-
Notifications
You must be signed in to change notification settings - Fork 4
/
non_symmorphic-2.nb
3774 lines (3758 loc) · 213 KB
/
non_symmorphic-2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 217612, 3765]
NotebookOptionsPosition[ 216961, 3738]
NotebookOutlinePosition[ 217317, 3754]
CellTagsIndexPosition[ 217274, 3751]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"k1f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"s", "-", "\[Pi]"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], ")"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"5", "\[Pi]"}], "-", "s"}], "]"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k2f", "[", "s_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Pi]", "-", "s"}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{"\[Pi]", "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"2", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"2", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"3", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"3", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"8", "\[Pi]"}], "-",
RowBox[{"2", "s"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"4", "\[Pi]"}], "-", "s"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"s", "-",
RowBox[{"4", "\[Pi]"}]}], ")"}],
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"5", "\[Pi]"}], "-", "s"}], "]"}]}]}]}], ";"}]}], "Input",
CellChangeTimes->{{3.6538882379267893`*^9, 3.653888271237829*^9}, {
3.6549312506244087`*^9, 3.654931336967826*^9}, {3.654932035492503*^9,
3.654932046995069*^9}, {3.654941625404583*^9, 3.654941656499507*^9},
3.654944135292399*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"H", "[",
RowBox[{"t1_", ",", "t2_", ",", "\[Delta]_", ",", "k1_", ",", "k2_"}],
"]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "t1", ",", "0", ",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{" ",
RowBox[{"\[ImaginaryI]", " ", "k2"}]}]], " ", "t1"}], ",", "0", ",",
"t2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t1", ",", "0", ",", "t2", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k2"}]], " ", "t1"}], ",", "0", ",",
"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0", ",", "t2", ",", "0", ",", "t1", ",", "0", ",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "t1", ",", "0", ",", "t2", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "k1"}]], " ", "t1"}], ",", "0"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",", "0",
",", "t2", ",", "0", ",", "t1", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k2"}]], " ", "t1"}], ",", "0",
",", "0", ",", "0", ",", "t1", ",", "0", ",", "t2", ",", "0"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",", "0",
",", "t2", ",", "0", ",", "t1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t2", ",", "0", ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "k1"}]], " ", "t1"}], ",", "0",
",", "0", ",", "0", ",", "t1", ",", "0"}], "}"}]}], "}"}]}]], "Input",
CellChangeTimes->{
3.653506983066223*^9, {3.6535070527427464`*^9, 3.653507054252734*^9}, {
3.65350710422441*^9, 3.653507123179934*^9}, {3.653507160397455*^9,
3.653507239113866*^9}, {3.6535073132265997`*^9, 3.65350731713067*^9}, {
3.653888197652905*^9, 3.653888205177681*^9}, 3.6538882894766903`*^9, {
3.6538884499591913`*^9, 3.653888489705124*^9}, {3.653890618269978*^9,
3.6538906222519627`*^9}, {3.653890757371282*^9, 3.653890810328621*^9}, {
3.6538909657179956`*^9, 3.653890998486588*^9}, 3.6538910526358337`*^9, {
3.653891917678356*^9, 3.653891919335285*^9}, {3.653892499714284*^9,
3.6538925007034616`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"k1f", "[",
RowBox[{"s", " ", "\[Pi]"}], "]"}], ",",
RowBox[{"k2f", "[",
RowBox[{"\[Pi]", " ", "s"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"s", ",", "0", ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.65494396534168*^9, 3.6549439962723627`*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAAnX5iBjFkez4AAADCXIOVPp5a7DpX
IFk/AAjU1/K7cz/ZTYpyICBpPwCIGtHHu4M/d0dZDgUgeT8AyL1NsruTP0bE
QFz3H4k/AGkPjKe7oz+tgjSD8B+ZPwA4OCuiu7M/4WGuFu0fqT/An8x6n7vD
P3tRa2DrH7k/oNOWIp670z8J+ZvJbC7KP/C1yH4SkOQ/ccJ/jOxy0z+QfLYk
4IzuPy6kk9G0rtk/gBYvJMMr9D/lTmgc3zjgP9BSKbpQe/k/lxqGHaFg4z9w
zFtsI3D+PzlyuK8DzOY/FlVaUZjnAUDD15tQbyfqP2g+9QuVigRAlGJV9PUz
6j+IGhiJa5QEQGbtDph8QOo/qPY6BkKeBEAKA4LfiVnqP+iugADvsQRAUC5o
bqSL6j9mHwz1SNkEQN6ENIzZ7+o/ZgAj3vwnBUD6Mc3HQ7jrP2bCULBkxQVA
zLyGa8rE6z+GnnMtO88FQJ5HQA9R0es/pnqWqhHZBUBBXbNWXurrP+Qy3KS+
7AVAiIiZ5Xgc7D9ko2eZGBQGQBbfZQOugOw/YoR+gsxiBkAxjP4+GEntP2JG
rFQ0AAdAMmn8ZK1W7T9Kb9dG3woHQDRG+opCZO0/MpgCOYoVB0A2APbWbH/t
PwLqWB3gKgdAPHTtbsG17T+ijQXmi1UHQEhc3J5qIu4/4tRed+OqB0BKOdrE
/y/uP8r9iWmOtQdASxbY6pQ97j+yJrVbOcAHQE7Q0za/WO4/gngLQI/VB0BU
RMvOE4/uPyQcuAg7AAhAYCy6/rz77j9mYxGaklUIQGIJuCRSCe8/Tow8jD1g
CEBj5rVK5xbvPza1Z37oaghAZqCxlhEy7z8GB75iPoAIQGwUqS5maO8/pqpq
K+qqCEBu8aZU+3XvP47TlR2VtQhAb86kepCD7z92/MAPQMAIQHKIoMa6nu8/
Rk4X9JXVCEBzZZ7sT6zvPy53QuZA4AhAdEKcEuW57z8WoG3Y6+oIQHf8l14P
1e8/5vHDvEEACUB42ZWEpOLvP84a767sCglAeraTqjnw7z+2QxqhlxUJQJ2C
l1Pw8u8/FmrTNrkXCUB793Tw
