Ayr/BoNVq4/IGvi4
oQtBbJeW/ZC1D102P4sGVgSuWbbfT0PjeyePIr4l/e9B4JfY79zKXJJsP2Xd
teyR5EMcXLGnyFdqz2eW/TXaT29dwkXS2/cwtXy//pfu6O1XrpF6u7fmLrv7
nuifxCQ/8oeb3oHl/vAX1T6UD71BblAppi3399Cnq5ov3W+TYTcdfy/bZ17q
256TIWT5FauF5efrDDtTObA5nFQWiFJZHo8rCdprstfeI80uC0VFgHnyhc9c
5L5PbsvsFl8ez8zK0dKd7FHkxsYfjffB+z+85ZmfekhyzqtnRIF7B5/YVQw/
Irn1WjOjwUIrjxBHPjwhNTs+SD0BPxfdZMVXF09i8z0J8WCpNQvmv748Jbf4
/92buBxv0m0ZeW2JpL+/PFv6cjw+J00EGpPIFbkFYllgK/WsebeaZNJLNcA2
Zzmedf0NNMpTSVPJKdvC5Xhv+z395GUaaTMZK/4KHGFtmciSn04m/wtiL1ue
Ly7bJ6vSMsktXtSBKrDdvZ7HhhE5ZHqKcO5HMOv8Ddk/T3PJ+FZH0c/gpher
e3Qs8kjm3PpXX8GuoqUXfjk9J0Mb2/xGwHmjRLjCrXxSwcBUZ3n++m0+brHE
XUB+ZaXv4AEbWuZuaIoqIFvlpQ4LgceYZs8vphaSR0fzCUnw9qjEloKqYlIB
C6B9YJa6ycc39V6SJ94f3KQHblo6dMq8/SW5LnmkyAzs6jw6MdX/ijQRfHjO
CZy3e/dqDY5S8qG3PV8oOHp8KOukBCY3zN/S7ltuL0SQV8cBkz7aqk+Gwael
tK4oZmAy1tpeehqsZhWxm02xgrysp/GeB9bXjkrV90kUkzy8acJQGywcfWNk
wKaSPF2mp/0M7Lcjx7gxqZLMnKIelIB/1H8sKh6sJOP2YOFa8EtWWd/bLlXk
drpTziDY4mwzj4zvW1Kp+aKgJOwH0Vriiufj3pFrBs/Up4Mz3dZo1n9+R976
qjn2ElyazasjK1ZDDs3e0qwB94mw2/6MqSGrrW6aDoFlpgbDHR7Vkma61BUF
2K9Kc5+PWd+vJ42SH3mWgxsGMudLW+tJHX9z1WZwr1gyISrwntTufyzaD6aF
RG3ojHhPNj0uP7UC9j/9056G5mEN5EGRiH4LsGv4Rost+5tI3cRTzxfAM7Lr
ez7YN5HNqhJ0Adh//avX2QfeaCIdvl29IQ2+vyjo+v1NE/npzNyCCfjVOcbt
pD3N5H0F1/5sMJvOcPF6qoVkadrp5wj7eSRr0RphjTYy//a9+WnID3bOPPJw
sW4jw0K8mKshn+gc8/781reN3PX0v1c7wBt69ye5VbaRlh7p6ufBOeXtCq16
7aSasExQP7jWc3L/3ZMfSNs+a5tuyF9Y/ilf4QjsIG+suzM2BvlO8m/hj1bp
HaSohUO3wGbIj7/P78qv7SDvy0fO7ATfbatcsuX5RF7cP1ztDRbNNw1G0Z/I
SnpzwSrIt1RdryR6ZHWSioRx804pyLeH8pvGmrrJYOPZzTmQzy0qyxSm/ekm
9+s1+3wAh/o+fXRC8DPZ/sedWAJnC4ba1R/9TFqoqmYZbsVoSMvxb1rPZ1Lp
da3CP7BTpLCwzXAPObFbffthWZgPceW5AwG9ZKGThZyQArzvg5umTOO/kkom
UqFayhjFmhgLcOd+Jff8OubgAuY5eX1bdflXskUnw+kp+O/VL067er6SEeIx
Q2wqGJVlxnSIiX0jmZ6cQzVgQ27B1wOPv5EuU8wmG8i33ds5vK9G9ZOP+6V0
syBfrzg1wBYbOkDGdeVaV0A9QInfWZURN0COFEu0sEL9gDtkhYtyB8jbrUlX
9yxb76J8U/MA6ZDZZ1UJLledP8ohNEhG3rnuWbsXo9cr+Z+dixsksYiaRO9+
jF7kax7VzP1B9l2VXa0I9Uoi+4OsnqYhkrXAe8UZE1gPL2g2B9eNkKZrz/Aj
R5h/66LvC1qOk6VD2UInvSA/oBg8fe4TpOr7cp3WKPg/3YlqO9dJMt3AJ0Pr
Bez/wmYGdvenSNvJTK72FoyMa5VWr7k/Q3aV+xdXTMD+laX6982dOTLyjy6H
iFAFstN7njCSsUDWDfz4q6FZgbjb00IbUpbIXUt7qmbsKtA2nhWbhQZYqPIP