"]], LineBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQvcnO5Fo72wd7cV2XkN+KnA4OU10V3YURfMciZ/c7
Ch/sJaB8Fx37yWw2CHn3Z1b3DcIRfPGuiklCSh/tJaH857rbXL+8+QiXNxRd
YHNj8yc4v/pPp/Geqs9w8w+y7fTrCPoC188u+CIzROsrXJ71LKs7995vcP7v
c2tzJhX+gPOfhq+TlJP7Bec7duTlnlj7G86f+m8Hp3P8Xzi/gtdudb/mPzg/
Wuawz53PCL6X6Yr1ZYn/4Xwrv14hwfMIfsTHl3FH7iD4pVPcVpe/QvBZnpUE
Bn5E8CeZL/6u9QPB9zt4WrPiJ4IPACoJnWc=
"]], LineBox[CompressedData["
1:eJwBQQO+/CFib1JlAgAAADMAAAACAAAAWR8a60MDAEAUatM2uRcJQCAWF/Vb
BgBARuNA8wAOCUDnPi7IyAkAQIBRF1M+AwlAdpBcbqIQAEDyLcQSue0IQJQz
ubpVHgBA1uYdkq7CCEBcXNCNwiEAQA5V9PHrtwhAI4XnYC8lAEBIw8pRKa0I
QLLWFQcJLABAup93EaSXCEDQeXJTvDkAQJ5Y0ZCZbAhADMAr7CJVAEBmyoSP
hBYIQOKZUch/WABAsn7dFvQLCEC3c3ek3FsAQAIzNp5jAQhAYifDXJZiAECg
m+esQuwHQLeOWs0JcABA4GxKygDCB0BiXYmu8IoAQFoPEAV9bQdAuPrmcL7A
AEBOVJt6dcQGQGU1ovVZLAFAMt6xZWZyBUB3fnhSIPUBQFjTwq2l+wJAheqT
087OAkBwlsCzx08AQEwqD6gMmgNAxHVEV46i+z+NrTbATGEEQMDJKgihvvY/
ylOj/HQ5BUCgueo0eXDxP8DNb4wsAwZAcNjkihj66D+yaoFAzN0GQKDqTkeT
fdw/NGJgyCbhBkBAMCcMSincP7ZZP1CB5AZAwHX/0ADV2z+5SP1fNusGQAAB
sFpuLNs/wCZ5f6D4BkBgFxFuSdvZP83icL50EwdAQETTlP841z/oWmA8HUkH
QMCdV+Jr9NE/alI/xHdMB0Bg4y+nIqDRP+xJHkzSTwdA4CgIbNlL0T/vONxb
h1YHQCC0uPVGo9A/9hZYe/FjB0AAlTMSRKTOPwPTT7rFfgdAwO63X7BfyT8e
Sz84brQHQIBDgfURrb0/7sFr/Y63B0AAS9TBm3K8P784mMKvugdAAFInjiU4
uz9gJvFM8cAHQABgzSY5w7g/ogGjYXTNB0CAfBlYYNmzP3J4zyaV0AdAgINs
JOqesj9D7/vrtdMHQICKv/BzZLE/5NxUdvfZB0AAMssSD9+tPye4Bot65gdA
AGpjdV0LpD/4LjNQm+kHQAB3CQ5xlqE/yKVfFbzsB0AADF9NCUOeP2qTuJ/9
8gdAAET3r1dvlD86CuVkHvYHQADAhsL9Co8/C4ERKj/5B0AA+B4lTDeFP9z3
Pe9f/AdAAGBuDzXHdj+n4OUUvPwHQAAIhuE6hHQ/+3ReMQ==
"]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAwBGIQHSkv9dqZmcOBAQp8Yw7bHWJF8OUuv2d+zIHgv/OU
OcnMg+DvO+DRp8KP4Peblwa7CiH4Bqrn7rZJIPgMc34tWi6N4F8UUs84IYfg
FzE0fOJURfC33jZk7zVE8K0mTTWY7IXgO/+PaZ5fg+Av6JJ6ydyA4P8RveGX
0Yzgb9MJljLsQvA1ojw3HpqO4PNsNb3/dBOCfyWLz1rnJYKfcm3/px2hnHC+
XWPT1kQFLjh/Uv7H3TzPEfxHDUufzd/HDee/Tt2ZcqidB87/kCvEfjaRF85f
53n6T5ouH5z/LMPAjPkrgv9ecLl76g8E/8cu2cjjvxF8Tl7umm4mfjhfZ+PT
g8ICCH7xz1m+KtoIPkMXa6prIoLPaVxTtjwFwRe686mdMwPBV9Z7sOpsHoLv
dmnXh9AaBL9XqqAmbTqCL7X61uT2swh+0eV5j9ZfQPBP/k4yvHEZwa/weX1O
4xaCf/3tb85TzxB8PbEDEZ9eIvhtdi3Lpd4i+Gb9PK7ZnxH8vu0XJk/+huA/
vT/l0e6fCP7yB09F9vxB8AFg9qLW
"]], LineBox[CompressedData["
1:eJwVzn0w03EcB/CfaPspXT++cmjTw0mohnAXR98P14OHSiR69rCTzl0kc121
riQ6hGmdp2uFykOprqgWWuuMxUweKy1XHiJaZ9hqSatff7zvfa+/3u9VsUlh
cQsIgnCh879rl+bqyo0oIIjMIe9LPFwh7cnjGNOWkbUmhnQ897VwMIJBe1H/
dMykENd4rThbZUZ7XeM1wedbmFS5PA2woe3DGatS1WGPqYLBj7a0Q6sHkM0T
HG2sNUlmUXAhbrXyfMRTLF4n3lOygna+VX1ktxjH82F6Yg3tYUMaU/4Ct7JD
1+dspC0bz3MfaMbp0ScrlMG0E8TOQpkSaw2s0vSdFIDfHE9wohMfFckLvEJo
W/u8zGW9wUEfWGl3wihYOfLJaYt3F7YIl0ed20//KeBKNl/txmXbWewN8RSU
qRPG3f378AtOa9GVixR8vnXay65iAP+ct8kNfk6Ba5Yi8ZfrMHZsLCpptzcH
wVCFoFKixp7clhDzLHOAA6m6xOBZLL2+zLpDZw5dVS8dWsr12FG6LHvXQQsQ
b/TnRYv+4J0L1eweiQVsGdhNaLERaFSjzW3OCDYphOTeMWNIup6LsvIRdKlm
buyLYkCHkf1UUAGC9QyWEzeBAc7xDe1mQgQC1611x1MZMOo2niYoRLAjo0h+
MYcB++SgKRIhkHF8NLXPGOA/M9tReQ9BU1qGnxHFBKuAA5kyOYLatdajNVIm
pNzXxGS2ITAL80usVzChy+Kyb4ACwTF+gl7ylgk5g3VaRSe9391k1qdmApGy
hNvbj6D6TIynwZqESZEUD48gKFPezQxLJmG7ceTy218QzP/spQ7zSbh97PuP
uHEEh1b/KY2/TEKUu+2DiUkErFMhD/kiEvpep7CmpxEUr9S+q2wjwY2zSP94
FoE+iB37qI+EPGFZL0+HIDx1m7rxEwmBR5TZej0Cy/ZioltHQmUz92jDHAKe
9lW2ijAFE6c5P/48gvd23yzHFptCTJ6AvdmAwCPQ8qbGyhQksw6//v5FcC3F
1+n3KlP4BwaATkg=
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGCQA2IQPbcuic0wpdqOAQrmRb2xCleItIfxb/p2FSkoZML5
5e6RfKwKlXC+2xGHmO/ynXD+2iaT5g/yM+H8h4nrxN7Kr4TzqwOzE17L74Tz
OX/OPpmjdwrOLzxU3/Om6DKcr7dk8sUt627C+U/9MmTuWzyA86dLtckuTHgM
51sW7VjPfOYZnH/4+uyAfPVXcL5hzz87Cc+3cL5R5p+UtWEIvonbry6nFATf
jOHbtZx6BN+m5G3ewa0IvkfMnXlZSu/g/ASdXf/2/Ebwkzh3qARxvofzk59t
9XouhuCnLdg4TdAIwc8RWamXloHgl/+ZHsd/FcGvuDm1ZckjBL9q2+RVlh8Q
/LlN04M/fELwAYEqd90=
"]], LineBox[CompressedData["
1:eJwVyX1MzAEcx/GTfr/7XfJQpMSOYuuBih5ox/p+u/SwxtUlXSNRVstDT0ad
6+bxdnlI6RSxODEVSZJaHkJhimR6IkuJVTpnulPKdff7+fnjs89eezvEp0Yk
mHE4HC92//+en3d3NjkKHEo5IFDsh6elQblyS9aR+ZKll48DFgY6BM9ljQ+P
2YTkgv++gODeJaxJpdbYdhGadgg/lTqxltubZSxTgzDMPzndnXXmh9MT667B
+hVwjlzHWrunJE1VBsFDgv6VEta7QxOr+dWQ2NGpzd42CkfON+h3bLsHimcp
hr6drJtWHp5TXAONl67ZnEljvdC2KHVBHawNs9gwcpJ167cWt3mPwKO+p77k
8Sg8u/BkfpeiCWxPSVXWjjpAg0QmlrXCsFtd4JhWB1+2v1xyw/MjZBlPej2W
/YY0Y216We8gcK2+74p0HYezVEWlr2AUiLdE8IyGP+AbXvMkfvk4TLVV7lWl
T4JxamDTK6UBBiV3FvD5Bigv/ulk18KA/4mU5ObKKYhosLOURJthIV3PC9hu
gpi+jUEwjUBLp5cphQkm2LI0Nd1tBoGKsPcdw3tYJ50tXmhD4L6rI5dzpCaI
1rfrJ5wJFAntPbvzTRBBRqvvhhNIKrO27HphghD3+EmHqwRKZ/pV5LnQ4H0o
45Y5kPjLJ3TOVw/Wzy906UNITIyNOuC9mgZP6gFnIILEyKoU6BHS4K6aimpI
JHGVWN3hGEPDitIj0zNySdQUcIy1uTQ4tp2KGf5M4tZFzzf0/qZhFl8967Wc
i5pknb7WQENnVfOdnGwuSp8uvpg3jYFL/npRmIqL5+Plg8LZDDgnBOZ1lnGx
vdzn0E1XBtbf/jG7v52LoT7lVRlxDMgFvlZjzhT2KLs3hyexvTWuus6LwqSP
5kaXVAYsYk+LD/pRqMyKC/ksZ6DoaF8+vYnCpkb7gYAiBu43K6x5hykUiM5Y
W71jQBv1fi6/i8IW9aN6TRfbvxtqvvRTGK0biX3Ry4BMtizyuobCIaEdceUb
A2gpGksYp/BAQVBFpoYB6kpmgTOHh+ZD+8ViHQNtHiXePyx4qFpzfcJ1koGC
xtedlTY8FDW+cZH+ZWDe7o7VD2x5+A9acICo
"]], LineBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHSkv9dqZmcFBQtcl5Lcip0PZhJi8RQII/hTjnbtC
5RD8C5VFwXssEXyeA9pvlEIR/B2/nhXsO4Dgp5ou+hqpwwjnl9dVBCl8RfBb
X02+fO4cE5zvo8W/gmcWM5zfu9bsgE8iC5x/KnjxnxJLVjj/wNn8Hh1mNjh/
U1ajw5m7CP6LqAQbWU92OF/O294ibwuCv4hxcWLJWQRffQdbd9UzBD9r8o75
fz8h+MsfPBXZ8wfBBwDr8m/P
"]], LineBox[CompressedData["
1:eJwVznlI02EYB/AfLt07nZstrZxWikWXmlIts9j7gM1UMqKwVDpUNpmWTmao
4YKlNtMypanRKmeGLDo0jZVXeUJ5zCPH0pV5xBQ1c2mGx9De/nh4+PDlefi6
x0hOi6woivIm839HbONOB9AQOMb382o3MSD0fCu/xRrBn5fzgz/YDPgV7NpO
YyIQDtWkHLUg8NnRPaTYjCCIH/B6Ro+AerRcpnFBIDeUrzp3Iujj7BR/2oqg
JhGFBjYjkFLyOcYOBJ5q3WTJKwTar770PF8ETCrc45QCgf+9Ih9lCIKu5ivF
1YcQBKydz1TLEIQLimWpKjqU5nInaXIEbQXmsJ58OlicBk6KMxH4fQvZt/Mm
Hd56nuH65pL+yWujBgkddkUGV7XcR6AvFR/nCejA1B4cNlWTfxZ/zsKsDejj
WUc8JxFEvRnWSAU2IDQ0ztWEMUDsvrs/wbwO+DcytNFutqD/rn7YnGwF9yS/
65kTttDr/uyYmkbBmLx8XP3BDpJE/ucaG5bxtKhW2JLNhMXgn2ilawGbEzh0
XbQ9iDtSeRapGVcEd1pivVjg4FKcnzQxjsfFPjzaAgsoiXWcG8+IZ9drjosW
WSBPmHrvPDqIF+u2RHxcYYHblR7OhjuDmGFvJ7ttxQZ53IMG67EB7Fllat7g
wAZK6OUwnfcFJy+pQrfvJY4Ie6c16TGVay0SRLMBFCF2xXt6MGO/LEUjJPeZ
jtpb8m7M+TaXzRCzoUn+/WK6QYc9vEee6xJJni6tjsrowoGf68xhMuIkVcRe
YzvO4ybJYu8TR05pmnLaMPeFUZmtI77gmGPoe4Ol/SVjlb3EQaqi+MJq3L4S
4zvQT/occCtbPVuF005Md+8yEjuFp4TWvMJfZlYYHePEkmzjTNdT7L2xKXxu
kjhQOe90+glW8LM03BliP76zrOIx5uUzBZfniQsSrru2KvHdd71K5V/iNNtL
g6o8bBouHKtfItYfbr1WmYk1IybHBgsxUoz6Z13F/wDSDUCu
"]],
LineBox[CompressedData["
1:eJwVzn0w03EcB/CfaPspXT++cmjTw0mohnAXR98P14OHSiR69rCTzl0kc121
riQ6hGmdp2uFykOprqgWWuuMxUweKy1XHiJaZ9hqSatff7zvfa+/3u9VsUlh
cQsIgnCh879rl+bqyo0oIIjMIe9LPFwh7cnjGNOWkbUmhnQ897VwMIJBe1H/
dMykENd4rThbZUZ7XeM1wedbmFS5PA2woe3DGatS1WGPqYLBj7a0Q6sHkM0T
HG2sNUlmUXAhbrXyfMRTLF4n3lOygna+VX1ktxjH82F6Yg3tYUMaU/4Ct7JD
1+dspC0bz3MfaMbp0ScrlMG0E8TOQpkSaw2s0vSdFIDfHE9wohMfFckLvEJo
W/u8zGW9wUEfWGl3wihYOfLJaYt3F7YIl0ed20//KeBKNl/txmXbWewN8RSU
qRPG3f378AtOa9GVixR8vnXay65iAP+ct8kNfk6Ba5Yi8ZfrMHZsLCpptzcH
wVCFoFKixp7clhDzLHOAA6m6xOBZLL2+zLpDZw5dVS8dWsr12FG6LHvXQQsQ
b/TnRYv+4J0L1eweiQVsGdhNaLERaFSjzW3OCDYphOTeMWNIup6LsvIRdKlm
buyLYkCHkf1UUAGC9QyWEzeBAc7xDe1mQgQC1611x1MZMOo2niYoRLAjo0h+
MYcB++SgKRIhkHF8NLXPGOA/M9tReQ9BU1qGnxHFBKuAA5kyOYLatdajNVIm
pNzXxGS2ITAL80usVzChy+Kyb4ACwTF+gl7ylgk5g3VaRSe9391k1qdmApGy
hNvbj6D6TIynwZqESZEUD48gKFPezQxLJmG7ceTy218QzP/spQ7zSbh97PuP
uHEEh1b/KY2/TEKUu+2DiUkErFMhD/kiEvpep7CmpxEUr9S+q2wjwY2zSP94
FoE+iB37qI+EPGFZL0+HIDx1m7rxEwmBR5TZej0Cy/ZioltHQmUz92jDHAKe
9lW2ijAFE6c5P/48gvd23yzHFptCTJ6AvdmAwCPQ8qbGyhQksw6//v5FcC3F
1+n3KlP4BwaATkg=
"]]}, {}}, {{}, {}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 5}, {0., 3.1415926535897936`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.6549439791017447`*^9, 3.6549439966648893`*^9},
3.65494414326235*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"signconfig1", " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
RowBox[{"-", "1"}], ",",
RowBox[{"-", "1"}], ",", "1", ",", "1", ",", "1", ",", "1", ",",
RowBox[{"-", "1"}]}], "}"}]}], ";",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t1", "=", "1.0"}], ",",
RowBox[{"t2", "=", "2.0"}], ",",
RowBox[{"\[Delta]1", "=", "0.5"}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Eigenvalues", "[",
RowBox[{"N", "[",
RowBox[{
RowBox[{"H", "[",
RowBox[{"t1", ",", "t2", ",", "\[Delta]1", ",", "0", ",", "k"}],
"]"}], "+",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"\[Delta]1", "*", "signconfig1"}], "]"}]}], "]"}], "]"}],
"]"}], ",",
RowBox[{"{",
RowBox[{"k", ",", "0", ",",
RowBox[{"2", " ", "\[Pi]"}]}], "}"}]}], "]"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.6549448058353157`*^9, 3.6549448159038963`*^9}, {
3.654944850443576*^9, 3.654944868357402*^9}, {3.654944912663066*^9,
3.654945014196381*^9}, {3.654945087728342*^9, 3.6549451083872337`*^9}, {
3.654945173301395*^9, 3.65494519726422*^9}, {3.654945254948614*^9,
3.654945353423729*^9}, {3.6549455095307627`*^9, 3.6549455096186113`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw12Wk4VP8bBnBZZsEwKTOjUrYkURFR6DypFJUsWYpKsiRkTZLKkrTYU6KU
FmuIStZ0yBayRfaS8CskZCmk/+PF/9Vcn2vmmjPnO+c837nvkbR2MbLl5uLi
Cl7ExbXwyPOGv+6rqv822b/9A93eTFKCJSG78uYxYl6L0rLgye4I/fYoF8Jh
y8kHC3Zuo5UvzjxLNI0L6Cy4Z/u73ldRl4h+l7GqLnRqy06uzMJA4kEeR27B
1vyrw7kyg4k9rf4nOtErCL6Vxgk3CNs2hfMd6BaP/vTEqHCiolrMpR29u7lX
3Lc0kvB7s4doQz8ZMbJNLLxJzL/LH/qI5qK/Ta97eYto/efk2YI+Ir1pYjoj
hqCes27/gC7QeqwhmRxLvD0Qt6wJzTJfEqiXcJe4kLBUvQHdEPJrcXzUA+KU
YiO1Fn37Q7bC1/IE4l/GkoJ36LIeh4azpQ+JI0qxeyrRkrPt7IeFjwmrXueZ
ErQBLapQNe8J8cTutfgb9EVRvWPVLxOJuTgD8SJ0x4aCpF8ZyYRyh3Z2Dpqm
5a53NS2F4NJ/tOs5Wk1PfmRFcipxd4fOq0x0tE2cqk7CU2LPA0uFZPT+WJ+y
O1HPCCPeasfb6G3GYi9v784iRq0P9kYurNehSb4v5VlE9MHVqqFoHvuM1DOl
2USlzD2XQLSVv/jY/cIXhJjtgNpp9HTwH+3vW14S2WqZESfRYWEt0ZvyXhLP
4U25Nbrobqh61cscQtejuMwULfbq76WxjFzCYLcmSwudVdTeqKGQR7DTzA03
o/e8zZG+kpZHHDxXcnID2qvBuXJZcj4RKe2jIIluGuwW2plQSGTciqbyoENW
FcffjnpDNAx3CZJnmaROzV0lkkEST+zDdV+hK66YL1U1IgnPAhPLdHTl38b2
lZ0kceubBO8ddNVQmc34cAmhsqLS0hldXZnmE8ssI17yCWxiovUC7Y8ImZQR
QSkWjTwLz2+TgcDYMsI65v2uaS8mWZMTz+csVU4slxXL7kbXPo6IAJUK4qjp
qcgU9PtLXkn/mVURNJ6Oc5vR+hqbrlneqyLyRfJ81qDrpn46NvZUEXbsKkPO
gp0dlAod3hHv4gIC/pxBW1gWhZ2vJjp9A0by0Q1q2k2qD2qJ+0NvxpTRg9OU
f9s9Ggghi9OZfJ5M8p/0/jK1mw3E+cJNDeMeTHKpwc1rii8aiLIfT99/RhMp
q5aK/WogNDvzLfLR0ebqa0fdG4nSHy5lp9Db8h2M77s3EUkfnd9VuDPJSJ/a
5Bm3ZiLsp+/TE25MMilJxHk0spn4L2m7zj50UZO58kB2M/Hz/kCRCnpAvr+o