3LPOIRVoV13LKu2/rFSKc51BekEF+jXzKerAGBvFQ+lWVHVUIFdOUUYwKwcV
vrqjRGyhAl1beSzgFo2DWpsSuTUO7L8qeimAk4MyYc8/Jg71bSSf4LQXHwd1
XXGUJr5UgYrWcv28IMFBHTkselWElYnmt87XGmtzUEaOhncYNKiPD3ffFbkO
1ytLDfO4oP4OjhXKZKFRG3gkJeWg3qZ3cAXc46BRBy9Nj0WDz232HvUgaFTE
nZeuNKjP1cqs3+ny0qi7I6NBn8FNI+Iev9fTKK68jo1B4lDfGyd83k7SqP7E
xpQ2Caj/hVOTi71p1HWhuS3y0kxUby/E9/Q6jcLKMmNh4B3PA71v36RRc9Ps
9n/ASzpO5pahNKrDvVivaCsTRXtKE3OxNOqLktRGdVkmqu3JPKtVSqMybLoe
KiowkUJK7o6qWRrlbObK0aPERMKfSx+zLdGo3zmSuzSVmYh1dS0bxU6nDEW8
WWPBbTf6W16vpFN8Qd91LVSYyMN+7eU8UTpVX3kJ1e1koupNAfkxWnRqLIaz
78kuJjqZaK58yZ9OycZ3CP/WYqLDnadicwPp1B9hbRUtkomU+C9y/A6iU3lN
Z7vvgun+wW1OkXRqIX2pRoFiomxbfMU6mU4N+U6LOGsz0fQGmcJDb+nUjrcz
VtV7mSgifkFl/QoG1ZW6JlP6EBMdaL5FCHIzKKaXAekInmXj7yL4GdQPyWan
JLCdo5Tfn7UM6nXR4kVRHRg/eYPaqq0M6vmirCPnYXi+109PnNNhUL/8iPQG
XXjfwzKKtnoM6sXty9a0I0y0W7yQ3dyIQeU+80rSACdfr0knLRmUbOy73lSw
26E/f/idGdS7oT/rruoxkdCHvbde3WZQQfEjl2gGMP6MBsucELj/Dn2DCthn
l4VcUjiDapk8bmUPHow91xwSzaD8NNS8KsAvTz1YdzKdQUW69di5GzKR5fhA
Lv0dgxpLT06tNWIi7k0X/efqGJQ9o3LLBJhpOmc61sig7nryq6wzZiKZlzyz
nz4yqE6Rygln8KyP2r5ngwxKq4taZDVholiuoA4TBkHdoA8riJoyUZiYsnv5
SoLakVWrrg32V+gR2MpLUKLnZQocwE6GOwwWhQlKsvTbSDZ4x/3OqnQZgtI+
Gu2nbMZEkik3TglsIyg/+se/pmDhIgVWHyWCygqMaL8CXvjov9tkN0GFu7N2
vwC/Wyebv6BHUHwJ8TNbzJmoRK7d8LQxQYklBzfsBedo+o60mBOUiTsvj83y
91Wb1q3pNgS1wsi7JRJ8IsnzqfFFgvr5a9vJf2DDAkmtMjeCGkiRCVt1lIn2
VjV2bfEgqKrJBenNYOnBTWsW/AlKP7Uj1gA8IVMfmnafoM6aSwbEgwc03GX5
HxHU+Yk0+gtwx5ENNV5PCIom4fj3Dbj8whUO41S4vsOIewCc5yueWJpJUBle
1ur/wEnh78gtuXB9s30TzQLi54Wo53wxQXF7SqpvAnu+eSvsVEpQD+mVqxTB
F9pci5oxQX1P36yrBTb5VzmeWkNQ0gKzbEfBBxguYXwNBBWheNTbDqwmvFbe
q4WgCgUP2p4Hi6ufP23URVDX2IocroP5dNfQS78Q1P4+icAgMMfxiiSpfoKy
kZ/liVz+Xn/urHbED4LqfrmTPQb803v1l7lhgvryvdEmEdx9F3k5jhNUYGq5
ZAa4Id5ZpHmSoHy9501zwRV5Ai81Zgkq0TvgdwG4oKLMLHWRoIZ19EeXzyfS
WpwmeNk5KVYhi2Pl4Mff+CI8GZxUUUqsAhMc8rdEYWAlJxWrJ3yuCuxLc6w3
5OWkfP9U878DXxLiPVMiyEl1c2ZsXD5Psd/ymiG1lpNKffQqZvm85aiafUq4
GCd1Tm3ae/k85v/Oa6j/P6/5H/sqG/4=
"]]},
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQ7eXJ5/xbkfMAAxh8sN/kZPRxw2IOOF/aJmx+mioS
3y9ZZLIwO5xf9Nbw1RNhNjg/7WvuZitJVji/QyZ/aiAnC5zPeNHwRi83M5y/
YslO4+4fjHD+2wfrmnpeMcD5wqGnU9Lu/t8P4y9XO/zVdPdfOP+lkJ1HwN7f
cH7mhcmNRSd/wvkuZ4rfiK3+DueffXRNgm3jVzh/o/mRsvKez3D+pdie3R8K
P8L5TrbrmzO/v4Pzp1lHff669RWc757P/Ux87zM4f538RWu7/EdwvtzTGfte
ZN2B82d+nc3d0HEFzv//r9/W4cdxOL/2AuODNcwb4PykSfdmBUxcZw/jz7CT
M8yddwLOn8y4TVzC+gqcn/dq84UPF+7A+Vruyt9D5j+C8w8mP2Oa0/sMzl/E
PHX1vQuv4Hy1PNuL3affwfkS0jOmiER+hPMPObDzPyz7DOfv8/58PKngK5wf
LxHqnzTlO5wfdMpYVHzKTziffbX5l8Odv+H8JN+NC9+t/Avn811d3ntu6X84
X5+fS0XsGYMDjG95+hKv4xdGOP/1z5vT3D4wwfkFnDLs3YwscP787jliqxhY
4Xy9peuNjv5C8CfO/2sqz8UO58/h6boRzM4B53/WOtO7fAqCD80vcD4AeOIP
Cg==
"]]},
{RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQ7eXJ5/xbkfMAAxh82L/JyejjhsUccL60Tdj8NFUk
vl+yyGRhdji/6K3hqyfCbHB+2tfczVaSrHB+h0z+1EBOFjif8aLhjV5uZjh/
xZKdxt0/GOH8tw/WNfW8YoDzhUNPp6Td/b8fxl+udvir6e6/cP5LITuPgL2/
4fzMC5Mbi07+hPNdzhS/EVv9Hc4/++iaBNvGr3D+RvMjZeU9n+H8S7E9uz8U
foTznWzXN2d+fwfnT7OO+vx16ys43z2f+5n43mdw/jr5i9Z2+Y/gfLmnM/a9
yLoD58/8Opu7oeMKnP//X7+tw4/jcH7tBcYHa5g3wPlJk+7NCpi4zh7Gn2En
Z5g77wScP5lxm7iE9RU4P+/V5gsfLtyB87Xclb+HzH8E5x9MfsY0p/cZnL+I
eerqexdewflqebYXu0+/g/MlpGdMEYn8COcfcmDnf1j2Gc7f5/35eFLBVzg/
XiLUP2nKdzg/6JSxqPiUn3A++2rzL4c7f8P5Sb4bF75b+RfO57u6vPfc0v9w
vj4/l4rYMwYHGN/y9CVexy+McP7rnzenuX1ggvMLOGXYuxlZ4Pz53XPEVjGw
wvl6S9cbHf2F4E+c/9dUnosdzp/D03UjmJ0Dzv+sdaZ3+RQEH5pf4HwABVgp
Cg==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->
NCache[{{-Pi, Pi}, {-7.954281505274726, 1.}}, {{-3.141592653589793,
3.141592653589793}, {-7.954281505274726, 1.}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.638517353307053*^9, {3.638517440159257*^9, 3.638517489686221*^9}, {
3.638517846762093*^9, 3.638517907049573*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t1", "=", ".3"}], ",",
RowBox[{"t2", "=", "1"}], ",",
RowBox[{"k", "=",
RowBox[{"\[Pi]", "/", "2"}]}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
FractionBox["1",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]],
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}], "-",
SqrtBox[
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["t1", "4"], " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}]]}],
")"}]}], "]"}], ",",
RowBox[{"Abs", "[",
RowBox[{