cayZ2JvWqsWH3tr5tzHFrYW4uD4w7Ikrk+zT2DBn6vaRMHd1depyYZLqfyMN
Xri2ERGVWbJKp/H1vqdiaBFthNs35feiaI1Z7U9HnrURVSxlwxln/Hx/fjnS
RtqIrqbMsVL0jkmT4COO7cTnD83RRmj9H2LFVLsOwvi0h62jE5O07X64ztKi
i2gy8dcKPMUk7Sx93LN9uohVqUYxJ9AnO43yKXFdhIXf57od6FPtPLuz27oI
KWWVVh60a4utNcW0m2jw4tsf4MAkfd+vjc0y+ESwwtbXe59kku8+mQdyS/cQ
m8cPa+2zY5Kmteqii1R6iAguAZ3V6L58TvK/nT2Eskax7LwtzpdbbdVzdj2E
0bOtrs/Q6nvNRabTeogPuV+lmeikXLOHQ8pfiIE7b5nVJ5jk5QjTN83avcTt
gO9sieNMErQPziZZ9xHis9UPTSyY5G+WnFqgex/xo3clvxw6e2jW/VhAH3Fl
i53BzGEmKXXr8SD7UR9x2bfL6z6a59t4+9UvfcRz/vJ1/Yfw/giNzDtl1U8c
W3pR3ckc50N73Zn1RwcIEcuJSSsTJnnYVXc059A3or7lRV2/PpMslpQPIBOH
Ce5bm5+JEkzy4B35x92nR4m/L5a/36PIJJfzvd4RYTdOuBf2KxYvY5LBm8qf
k1cniHDlcdckXia5a7eeVdKVKWJEu68jtkuYLL82IXvZ5zfRZX8jqztDmBwM
XVr0+c4MUSzTZWLsLUweP5sdPho1R0jA2LDyTmHyglSZ0qXceUKt6Xg5F78w
uX7+whS3Axc4URuS/9YLkZVHzH9J2CyCZt+YlkVxQqTSfefWC57cMCJ52uud
lRC507DkcI47DyRe3F8woShErus/UL7uCi+MKgTzu84yyDYHhXDb67wQ9GdZ
Zc4Mg7wyQjv0IIwXbkSI/Zj9wyB7pkuGRWJ4oara4+y13wwyml9l6UwyL8ya
OkWnTjLIuQ2cE1XveEHopKHd/E8GWefTw2XL4IPUexay830M0p3ppnk/mg9k
1oWt92xgkINh1a7hd/jAzOvD9956BmnNkEn0u8cHFXNpK43QhvytjBNP+KBp
y/sppToGuZFX6/Oal3zQf3GR83QNgxyZpgVkf+ADpsFUY2wlgzz1OaGyTIQC
GxUzLhJvGGTvkZnZHBYFpDoSthcXM8jDXcYbk5dRoEyo5YYWWredEntNigKn
ZtJytV4zSLkPTqf0lSmgEJXjvbOQQQ5UqDPaDClwwrVnzjGXQZ7IbDAaiqDA
Il63gdVZDPIopzJA6RYFlphMzqc/w/cPeP38bCwFJEZelaugDUzTRHgfUYAa
MnhMJ5NBas4HNq14QQHpvopmt3QGuVRfzUi/hQIno50VBlMYpHCeYkB0OwX4
a6asfdH8UjLPO7opcKDH4YAwmmuKKWI/QAELt//2qiUzyOH4wcZL0xQYimf1
hCcyyLIf8YbZYlTIDJLpOPGIQb4xi/afFqdCd1h64iJ0Qcn1bC0pKhAhO9cn
PGSQWbfOLq6Wp0Kc5CHvzwkM8p6WYWOvBhWiDvfO2j1gkGdCeQ2XHqVCQ1LR
irh7DFJW0dHg7CMq8FFvBN6MweNHfBr0TKICS6P7tj76+YRhkHsaFTyKCg7x
o7WK1Aucn1Oh2HDjz8DbDPLgXoqMTSkVBvPDrS7dYpD+Dg+nDXqp8MXLMibm
JoPUeb80Sn+ACiUqM6VH0IJKVxX2DVJB+oTmIxn0nd+nj+8ep8KMX7zvyygG
mRmsWaPFTYNzo+rJXZEMsiux9b68FA28gsp5D0QwyEf0vVvkZGlA79MPkkCf
dC7+sFqeBifiBovGwxnkL5VEmqQyDd59Wm4Ui+Yvc3dna9NgbCBC7GcYg2xY
MyAoqkMDWbluswr07RuHkkX0aLD3bKb+fbSkMXQxjGiwO/GGnQFavZehw2tN
g8/6r3a8DmWQ87v8exbZodVf6cWhy1InfP450CDz+kUBb/QBt85nM240uFc8
W6CKtuNKFRvzp8EWdlBLfgiDVLBZ8XIkiAYTGmmZ99BjleH6w9do8C8yTdsP
7RvuFfhfJA1SInLv6qJvrtz5o/shDdrclEX7bzDIV7Xfz1Ym0sC2OV+jDt3h
E86dnUoDLnYWKw8t0drBvpxNg8RjuwZD0TuC/B4559Bg8jHz6zm03SZZRbN8
GujsfBxhh04Pd9OWL6GBBsWFXxtdr8V+v6ScBjJX6z5uRI8PFZn9raLBn9Xa
5hLoLXtozg0NNBA6nOazCG05lTGd30yD8w5vlv+6ziD9nhgHPG6jQcGVte79
6AquBzFePTQwe6VK1KK/Z+6UsuqjwVrj8RwSLXhkMF33Gw2MRbb05qA3CkSo
bRqmQZelaNlTtHG+aumKUVyvrkiLR2gv+859lAl8/kJeSiw6TtS/9ec0DXIc
o55Gol+/lbVun6WB/RI5m+voHrfa4dJ/NPCU8m8KRPNIuJ9N56HDyJUnUxfQ
snVs7ttUOux0udPgjdbzfR1ySYAO2/WsrTzRzvIn2A7CdBisoCS5oiPaaI+M
ltDBo/naQ2f0yyuZCppsOig8GjFyRLeqHMxdvZwOXg/UChzQM71/tguvokPB
ebvWk2jxyAe1v6XoYCPrm7ZgIHaZ9crSoaPOe9PC621+DH6pkadDSJ+F+yl0
8N0Ip5z1dPjAkrF3Qqfpbp6+r0wHKZP6xS7ouulO/6ub6TBRd9jdHT2W6C/o
vpUODb9Kr3qhlx5cE2OxjQ4OHjwm59Fq3O8ld2nTIVWL3eqHPpzlnr5ehw7l
Ab+FgtEXjnLUOHp02PEiYS4UnSBYXLJInw7r/WgJt9BvC07sGzKkw6rONX/i
0QMn6a3NJnQ4MjVJTUYrlh8cTj5Chw3nz+oUog08Zrwij9NBKEzUqwLtKZmw
6LwtHTgv1Sya0AUXhlj6znRYYtGyaxjdvS7yoZobHbgiVffOoLk6NitInqGD
786vfHS83nQ2B2yf8KWDj+23ODm0Q9+a2m4/XI+4lWe2oEOi3ptWXqaDZOcx
3r3oDyMcp7gQOhiN5213RVslP7sN9+jgbxGl+hZN2T6+4lICHRinacmd6IwO
lcevn9Ahc23V8AR6hlHwbGsGXg9TSRNr8X6M9iyrUimmw5W1W8fj0VuFqAc8
Sunwo9OS+zX6S7JuS3YFHagDL/q70Os7676sr6fDE4/jq1fhPKja3j4j10OH
qfMqlzPQpzuX+9v30cG+32ftB7TomaPUpG94/oIPE/6grVO+LpEeo4NiZT2P
Ls6jOaERBXFufrBLN7szht7YxX1ssQw/UJX+1DjgPPx4Zlf/ATl+KFGUPnsP
fUH4qmOYAj/s+FQzWo+u1mZ4C6jyw8a7CfpbcL7apLIj+XT4YeStWYYozt87
Xgpv/9jzw+sNS4smcD5vY7roqjvxw0dCfqNKNIPsT82u93LlBxs4c9oTrdy9
ueuXNz8Qbuf2TKNrd2yf/HGNHxRjcx0ouD9wLTZd0/uUHzq4dZbp3WGQbk9E
OW3P+OHOPuNfEehetRZa3Qt+iAeKdxu67OjBwfxCfrhppRnoEMsgr6UbZUTW
8MM72b47N+MYpMieA5u2D/FDbajUJWo8g5S5tIdIkBcA5ZtHBJxwP7wlQtt4
e70AjG+eKK1EU5IqJUKUBUAuZvUKmccM8lutDrf3VgH4ojmV/QmdsWxX+QE9
Adiy7spxC9xvN7/avvefgwC41mf5ueP+rPtjq9nRVAGIXhuiIIr7/zanmB2p
GQKwTkLmdShaeejXholsAZhwiP9Lwd8Py76n064XCEBkonLILHq4b2VBTo0A
lBZXNA4/x/nRxS3OGBGA+/e3hPx8hd9XTXVvobIg8HWs4bjj7xubtMOnxYoE
wXWLmc3+Jpz3Ht/1DEhB8DC92TKIpml5rwkuEwT2muX1Vz/g/K6/1TNRKwhL
cobNK5oZ5MREg1FDtyDYpDzN293KIAOJ3WrB/wShxF5Y6UQX7p/Nm7gmtRlg
bl+9+88AXq/zglEN7xignRWidPkvrlfF34PW5ULwiMgbSVsnRP5zXvtP+aMw
qB8NXKlgLUQalOnKuJxiApeb+c+0GCHSUHxPvfZ/TBA36WzRfy9EFg18/ZFz
ejEIu4VKZVGFyfPfV1qyfiyGlAZzRUctYfKx5bQWy0sE5NKNhahewqQE3cWF
Z0oETFXGCvJShEn9RRuTT3ssAesvx4u/tQqT/Q5hRudml8AqgeEDQzyYFwVC
9rv5LAXv9T7itzlMcvXKNUU0XlFQFzr27rcCk5T3FVBaeUMUFGXWFDZuw7yx
JHxSgs6CrD6dApf9TPJxjMvFHQIsqPU/+CwNXbrcgGrHYEGC5uKL/WgumcVi
TxezQHRlYMphzAe+Kjc1VZexwHBF7sYdB5jkGZOYQN11LFj17iudYYj5K+bB
Yvf9LDgwb1UUeJBJ7l6epfg2kgUzntvF5jCf7FtR71hykwVPQ6WY8phnDMRH
Ut/cYoHw+dg+M7T5KgXZolg8nr2G7Av0KemUlTkPWTC3dVzgpCWTDFmXIJyc
zYInH/cerTnCJJs0IsauN7Jgi6IRzduKSX7UfLbh2gcWrJBJefoQ3alV5xzc
wgJjr/UKNeg+QnAwsJ0FtnpkmTjmrckdV3t9v7AgYE2ScQmas8/vw+kxFuxT
Ge1fhPnsqKVrjtFiNsTcL6s6ifktMiBlSGcJGzw+2RuGostSeiQ1RNkw5w95
2Wj5SYMwaTE21EtdlZhBT4cq2U9IsGF/ooLFNcyLEW/GObc3ssFU/LnXQ3tc
b6kzvu0H2MBW9dich/lzck/G8/eGbAgeUfZvQ8u59H8rMWbD8nOfUn+jwwpN
TNLM2FByfjRaHfOrxcHN688fY4PM8vLGV+iJoOnPK1zYYLTWqi/dkUnKfj+3
wyqMDZ2E5bFLmJ+XB/lNX4xgQ7WU8dt4NFMy+Gl8FBv+6/kyX4j+Yx69pPM2
G2afvJ6bRtdWZX41ecCGZr71S05jXndP+Rq4N4sNx/lmU4ww3xfb7y/b3MQG