FractionBox["1",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "\[Epsilon]"}], "+",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]],
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}], "+",
SqrtBox[
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["t1", "4"], " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Epsilon]", "-",
RowBox[{"t2", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["t2", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["t2", "2"], " ",
SuperscriptBox["\[Epsilon]", "2"]}], "+",
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"4", " ",
SuperscriptBox["t1", "2"], " ", "t2", " ", "\[Epsilon]", " ",
RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}], "2"]}]]}],
")"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",",
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.2"}], ",", "1.2"}], "}"}]}]}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.638517509004218*^9, 3.638517519704343*^9}, {
3.638517555264756*^9, 3.638517578809413*^9}, {3.638517655522498*^9,
3.638517662643085*^9}, 3.638517706596472*^9, {3.638517792141122*^9,
3.63851780228723*^9}, {3.638517956759728*^9, 3.638517983702098*^9}, {
3.6385182324030027`*^9, 3.638518339320284*^9}, {3.638518370281116*^9,
3.638518415999106*^9}, {3.6385199634003153`*^9, 3.6385199835248938`*^9}, {
3.638520154376536*^9, 3.638520191286639*^9}, {3.638520635296234*^9,
3.63852063583503*^9}, {3.638520683998526*^9, 3.638520685795476*^9}, {
3.638520754904317*^9, 3.6385207586267147`*^9}, {3.638520807451518*^9,
3.638520807529914*^9}, {3.6385208507076893`*^9, 3.6385208508415813`*^9}, {
3.638521266590724*^9, 3.638521270077879*^9}, {3.638521383444216*^9,
3.638521403725726*^9}, {3.638521511646391*^9, 3.638521621838251*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxFznc4Ffz7B/CDYx2zUoSEJ5QUklVxq0SesopUNHjKLGSvZEfKjCQhMiKj
srI+H6NUNmWVlZERdcxzcJzv83uu35X7n8/1ut73533dYhYOZ64zEggEEgOB
8H/vftg2Rafz4AwHdxGtH7ZgZCsVSl3hwQur/9w9v2gLXnEqkvOLPNhhYRfB
lckOGqYvWoxP82BrIYJW0047uJqQ0tfUzYN539+UWjxvB9Hk3Y2PC3jwcJhy
iEqzHSykH36pcIUH81MrBD5V3YByNnN7q2pu/LJKlGJeYw/Ng+d6Fsq4sbal
rG1Rpz0MlZw+FvCGG/d4y7RtHbcHlusq255mc+MdmQklzBwOcKaGp7ojhhvb
v1DKfmLsANOe1VzqVtx41zGWQ/kzDiA8LZTHx8uNAxOTcskPHeFOc9d0jTkX