lbuaDn8x/7/gOeht0syG8ccjhSw3Jpny4LCC50c2PLo30b8BHdlqH53dgedf
PPHmONpmd4CNwlc2PBGPvPEWzb8ml1dqgg2nmh9cuuTOJM0GJHYxWBwozRyq
a/Ngksr/bDOpHA7kZ2c+G0ILcp6yuZdxwJ+3zWkeTeqqDk6JcyD6lbmvtCeu
X4ZueM9qDry6P/rTEf3bw739hSoH5ic85abQTSG52plqHAg2E66nnGGS6Ylz
T1O2cGAs+q8hG23VeuVivBYHTpo1Dquh3229Kx28iwOql9S9zqLjFpU5Hzbh
wIyhZOtPtOcyeutBMw6kFl3Qnkfrb9KHA4c4cHFM/LqgF5Pktm0T2XmEA640
2Uw5tGPVcK6iLQec7mjoHkNrhotyLzrDga92+dXlaFbKYcdZLw6Ixnz704ge
JR80T3pzoOvTfr5P6Cfja5MHfTkgeDc3axItaLptX/NlDoRFjh+SPssku1fY
306O5sDfIJvJs2jT1Zr9Xbfx89EdGYHoBsXFKiKxHHhsXf07FF26rbDRN54D
tawI3cfoFCthhlESB4gvqz7UoCUd+iyCUzjQdqAlqAUd55afVpTGgaVTXQKf
0aEBJ/asecYBy8+fI8fQ7k9yA+dyOVCT/CBoqTeTHEoPaVIq4MBKraamFWib
nOOS9kUcuGxs+EsGbVYh8KaR5ECuk3KmClrz27GZpHcccJ45LWCEfjWqottV
w4FuuYlxc/SGP/Q7i+s4sINWknEMLcX/UtW3iQPKrzbEO6GpCjQ3w04O6MYb
nbiM9lPpfnOlmwMCdGr/NfSM5nOhos8ciNL4tyUcPbzfMl22jwN8O/OPxKLt
TJVmLQY44KPno3Af/fkoRS/yGweyvS/UPVroK12y/psdxu+reU/IU/Re76DN
Sj85sMiAmfJsoQ/2OxxkN8aB7aGcmBfo3Ehe6cZJDrwRHhwpQG+Ma3ej/OZA
U/Fzs2J02qNMUmOGAwk8hTcX+uJ7L8yPJs1z4JDutaCFPlm0SDGjk0sMchr0
NaoX+tgy7jkmjxhkzRiVLfTRtPetejp8YuB085ZEPdq/JT32PFUMHp5iGTQu
nG+3/7csuhikGbcYLfTdngOmagMCYnB0dZPcQh/+Y2TdleVCYrCtQLBpoS+3
m+ZqMWCKgenoZf2FPr3nX4v0FRExgNSt9xf69kO0p+6FS8VAqVqxZKGPb2L6
lYyyxGBA42juQl+/T8yEKSsmBrmDNX4LfX65pPwxi+VicLPCS3yh/98m/y8j
QlwMfpceDV1wnnLzXPkqMZj4GNiwYCWN1L2zkmLw//8X/gf0ADl0
"]],
LineBox[CompressedData["
1:eJw12Wk4VV8XAPBjuMe9qJA7UAnNSJlKwlkUojI1kGg0pIiUIfknJCkJiULI
kCFEUabYicgURQglU+ZShkh5tw/vJ8/vufseZ6+999p3PUvqhJOpDTdBELVc
BLHwl6eUv75HxUdzz2xNXdE4gSRZkmsl7hylCC/B9AVPdoYYtoU5Uc0uDZoL
dmylVwhnuVPRfeygQuwurbfdz8O8qZIv3aEF2GnNO4msIj9K55yCcT72Cf41
t4msACosi6fyOfZyiiaxL/4mVZt9aCoXu/l8X0Zy2G3q1l2lz0+x9Zq6V3iV
hVJc3qGXs7GTxkxtkovuUDN3zrdkYhOM1xn1uXepjPm2gXRsq1VKE9OZkRTj
Z/nTFOxCjcTtUin3Kfc4ZZUkbJb5Uj+D+GhqEjY4x2M3BP0SfhAWR320SFhy
DzviQ45cT0U8NXN43YU72OVd9g3uZQ+pwhOKocHYUn/a2A+LEqmX5e0TftjG
9LAilfwkaned5/bL2JeZBkerc5OpMZWHah7YnzYVPvqVmUKdzPU/cQabruFi
cD09lfodvfOmNfZWA5mx5SlplGpAkIMVdrh1lIpu/GMqSLPA3BB7733P8nth
T6gkeniLHLbmPrHcCL1sqrsitXzVQrwOTdK+VmRTq9MMTotj89hlprmW5VCB
+qpfSOxjPivGY4ueUZuqa506fhBoOmBGe3BbLmXuZCnViB0c3ByulJ9L2flc
vlmBXRx9S7UqN48K7/cKzMQWe/7XezzzBXU72EPOEzu7uK1xu1w+pbg/J8EB
e9frvFXX0vOplJ++jUew3RocK8VTCqiVehPm2tjvhzoX74wvog7IblhCYget
LHkQEVZKxbUViF35TiDdmmgFtAhRuu8k7jhgv7lmLqpiiqhvFx7nm2NX/m1s
k2hH1LpGLfpm7KrhcuufI68oG9Xggk9jBKquTPe8L1RO2QmwbCWxDfzsrBYf
KKcETF4k8C18rrka/O6XU6Xy0TfHRglUk/eA5ihdQanvUTxRhF2bGBICym+o
kowmaRPsOm+3R9/MqiheMveXwwiBDLcrBVrGVFGn1jhPGmLXT30/09hVRdXK
hyRuXrCjvUKR/VvqgQqN9msY+7BlcfClaqpohrfzPHbDVu33KnG11LYW7x6b
IQINTZPzWucbKKnnHZYCAwSaX7W3fOudBuqXm1183zcCiRrfCdz4rIG62W4W
XYpNpa4UFfvVQPk+P//CBTvcXHXDD5dGyrf9y/XmfrwfCuz3xbq8p4wy28Nu
9REo1LM2ZfZcE7Xiy8zBym4CPXok4vgjtImq2OsXdA+7+L25Yn9OE/VZo+6i
PXa/TF9x43gTFb7/ySV+bLX2v42p55qpX5bkCv2vBOrdvmnu4LmPVHpXV2v+
FwKp/g01fubcSq26fXzviQ483ut0JD2klfrSYBMli739j/Znqyet1I2N1gkT
7fj9Zn6doY+1UqXJVj3+2DsmDwRYnWmjClLSNiR/wvEdFSvhs/1EpXT0V39s
JZBN50NZy8MdVNxj7ktkM4FsLT1dcjw7KHXTZPnKJgKdajctIKM6qFyi9EEA
9uk2Hr2c1g5Ky/pUFh+2c7PNCfJgJ/VglD+K9wOBvOo23M82/kzJLreKHW8g
0NvP5n7cq7qo0715nvdqCXSwVpXJpdxFreRiBRlg9xZwUuZ3dlFH3bz2ztXg
/HK3tXrOtotKPOLadQRbdbe5yHR6FxXlVKknWY3j+8Ls4bDiV6pOIUAqvJJA
V0MOljZpd1ObaB82QRmBQHv/n0cneqntU3d3PH5OoN+s9Vv9XHqpngoNUWPs
nOE/Lkd9eynB87XxE3kEkr6bOMRO6KVoM/mj6tg8Az/brn/tpWyYN8yqn+Hz
cSs0//SxPip//ZxzazbOD231rvJH+il2/sDwq3QCWTjr/8g7NEAlPLZ7UPMA
5+9fIeL9pwcoJk942EHsPtfWnSyvAapw3+S2rzE4Xpfs7rvFDlDh4j5xk9EE
unbNX3trzwCV+rP/jXgUgZ7FvArPdxik8k8fCjkYQSDBt9u2FXkPUT1mew+H
B+Pzvdvn5HDIECXurJvBxI6sr7q1LGGIOriuLTviFp5Pk1n3pfIhKjVztiky
CMfvi+tNdcYwFTvneSPiBl7vyZzOl2HD1ITUbK7/NQLJeMzwjSUOU6eLZHW4
sX/MgqJE3jDl9zA/8LI/Xk+i4drllmFKRYm12e0qgcIExjZRy0eoY9+oX8d9
CWQerGLhtHGECmQ+XtfhQ6AVwv9djdMcodzsPwodxE5lCbbNHxuhrpXEc+lf
IdDZ+/t4NruMUOIXDzHKvAmktDx64zG/Ecq1lvZGDft3bLdZSPgINZL9dOuz
ywQqkZLxRckjFCHjeEQWe7ZOzTH++Qi1KTt8BeDxKp67za9UjlCOy+y4y/Dz
M947yMPgCJXwXX5/pR+Bov2efCqVG6WmeIwFWgMJ5NGnrFT6bJSqKrc8Jozj
q5RG9b58NUZ5nLvq1JVFoP33ZBI7z/6glLTXNX7E53EZ7eWOENuf1PfXqmGC
OlwoQKniKbo+QRV48A8ezeNCOnoGxx5dm6JOzbl07JbiRhWBE2uvev6mUgfz
TYqDuNHQLdHiL/dmqWP3TCs+cvGg4+45t3+EzVElvTJO9md50H/S5QreL/5R
CWpNfvNfeZD8v/+muO0JiJnRuvXdiBdVWpn/krTmgi35Nom/c3iRQqxjy38X
uIFxvJi3nklDO01eWeS58MDTcVdn7TM0JNtnVCF7jRfCIrtS7V7SUKu93G2b
G7yQra4ZGVpCQ9fG6Ifignkhy4NeWFhKQ13Tr0ZEInkh6eedKP4yGgrnVxad
TeGF10aHX8S/oaG5TZyTVW95ASyYn5Pf0VC9Zxdhs4gGf9o+NSz5SkOX5our
Y4VpwDC7vnFlNw2tv3o/vJVJA+L60oyNPTTke8t0/R4JGkSNOwnu6qOhrfHl
RkqbaFB3d07fZZCG4itSY7lMaOCgf3RLzDgNuQidU48Np4E9Z1WlFheJhoKr
nW/fo4FoVCP3am4SnVi0OvlKDA3yfSQcaTwkMuFvWXQyiQamUfk1Fbwk2syr
8WVdLg3SeX8nqtNJNDZN9835QIOqx1aHuJeQ6PSX+MpyERKmJzSTh5aRqNtq
9k8ei4RniTsbc5aTyKJj3+YUcRL0L5uv8FhBIv028n6gNAmhQ71LuVeSaP0H
h9OGiiSE5SqfFZAmUf8b1UWtJiQs/nHP9dc6Ep3MajAdDiEBdXnVMpVIdIRT
6atwlwSTPGvnemwL35dP3e+TkDs5MuevTCLjg+kivAkkvKqrrhtXIZH6P7/3
y5+RAI92Q7EqiUQNt5oaNpNw4Wzg1DJNEi3J3+gb3oY/F5X7VobNL7366adO
EhqjLPJPUSQipoRE7PpJeLDKfjYbSDTyYKjRe5oEvTd135V2kKh89IFJjhgf
5Bm+VOHZRaJSs3Cf6RV8kFozOxmJXfjqRo6GNB+4/NO6LatPouy77sLVMnzw
12rVbiMDEsVomDR2b+eDUaHG9ut7SOR6i9dE9Agf6PksJ8qNSbR24xlj9wQ+
6Cra7mpmjv9/yOehC4/44KVPsUIp9tMJE3+XdD4YtP3ydc0hEmkUqxY6PuWD
pRv7l/3A3r+bXG1dxgfx0azv7odJ5GP/cNq4mw8YfRua9x8hkW6daJhhP36+
X3X6Y2xBhetye4b4YNWWCieuoyS69/vscb2ffKDeUf8mDTsrQL1Gg5sOzav9
E0aPkagjuSVWRpoOb0+d7tQ6SaIExu5t69fSwTKwMygA+5RjyYc1MnS4Gsda
X4v9SzmZLqVIh47/lkiZWuN4l7u4sLXpILo5n21iQ6KGdf2CTF06fBsaXxmM
HXHzUIqIAR3y6U4i1dhS+6BjkSkdjF9eydO0JZFq9yJd3hN0yPto8F3cjkT/
dHy6uGzpAEt6dhphl6dNeM7b0yEmxtHPF9voXPuT2XN0sFmLCvuwbYk0sXEf
Oig+3r847hSJ5KyX547500Hl+fmUauzxytuGI4F0UC21XT+J7XXbze9bKB1s
B3d91bUn0R2JnaOdD+nA9/2xbCf289pB98pkOojFPtk3j/3J8zZ3Thodtjy4
6Sh5mkSSLZ/YV3PoUBbm4HYUe4f/lQTHPDrwXthh8x+2rdLajWYFdPC/FKET
hZ1x+5y2zCs6UNusPjVgv9Ng1y2toMOT6dTgIeyfw8Vmf6voYD0qqcxzhkTb
dtEdGxrosITb0FQB23Iqc7qgiQ5ZRl+rdbGvJO3zTWylwyFFK+XD2G+IuEi3
LjpMhX5ou4I9mLVT+lgvHRLPPGWGYQtaDWXoD9BBNlxbOwF7s0DIVqUROoxt
8Diag72vQKVs+Q86LBLZ5ViK7WbXvoecoMPZ3ylnarGjmD4t36fpwDQOtmjF
fvl67Ym2P3SQ3vdzWw9217nakbJ5OvzlrmWMYvNIurhn8DDAa71o9ST22no2
dwQfA3r2lXv+xTbwehnkLcAA6c6Py3gdSOQoc5Jtv4QB5T26mQzskFZ6gulS
BiwyEtq0GDv3WpacOpsBa+s3PRTGblHe/2LNMgb8bEngEcWe7Z7RWrKSAdqP
7Q4ysVeExtX+lmbAB8P/7i8YKB2z7rUM0A3tqV0Ybz069LVGhgFrGNE/RLAD
okMc8uQZMC6azCuEna6/ZTpWkQFEOw9DELt+ut3n+hYG3NAv/Etijyf7CLqo
MSCSVdtNYIvuXxd5WJMBc6Ua+TN4flu566R0tBmgcVP08ji2RbZLhrwuA1z9
DyoPYP93hLOVY8AASz/+9k7seMGSV1yGDBCSUnV5j/268OSeYRMG0Mq+zVRg
959itDQdYMCvEGmXfOyNFftHUqwYkKt7QjkK2/j8rFvocQaU2fx3ORD7glQ8
1yUbPB9p4wJ37ML/hlmGjgywcTbhMsHulA19uPUcA7wdYharYxOftshJuTKA
73OL4Fps3S2+WhNeDCjwON4xhfenfe+62s4rDBhVe5/ZiR0UVnew8ioDJJI8
nF9jfxjjOEQFMaBEJPftTexjKU8iIIYB3O2b6pdgk1o/l3vH4/WV99s5jM9T
5iflxJdJDGg/P+lVgT27qPCJWiYD9uUWKLthh18or1IuYYBJy+3XVfi8qi3m
MzpfxgC3lQmGUdhfU/Sbc94wAMFEzGls+fb6r/LvGBCtOufHh12l1Ta7vosB
vIkmVxRxfjjbvszHrpcBS5aJyMzifMN0PcL3aIABilau9xD2idSepavGGdBM
G3ytjz23eExuBTc/7PWVOLwX56vNHdxHhVfzg2pfQ6EYzn8fXXX6jNbzw76M
jsq6E3g9l1w/EyzHDyrbhB9cwa7WXuQhoMIPcqt+x3cfx/stjR1K0+WH6of8
rHs4395zk3s9Y8cPrfeKf1ZZkUhTyElf1YEfuPZkJthj96XlvHNz5ofDt2Al
A1uxc0vHLw9+KO4O8t5pSaLaHVqTo4H8cGAsvi/DAq+f8MF13Y/5wZadFrrT
jETnkpic1if88GvJ5q62g/g+39pMr3/GD2012evOYpcf2T9UUMQPY3fqEu4c
IFFghmlmaA0/KJm1mrzfRyKRXUZKWsP84Jil3SqB76/V3ruoeBkBkLv6pHZK
j0R3ReibI+QF4DotpeUMNvmoUjJIUQC4/Vf0f9El0UCtLreHmgCsP/RncYUO
Xm9xnQojAwFYO1Ma5Yfv2y3PtXbP2wvApgGJsUZ8X+uPqpkdSRMAL91nqs/x
/a/pELkjLVMAlN31ZP7h3weKw782TeQIgHPpCJcOtvhgBv1GoQDMtATYvFPA
92mvRGFejQBMWH8TbJHH+aODe8WiMQGomuc68HQ9Xq+a6u4iRUF4eFPqUQz+
fWOdbnFWrFgQ4rrT9I79o6Hn5wcNjJEgnNjtkH/6Lw3RNTzWBZQLwmrNfPUL
czSU8e5u10StIMTuVfa9OktDExMNpg2dgvBuXb5Q1BQN+VF6WwPmBcGIT7z4
/hgNJTQpEZPaiyDQ08vkeycNff0nGNbwdhHce/3sxdJCGiLf/N1/omIxuP+m
jTOcaGjeccO84sclUDSUp+S0lIaMy/VXO50WgiJznlmp57zIZMWud9rfhKDk
JLuxfz8vKu7vGc07KwwP+fkvXernQZcGJSxZo8Kg+lFzQtaLByVaTmuw3EQg
UyC4tojkQZIMJyeeKRG44Z5aAPe4kSHX5pSz55eC5GI9hqkcN+qzDza9+Gcp
qLSbvvibz4UaBIL2nvMUhS7x9Sa7jLnQGol1xXReJvDLpJ+61UOg2CezwmtI
Jsj7218ew/UAS6veTovOhL4GxT9GXQQirV2XegoyoWIuQVa0E9f3aa9PD4sy
IXxQ88LDj7heVTkmVr+GCbP9U2TDWwKt33vf7Y4eE4pOntx7BdeT8Z8dap/o
M2HQ+u7K77j+4DiDdO1uJrhIC9gdySQQ/c63Ol5jJuiyQ800cb050Kqyxs2c
CZdN82t4kgiUZv3+g7k9E6iLx2yTI3H9N5W8wfUMEzbnHni9DNc3UQEXvUMd
mbBpZVtMWDiBbqRLylafY4Ka2PFKn1Bcz/8467vdkwkCHw/x2d4kULePdquZ
FzZ30oEuXC9ZLGXJX7jMhOxjcqsPXyeQwZaXbRm++PuVjTtMcX1YVhmy6e1V
PH55x916XG+pHbL277vGhDUa8/a7cX34dGhrO1cgEwpEn6IqXJ/JeAkoSNxk
wvuUM1G6uH67fmOFOusWE/Rk27dL4vqu794mvcW3mXBbzK8sBls7RcuUDGVC
Kk2dXwyPj8/bZ/UvjAnDg39E7mL/fW1zaiocx6sqv0MIP9/ivfv5sQgmwONT
dkHYzO/RgZ+jmOBZe7HUF9ejLn8zwz/GMOG1TmXQX+wGARRXH8sEcluXuAd+
3xvre/NKEphgYb73ogOeD3FCrjs2nQmFeTyaC/M94qw5GpHBhD88MUI12EWX
jX8HZzEhesPTxB24fnaLvrDY+ykT2gsVBJQDCDTSVKx2tJAJJZ/OfxbG8WzR
23tnZTWOV1fNrVe4Pr+69PakJIMFR97euvAF1/+JkU6XdwiwIIon7ciBaBzf
ZcZ8totYoHpReq4am1gtLPZYmAVS6qRJXgyuz5XvqKuIsyBe9ezxa7EEcj0Q
6acvywKNsMql4gkEso2ME3bZy4LEuVcefGkE0luWvfF1KAt+Dvoq/s4j0J7l
7868usMC42U6kvufE8h4xVha6V0WSE4pvn2Cbb5Sbm3xfRbI1bvtsX2B98uq
VIm8h/j7rr3shnwCBcnGL0nJYYF+ZmRxRBGB3m8PGb/RyAI3iyShH4hAH9Wf
bAr8wALFXcZmO14RqF2j3jGgmQVPRyzNI7B7KcEhvzYWlIRfCdxeRqDJHde7
vb6ygMdoT4rva3we9lz5cHacBTdPddXwvMHxt3TOMxVmg6JGYGhjNYFCfVOH
dZeyobP4XYJ4DYHKU7uktjPZeH18nE9iy0waB68SY0OMjpDWBPb0LQW7CUk2
RBocei5SR6CQ0p+ciM1sSFOzHtV+h+Mt7erVZsQGhdP9Ds4f8PvsynxaZ8IG
vk4b7hzs9U59A6/2sWHzz+J949jBRQcOpJux4ep014ZzTQQ6vH+L/KWjbNi7
5UaiYzOBJvynvyx3YkOSKao61EKgtYMXdxwLZkOud37Jv08EWuZ/ZfpyCBvu
6Dy6tr2dQEJSAY8fhLGh+dXrv+7YM+bhS9sj2PBD/9LMd+zaqqyeA3FsyBCw
XNvRgfdzao/f7mw2FPNPmSR/JlCJ3d7yLe/ZcHLLxfezOF8949nvcaCJDd/0
Ot03dhMoNc5C7sJHNuhsG6w5ih3aYhee84kN2V6D3q+xrfV8reV62KC2XZod
gPMf/7oXvNITbHifSs3/6yWQWb+kziIWB7ytWh7kfCOQ4rxNFh+HA04nrY62
YAtyHrO5xTkgwMhum8NG+ipDUys4sNUx57fuAI5fpv7trjUccNH4+qUF+/d5
l7ZnKhyYHxw0HhnE+yfohXbWVg5wP5GIXTREoIzkucep2zgwvOFPojz2sZZr
lx9ocOBdVkKbE/ZbtehVAToccPznPDKGHcVV7mhxgAM/E7WzvgwT6II4o2W/
GQeMLv65OodtqGQIRoc4MNO9XVRshEDcNq0iO6040CG0x9IE+0zVyIuNNhxo
3eweVoKtfpvJzeXKgfo6l7s3R3H+T7U488eNA5vlG38lYv9AcU2THhwofBnN
X4yd9HNDypAXB4S2OB0fxhY8qLmn6SoHlq3qe6Y7RqDO5XYRKeEcmBN4O/Qd
++Aa9b6OCA7sXvpRnPyO89FGYWWR+xwwqAgfX4ZdplnU6PWAA5EbJe/oYqce
W7LI9BGOfxn1KBJbyr73cEAqBzLj0gUeY0edK0gvTufAhpECdgn2Ld+Tu9Y9
4UBWSemqHmyXpBd+cy84cMeIEtjwg0DDGUHvFQo5oO6ZlLwN2zrvuJRdMQcE
UxL69bHN3giUNiK8Xm3WlvbY6gNHZx+9xfGf6GQlYT//oazfUcOBFyYDfTnY
m2YY94TrOeAn5Hu4FFuaP1fF6z0HjjkcVWvD5pOjnzNp50CEWvIb+jiBrih3
ll7r5ICIyOLqpdiz6k8XF3/hwEr3f+clsEf2Wmas7eWA8HWXIkVs24MKfw73