lhjRfXp0+hYM9QTiXDMu7NuWQW1evAXHRuXi4ky48P5Kpn4LghOwrN5Tt9Hl
wtcsdcwytzrB/d0QzavKhcfYa5TjNJwgMTBL6QovF6bV3b0smOAERaoe/mvV
nHiWY76eqOcMkxnb+ZWFOfEzSZ9rj7pdoMXiu9shfk58xnCqx3DUBYp25nap
bebEhra3GfjJLuD7+Ei8Jhsn1lH3eVpDcoXND65sPbPAge9PH9B5rO4Kh1wy
ttxs4sAKOzXGzbJd4d4xed50Hw5cdjdC/36QGzjQqQ6Z7hx4SCh3qSjGDYwq
a1tfOHFgH9ay0clUNxBRMoostObA5o8Smzyq3OD1HnfuaiMOfM7b1UBm2Q36
eKs4e2U48DDreOTSDXeQHjzJztNPwqrRC/p3LDxgTXvpYGY3Cf/Sl/F47uwB
LYXpV9U6SDgrSEq7L8gDnALWS+0aSPgtF+c+jywPeCtRZPnhFQnTlMRs7sx4
wMkbO+v9Q0jYhy/oYYuPJ1hRF30XZEn49DqPI/cLL1CxSM8JlyZhSTLNw7nS
C0iNBl3iEiSc66jO9rPVC/KTcvcZCpKw/KPQnQLLXrAE5t/yiCSsPL7CeEXL
G0JCmlStetlx8c664uoJb3i+JX2hN4Adrwgyp99Vuw31hazhzbfZcejurFKB
M7dhTPeGWI0HO577p6+vyvI2SIYq6mXbs2Mkbv9aM+o2ZK81ZLldZMcjSSau
2qO34eXYz4tbDrBjhx8ZJ1WifKGoVKnm9DAbHmduG7hLuQOfjZ6YaHxjw/l9
9f4/WP1gkUyfUehmwz2WvH3xW/xASeajoFAzG/5gbSK4fa8flKWaukyWseGh
TTZReRf9oDLMTyokig0njg9f2lXpB3Wmnx4gYMMmt7jsUag/tD3f8lvrEBvW
tl9Z43/kDwMzZmdaDrJh0wuTI34Z/kC582tb/x42XMz3TjCo1h/2P+dLXdnC
hjvdufrP0Pwh8efl14oTrDhcZFublFsAON6e78qNYsWdKRP6tq6B4Pv+iKpC
OCsWlJs5TwgJhHCekCflwaw4Yi1cJCc+EDKfCVz96MWKO6xlLqqWBcLXd2qT
49dYMSGdfUVnLRC0uENXxVRZsZBSTb9+aBAIpwiLJgyz4JRWq8ivhcGQ99if
S/UbC760eXSgpS4Y1B+Or/R2seAHe4lmvV3BcCWs8ItQEwsOe+jrfJAWDGnO
muEpJSw4I7dOkfVUCOw+eWMpM5wFH30puKQxHQIHyRVNxYos2CAmJ0gCQuHd
tGj5OTkWjCJfHDxtHArnxoOzlqVZcMfXRP1Iu1Bw/6ofoCrKgqX5w4PtEkKh
/N2IchWJBZOzlY75z4eCRiJHev0gM/4tdqtXtyAMTh039ewMY8aM98r5h9XD
QdrJvb0tiBnveFuQqmwSDqRnsXta7jBj14TFTy8dwuHDemPvB1dm/EFIqmU+
NRy0yo8cqjZnxkbTO+RXiPdBQ15kNVuVGasF3xrY1nkfFHcO+/hOEvEBOUd1
obAI4NOjffYeJWKNR6P2hRkRsOCzfZ/nIBEPu/x2squNgNd9hv3OX4i4l9RE
O7sWAXLxtWo2NUTM/k3bbelWJEhzPV8/+5iIOWvOt1w+EAU7Vy399uj828eX
6rlPMRp+frF6Xn6ciIde6iaHaUdDWaH1h1PqRMxTVRbNcDEaDCxtee0ViLjm
WW7diTvR4Nd+M/X1DiIeCdgfLtEYDd+zXPDhOSZs1TN53M06BjKNAgh6T5gw
G1QXba+IBSfZwF2DcUy4xaVz3rI9FtRJQScdo5iwyetRyZ4fsdCNgqNigpmw
ssTPJKmtD4Ftb5hot8O//1XmzQNvPQRbhiiNq5pMWPIJ4w9X+TjYl//Uz2mG
EWsmn9hV1BYPJ6uMea5OMOIJldl4w6l4sGjiStYdYcQz3VdPCBAfQcLU7Yrd
vYzY+kpFqbjKIyBKXV4aqGfEEWrfvyimPYK+FJEbp5IYsbmshmGWbwKERKeY
7DrFiG1/H9IKME2EZ6km45u0GDFD5l4FFu9EqCzgcaVrMOIQEQ93nJgI5OY7
MX1KjNg93nStty8RzEhXm6PEGbHGVSZiwaUnoBAoepxGZcB27NW25+yTYMjl