c2AsfMJcHfvLEdIgdIADp8ZnY3Sw3ztlf/szwoE3aaEcM+zdHv5bFL5zgC9e
0vjoQn/pioW/7Th+P3EFeTvsF6G8qxonOXB5ZVOnK/bmqLZz5G8OPPrP5okX
dnpCFto+i/cvn9u6hf5TzDPzI4/+cSA3TETgNjazeGNmOyEGZx8+cAvHDi7n
nhPiEQPLyeTr9xf6T3UtBro0MWhZK6sVi+3TnHH/Ep8YqDfLxScszLfTZyCb
IQaGKenJj7Av9B/c2i8gBiUGSSYL/bXRMdlryxaLwdULYkkL/TfbaaLZWEgM
croYDxb6c13zzauuiYhBgKmr+jPsQ/THLkWiYnA4/LBv3kI8hK68+sESg0r3
4rMvsPeIHRBaKyYGzs2RXAv9wgopmaOHl4nB6lujagv9RE2Z+cyQFWIw5v9S
fKHfmK/YNFexUgz6M/keLlhhe9ruP1Ji8P9+5f8ArDxOog==
"]],
LineBox[CompressedData["
1:eJw12XlcTN/7APApLTNtlKaZ0aKFkBbtibpP0U6LopSSRFJJqZBoFz5pkwgl
0iolWqQ4E1EIbSgpSdImIqJbd37n+8fvr3m9X3PvPc8957nPuc/rKvkEb9nD
T6PRbvHRaP/7XYBEXn3WjzXdJ7rP95QchRRlFFUVzu0kvP+o7TqN/bsvzb4n
I5iQntvlmowd1E1/Ill+mDiUKWqVjj1g9mywJiOaWKKzfM1F7JI3G2nl9fHE
WvObUtewfUSWp9LKk4iP6tmTN7HlCEEF57z/iDyX0cf3sN8c+lJWkJFK/JE5
n9GMbdU1KB/1KJ3Qbc1078a+MbllT0H9OSK5+aPsODaN8bjsVdV5QtY18C0P
21NFd3rm1gVCuUnrjIw8he6b5K9TKsomxrcoGGphy7gtjrfNu0wIb1jdZ4Pd
lvxLMifjKmGguU86ETurs1L985M8Ii39aEEBdtOAf9vhR9eIIdVArRZsJbKH
da0+nzA9XaaxWIFCjvSMev17NwhWTue1ddgnmLY7n1cVEGIhKRJ7sd9r3S/8
dauIKH24t52LTTcJtT1VWkwM+WxdMYVtaKs2KVdUQlySiwxXWUqhTN9L+pZ5
N4mLgvP/zmJvzo5suphRQfRf7siLVKSQqTOnKsvqNjHy3af6Pvab7b8FPz25
TfxLNmmcw17gd6sk/FElEZdn/fCkEoW8Y+WncuvvEqsWIps7yhSaSfpnPrq2
iqg5XynNr0KhlJQ3mbr3qghLn0dvnLEbLp81aqmqJi70nl87j82pmY+eulVL
rNTUjPdbTqHbDT3t69TvERX1G2afYls/rlY5WXqPuPBddO9KVQpFtAU1Lymq
IxzR+JIp7I6xPomNefXEzBaD6eyVFEpe+jAnKwMRlYlaejbqFLJ8cVmbK84l
XJbNXurAfnrSTVp/C5fIfbbA1kuDQs3z7T0KvVzCfS4hOkqTQi3jTb4/JxqJ
9dtemHatodDz5tLI7EVNhHFtwsMf+hSyjffzlNjaRKjbWETnGuD/TZdBfHYT
YbU/JM7ekEIvqnMEg5SfEG05++2rjSjUmp+WBnpPiXhDzamcdRR6GR1R+NW1
hWAGOtB6zShkv0739I4rLYSnBVFVZk6hV3++B7QPtBAeafH5MRuwg/y16/2f
EZd+snW0LLA9djSkHHtOVLrm8RVZ4/wyNO/Qv9pKPMxKmaE5UmhsRohndqiN
KJX9HOTuTSGeyuYmw3NtBEdD5MvOXRSSdjx3WuNuG9Gt/NXUz4dCRPFSac6v
NkK1vO7iMV+cH25Gq36EthPvsra+vb8P50Odv3NuaAfReShqwbkQCqVHthbN
hnQR/T6h9oUJFCoslAr6kd5F1LmES35NxOvb4aYzXNlFOB8MK1iVRKFhtS8N
7VNdhD7JM6k6TSHj3vn24pA3xOUeF8WPKRQaWqc1ty3kLbHtv8WK/2VTyGg+
3fHuwW5CaMuTy4a38fFR+y/Q07qJFomdvSWVFFpHmvd7VnQTr5Qtn8rfxfH9
+xVAn+wmFAKCL4vUUGjD761JngE9ROV+I+2/9Xh+v3EeCu99TxxK3XFUuYVC
e/qurd7h8YFYVhfeU/6JQs/63eL5VQYIC8NmvxgOD21rNWLy6Q0Q60ij9TGy
PDRUxy7ibRwgpJOOd8bK8xDtfPfzub0DROtHZHlGiYeM7NykZkoHCF3P3uW3
V/FQYa3rtXGdTwRHu+unvTEPJaRtQ13mg0TxgMqSjh08BOYuZKHPEPHWy8Pl
XiEPuR+0+VG9fYSov6jdbqVI4yr+SlsyvH+E+Gu51LRUicb9Et69USZqhDCS
OuYsrkLjHjzmlx2RO0IklR0Mf7Ocxj15MtHc8PMIoV9AOxW0msa9e6Ux817g
KOHlZxPeYEDjij1bu7Y+eoyQ2ZA+0L6Zxu2wi909njZGLD4e4mXtQONeeNVy
Vvb6GKF1NioMOdK4yl2ug8eaxoitHxf6VTjTuEYfw/9bzxgnZEQ5blnbadw9
vyv7HmSMEyPLDv6L3kPjqh35JzyZP068d3z+gLeXxv0xCzoK1eOEZM0mqZh9
NG4Ure3kiXfjRM/nVv+4ABo3Q3RSi5CbIDYndjadDaFx3VL03YM1Jgjb2KQ5
yUM0rrzk8YSrphNEX1sANyuMxi2WEevheU8QV8NejF07TOMeyHZesCZ0gjCR
snVceZTG1ZW7rOEdP0FUZ/GIikga92/uoGta5gQhMhFUZxBF4z5UUovjFkwQ
1mxWw8PjNO7sS+OgvBo8/qHTNQXY+pF2bjHNE0RqfezTpdgHVXds8O6eICpD
fVKy8fllHYGaMDpB8C82kliMPXLiOEdxdoKwVFpomXyMxl22OkWAJvqNaFSf
1hfEvhxf8R6pfyNQ2RLTPzi+I1/0dNHdb4RGaptaRTiOt4QYetA4Sdw+8Ddj
PJDGdbmolt934Acx5Wd4Kd2dxpUVfLAhbe9Poi/ihUeUPo2bpPvkDvfUNMHe
M/RpE4PGtbCy9S48+Yd4m9hSrVvHQ09OT6smRP4l6l7L7Kr34KGxs9INHy/O
Ents7t0s/EGhXYcrU39kzBFmMYM9e05R6Lhyk3Z0LUUE3Hh8hk+aQprU8T/8
/jQYkshzIK/Oo2ZPt1+KvnxQ/E/z5gK9eaSdG/TueBg/DG/4MJHROIc2OjW6
V4cugK3zl8JGPebQ6i8OT1afFIDO7RLMgT8k6vZXT91zRgAEfumnBPwm0clJ
+varKQKwTEn3/cwvEg3MNE5IXRCA4+e/TkpNkShTRE96tkgAZm91r3QeJ9Gc
Fnt3yzMBkG273jr3kUSvIgdoe8QFAdbWbpp7RqLQRSHrczMFYfM2Oc+RPBKN
pTw/mHpREJ5MFHY+uUoiH/FlBTFXBCHj31aTG7kkchJ5J777hiDkHrr0bfcV
Eq0RMPm4okoQ0Dz/+8kLJJqcocdVdgqCVN5Evm4qifZ/zGtukhKCre7u8ydO
kGjQc5aslhECuyqz+KjjJHL/4LymaIkQHJYvZR2LIpFNj1D2aWUheD29NfhY
JIlWdgbut9cRAodlAVOnIkg0/NRIvNtJCB4McP+9O0Ci3eVtW8bThGBeeLDV
zptEXuzmOO3zQqBdOja/fSe+ftyDO4ezhWD5h6D//L1I5LitVErguhDIsN+g
5B0kWk/Fd8jdFQKTlrMln91IJG1vuMX+Db7+yl63LicSLbynEZfZIwQKWd+e
/HUkkYjysjvv+4TgMrczVwGb9meRlN+wEDwafHXhgD2JJnLG2qNnhKBjnQZ3
qR2Jmr7lOFVyhMFR1KaqeSOJkGtm7Iy8MDTJb7dbgH2/8UylibIwxLBP74AN
JLp9/rDkczVhUNlw58dDMxJdMXFqH1wnDIrVTTMvTUkUflbASdpLGHI2H12r
t5ZEqhoBjoevC4OghIzwCi08flr/WFihMKyOuK+Ro0miO9NOiaGlwtB3JPyu
NLZJg9H9oDvCcCzfu19Yg0QudkLLfB8JQ+uhpY2UGoli/a/NOA4Kw9Nv9zS1
VpDI8qV0hv2wMET7TyfWq5JITPuU+qYxYbB6emSjDfbFvwd2Wf0Uhp986/7t
W06i8qT1L0z46fBjIMS+ToVEHwre5aop02FE5D9GriKJrjPs1q5UpYN4S46I
Gfa+oIedy9Xo0KT35uiXpST6pVdAV9KhQ9oDwxs62CJNoaEsczp8fqmk2y9P
orYVw2JMSzpYO96vSMbO+m97kZQtHc5P7shZj63kDB/Et9Ah1Zb1Mk+OREaD
4pYCPnSozwlMipQlEWURO8C3lw51IYHn9bCbSqYjef50cGPOy/xYQiKHkN6K
2RA6aB2fCQ/A3ksr4UzF0iFcU+TmIQ6J1H3lqiYTcTyHXTzXYk81p9pPnKbD
rMrWRBp2VGpE/Nd0OjgqBRueY5PonMLGb33X6FD+2VftOYtENa2jh5sL6NBc
fOjwFez3kan8lSV04Gl4axzEVnz3npVQSYeN6EyXLPaGxJjrQdV0GLdSevpL
Bsejq6rhWkeHM6cslV5il6WGmKs10iFErF86Afu1Cevl4id0sFiUc2sX9s/x
Btf5FjrM2CXcBuy11vSgtjY6sKtcfvNj7/hza6auiw7THScMh5kkirnhHJff
TYeD4s5Dz7Gf0q5eiBigQ2lgwImL2KPlG5W9h+hgVzgUEIst5jlWZjNCh4Jl
oU0B2GtE0wx1J+hwt07tlCu2c53+I7kfdBiqU6ndiB3h17tJaJoOleRBJ13s
S8zYd99n6OD7bpmrCvaDx6o+PSQdnqs6tkhjD4S0Tjzi4fvfyF8gjL1AMfRw
2QIGvBW3+UZK4/x/xeLPEmZAfP+aa1PYtlEPkqNFGRCT2cQdwQ5S283yX4iP
Pyu+6RN2Wjf9+pbFDPhYvHhDL3bVyXL19SwGOG3sK3iL/U7PpXa5LAOGTYPD
OrFnB/+ZLVzKgKCZ1vJ2bPn0q61/lRnQuOmvy/8MhIXroCoDanOm9nZg+34b