2f6ubAbst3cqJwklg6+i68n+dAasm+MwqDieDMJLJy1GkxnwWEirzVauFDjv
/jtu7iEDljiADuSYpkC7J9C4/RmwZt7irNpaCtT69jdqX2DALRXDAj0ZqXAV
Xo3pGTFgHfFu8YCKVFinB9GN9Rnw/pIJMG5PhUP+MgrXTjDgzXtOnPegpcKb
QO9EP3kG7HNcqq3K5Bk8D91u85adAT+5SVzP5kuDYzozAZj4b3/OEw+BfWkw
xF6T1EAn4F1E06NlJ9JAONy67csiAT8LF6q7554GcQ9KleeGCfjD46Ob7/Wn
QUiMMcvecgL+u5moeeNNOtgkRacn2RLw6TGTRdq9DFhg+ztM+ToB9xcvNOrk
ZYCfK6NDxxUCZm3Og/HWDIjXcz7EZkzAPxjVSFu3ZUItwbjdGQg4kNXJzioz
EwSvC9D/5iPgPcmj+3q6syCjvW10jJuAS2PjHQrpWSCnHvbJj52A/S4ci56W
yob7+xf23qTRUaO6TFmkZzaMxpRe0OygowW5+JJisRcQZ6pePOdNRymeqjLV
ITnw8mCB3+5bdHRAeH2fQ3EO1HKJnr5sSUccf6UyPRnNgVnEMPLRgI54j7SJ
22rmgtaud7zPJOjIwDGkWYD0EpZ+nrqh37qODp4Ul7ItyAPO95XKwfXrqCPh
Tn3ueB6Ip+xjqni7jlrFrFRDRfJBz5AnUfL5Otq71MonFJUPWcUdDTSPddQv
cFxyxqsAzvte+Oul+DrSsk49/LGsEDiwSn2iwDqyOBfY9qy7EKoZBK6Hca8j
/zFe3LZUCBLBXZmWKzRkv759WUnpFcyFn5UW66AhV3E3tVNvX8H9x7ry8f40
JF0yYDPY/hrgq0xHkDsNVedXHGtceg1zwpzOzjf/3T/OzCYp/AYupH4qMrhA
Qzsyx/Jkrd+AZJa2Coc8DUnoNbB+ZC4CXHQU/IbWEE1EQH/8fDE4L4kO2Xet
IQfFfuGi4GKQVCH4X2paQ2GiB523vCmGBxXVtYfK1tD3awuq0TwlcLH2sNZi
5BqKKzY42dVaAgutirq2sIbiVcj3pB3LIGvT1tnzimvoFLdOgmNWGVw8uxCh
vXcNDRZFxXkNlkFN1+u2XfxraF1Pjzpp+BYi+mWNBmdXURX43H2hUQ67p/eY
GiWvIsxjYZitUwnFQR2xtrGriA2/xOJxlXBMxLvJL3QVBTqsTvYPV4KZYZNa
ntMqygju8lK8UwVRpfaiLNqraPJb63PDT9Www5D/gvCRVbSW/dSsTBRBzhSK
PiC/inI2zfBmeCCo37GJ6YrQKkoTfuiStA0DNfDNWOmvFWRcUCCu9gVDyA4z
kZbRFeSdZXV6J2sN8JUSTUZ7VxDS3LpCVq2B/VPGH3jrV9Bbmml7YFoNWBhQ
cmwSVpDskdXZXX618ElYzVHo6AoyY2SYwC71YFIyli2vtIIE5Oj5Lm/rYVQ/
Ylh77wo6vD1yPIdeD+sBg2dctq4gZtYTbh1R7+DApL9i8yQVffC3YU5qeA8o
QNp+ZICKcphiC2a2N8Bp4c5MaicV/ZWXzH7YvgEs9XcJSFZT0ZQrzyu+HR8g
sfj9im8MFV0aqk/aFP8RpPQdFOLuUtHb2p9DoSsfoWiC/0auDxXp2tkovjL/
BC1CNv3dllSkT91NuKfSCKbFm7bNmlKR1KKGuWd2I0zolesRDalIQ6hu7pFQ
EzAGcGC5w1RkZTt+aZmjGSKFiihaclTEF8ldFBrWDMLFZvKXJKiImeSdPkVq
AaWJvLQwHioaEUyD4e2tYKdnEPx9hIL0JWWMTErbYP1vuc97eynIQOmc5neW
dojR5v3LtYWChJxHJOQvtEO5RhtmfUtBshe4z2CWDtBTK+QxzKegcVuLm2YW
HTCsGnU5MZ2CulO+UF1qOoBNwWBNJoKCZMYcx4nhnZAkK3fKLZCCPK85uNIX
O0FOhjcReVCQfOtxW9/rn8FEok35zD8UdIr8RtXi7BeYEisMeXKegjpipwXv
d3wBX5GoL6O6FGRS5ZXcYNIFmfwGzu4qFMQVwHY3yq0bDvHJ1eJ9FOSKY2Mu
buqBFl7eTaS/KKjdjr+upKgHLLh+XzkrQEHzS3augea9sMjelp/E9e890mnz