+/RCjQGLntUOdWEnXU4LrNZkQImG9atu7FIbg5lcHQZYl+aq9GO/mumNPWWA
x8upHhrCniqIFQs1ZkD210TJb9jSLisueJgy4PWwUOkfbEP+l0oW5jjeY5rl
fHg+3G+HlmlaMiBRcEpeAvu4F9uQbYvnY6/ZP1nsPLGHjXz2DNhOk4TV2I/v
79407sQA4xqHn+uwh/cx3nVtZUD1xPhCe2yNJy4TRZ4M2PlnMjkC2/HQbET6
LgbIyK2eSMYOU8rjO7aHAVr7gmtuYN8/Pi5jH8QAlZrS/7qx+1anXzMMYcC8
UkDWNDbtvYG6UjgDpk89FZXC+WZpEGc2HcWAn8/b9J2w/YdWtPbFMMBcz2Qs
FDs54+W25gQ8PzWInoXdOckOvJTMgGtDIfED2N5FFVlwhQFkzbKAk/j5EDL7
KRedxwD2h0X2tdi33uvlP7jBAA/ntJ5R7Fnx+xXGtxgQN7F51Bk/j5lhTS16
Dxkg4Rw2tA4/r8YSwg6HHjGgs7ZOIBL7U5HNm8qnDGC0+r2ow9bsffVJ8zUD
Nnx9ZGuK60GLWc/sygEGjMzso3vg+nGgVzbWb4gBrc9/bynEZoZ7CReO4PhY
5ma/sH2KPy9WmWLAjpSrwhm4Hs1JTKrL84vAa7eKNZ9xvVrzgX+n5DIRWOTz
80Inrodvwy2+OKwUgRgPy0kjJbyeC08FpKiLwPGGC5+uYj83Fz8iqi8CHgZm
OaHKON9KWOmCliLQk1ThvnoZrscR6o//+YlAyM6VR0Zx/TZdFGxjFCgCJdEu
3vtWkuhLSeXriIMi0BQz9mEEW6fP4MOvIyIQNfgzbXIViVo3mP3+dloEXHSC
O8XU8fpJblsxeFMEKgST9TLXkCjkBpPdXSECWtmFw0raeD83fEN/dVcEdGPF
ftzGbvJyGaurFwGVxiNCnTokOl225Vb6CxHI2NyivUKfRFLWDrpm4yKQJWtB
SRiTaFm0NZGnJgoOqvUy3Xg/PC9FX5OlKQp9QSOJqRZ4fQubFZN1RMFJ087I
2pJEI62W/EeMReH50YndD6zwei+xeOJgKwrB28Qe19iSyKDGzI7nLwrvcnfx
fcH7s803Y1evElFQcWZvV8P7v2nghQ0lt/B4YB0pi98PdMZ/aU1XisKnTmNS
HL8/LBkto5+5Lwr6dnvYM7vwfjqkcL/6hShEHT+b37MH148P/PLik6JgaHKI
/TEIr9eL54P1OmJAr3JYM4Tfb3xL3Q9wGsSgL7S85dINXO8Pjdo6csXgZ5nq
zTcFJKKbHFmR1CQGK+wNciWLcP1+fX5gulUMVu7vqUwuIdH0dNuWtj4xeObo
GpJaTqJ4wsowiScGJ18r+Dy9h/fPLl3ab3NxaHiVmfrzJc5XSiyj7Zk4RHtz
dtNJPF9P5118nkiARfTBvq2uc4gXtIqn83YheDYImbg1zSHHJptlwfsXAX3w
dv9WrXnkJG/92vzrIlhfWnMz59I8ahj+/K36gCSsGlxi4b2QQsdGFXbIfJME
l2uV7m8jKZS/Y8ZEJkIKHNyK5CQmKKTICA5e8EcK7u4bDA9x4iF7vjVFBw4t
hnuPHke1V/DQF/+ULUfJxbBepvvqW2Eat000eXNIpDT83TFtrK5N4y5XWNFA
F2DCAbmHGVO4H8qtmJVcLsSEtr+nZk7h93cZs1d+ZnQmnNp/nKXoQeMK+YYv
jhRjQqZD4anNO2jc4ZLH+8elmcDJctIs8KJxC/W9Oa+WM+FIEF+k1W4ad+Xm
7IhzVkx4Ae1lrrg/yOsPbK2wYcLI743uw9jsg6DcascEgTmpxrAgGpd+7utL
AUd8PCfpftoB3J906y+PcGOC6BcnjycHadwS345ON38maJwotlbC/Yfyn4JV
4QFMiBr2T7yJfSnpaHR6EBM2K1VE6kfQuGdKFVc/D2ECazItxRr3W/t/HIhb
F8mEOA8r9wDczwzGmne7RjHhbHzD9l/Y7otlNMNOMGG5i73kMdx/2Ro86CmL
Y0LJsvPFp3E/9Kg5TetZAhMaetacWoT7J+PtvolfTjKh5lrN0gvYd8YMe/lO
M+HoFCdYHvdfalGi2gr/McHD2j4iH/vUGfn1MmeZEPvP7n0/9peLWlYSqUz4
9f1v8mF8vnmR2RahdCb47+28swiPl1ft7EllMEFk0/pNpTi++cd79v3JZMLT
/MztG4/geDsOH5rMYoJFgklvP75f5vfLp/svMaHpsqAJE/ebNB/1wdxSJgwZ
P1vP50/jvrPafG7pcyaU/lzqo4f74YTFqb8VGTJgW+UxJLeKxrWSva3xOF0G
VFxf5ivf5KFNcq8DGs/JwMv3Mqf7i3nIUX6yBJ2XAUWTyqbLuN93W6qu2pAt
A24Plpovuc5D+1WKFaqvycCnje2BK7J5KHl13sKiShm4mHDTKD6JhzrWpU2d
aZeB4Lt/PC338JDXjoPVWyRZIFbwQHDlch5Kjyset1zMgkbrf2E2KjzUVDyg
tI7JgmHjVK9AJR5S++2YosJhwYxmbX6NPA/NnNX2m1ZkgWyWr4inDA+loZ/s
rDUs+Lq2bnxKmIceKYdH9TiwYHTXOL8Zfl5+W9+689KJBa5CE8rnxii0MvjL
SKMzCw6EKXYNj1AopX7r1lJXFszfHJ3I+EIhDxcDzWM7WfDxjJ0o1U+h6cSZ
j3LBLIiwP5qp2EEh1dGjG7xTWHDeMzz5ch2FZBNjZk6ksSBNUE+S7x6FFikl
3czJYIHCwoNJ+2oo9M8tc3FvFguEovPtTO5SqLWl/PPWqyx4v7bYhiqjUGjx
53i72yzgpu563Z9HoYd+m5sMOliQlNAftvQMhe4ucDmytYsFb6Ycbjfh/rf4
qrt62FsWZKf8+h2QRKH0d36Zle9Z8JB35zo3gUK+VnG+6p9ZoH9AIisumkIi
K2oFlKdZICBtGOsfTiHXYUULcRk2pFyqVmrxoZAOb0+5MJsNGoOa+Y92UUiM
fZPFv4QNqYWf5h96U4hroz/2R54NcjAGD7zw/N2ySR1YzoYPl5aItrlT6O+h
0J67+mzoaSY5Ds4U6kiuNS83ZIPtPpd9flsoVFYwd7N4LRtci/ZciHWikPe7
kydyTPD/ueHZ9Q4UemZ8WSXJgg3BeyPWWm6i0CW+piD3rWzYUHPOqsaCQmFL
GO9cXNkgrFLcNbGRQva69uCwnQ0PrZRtlmPz7+mW2ujJhkyxN6OXzSkU0DJR
q7GHDQIPBqTzCAqtT2Xy84WzYbWgqK+AMYVkit0DyAg2iDYbZG5fS6Ef3Ktd
v4+wIe92VuVtIwrd+LmqaCyKDYEMq2pfQzwf20w3dSWwQRfFjX7Wo1CfnF9W
USYbDlQp2xFrKLRt+fovH7LYcKXWyylfi0JtGpJ6UtlskNq5rYmB/ci0vj0q
hw0OFvNTfRp4/bwXim8pZMOinoiI/NUUUvIf8kgqZoPng68TS7AvhdSVNpSy
QafnT0emGoXOxu22XlHBhvcxG7+nrsL5cqM2fq6WDQO2l0LyV1BovCy5Q/s+
G3o1BA5oYvtW71Lya2DDrr0pH+pV8Xo/FUXtXDY8GF0h2b8cz8fIztnCZ2wI
Pc8cIJZRqOaHns2HF2zQMtAN71ehkNY/xkXJV2z4bJp+IhpbWaRKP6qDDeQK
vu8tyhQSVqeHOPWygRNBbjqqRKEYvT50so8NIw6hZ1Zjz66/I9HwkQ02JsMm
A4oUmti8o0x1iA23viQKO2Hv3aZNegyz4fesuII49kcvIdv0ETYkvbO7+WIp
zp/g21/JCTbYm6epOWLbHUk00P6O7//MsJwMdlOMe+LeKTaUSmSc7FegUG26
gEr7bzZktEdwI7DXXOoJEfrLBkOFX2mW2KXXy7nrZtlwnGvbw8a+ctfNq5Bi
w/VCWkeTPIWYDRq3emkc2A/n43KxU5r45xYt4AB/b8jNSGz6y3e2loIcKC+4
tWk7duybsuxjwhyIMvTaa4w92xc7cpvBgZcpF/7KY4cNbzMcFuWAj2TgAgHs
b5OrT8pKcICWPHFyQg7f/wztjeMiDgTprIx/97/vQbw3KielOCB9Vf1vE/Z2
+s3QemkOKHUKDldhdyyKafwhwwFlg4ebirA3cbYuUuVwQC3LS/0K9hMltZ0e
shwIWzGZcA7bVI13K02eAykJodvOYt/T6Zp7spQDjuXf8/73fUp7XYkdqcSB
//9+9X9+JilK
"]], LineBox[CompressedData["
1:eJw12Xk8Fd/7AHAU7rWv917ZS+UjyVIoaZ6sabEV2qhkSZIIlaikUMmWtQVF
9iXZufc+KkKlKLsWKdyLFJHS4ju/P35/zev9mplz5pznec6ZeY2qq6+9Ox8P
D08jLw/P/x0XodDLT+vCNrlZna89Y8BGFZrKCqUbBwjZm7ZfvEjPvouz7kvw
JcY3DV7ZQNqnl9IkWXKKqKyxiB3XZ+Pg5tahqoTzROD7or8hpPO7zHhK6sOJ
kYFtXZPr2OgqtDyWpySSkNb1oW0mrUDwK+3MvEbQq44+OrmWjV0nh4vuJ8QS
fnEl3RF6bLTsHFIMeRxPeG4sdwzWZWP2pL37/fobxKHIRSbWOmzkoT4pelmR
RGyI2ZDGp81G52V6M3PFKYQYe5FzihYb64yzjFRz04hrHUtiRFazkbZbOnxr
5i1i8NW21a6r2Nge/V3yTkIGcVQhtLZkJRuT35RpfmrKJNRHPfLuL2dj46BX
+6nHd4nGeGNq6DI2qv7uo9+tzyKOHTNY3qbERltKQv26mmwiSevpkLkCG8/J
bj3wrOI+cfUrg54hx8b+NXU534tzid2yidxpaTZSjP23RhXkEbkd+Ve/SLDR
YKvGpEJuPjG0ziWvRZSNiW4311lkFhJJOWsOqgiycUdacGNqQilhZ9I97fCT
hZt2ylUkWz4gjHg78nfNsLBrzyz/x6YHxBLtlRN631i4yLM4P/BxGdEwFyif
OMrCg2GKU+n15cQiMXG3gU4WzkX+MuGuryCqs0cq3r9iYUxMV6JeDemBvqzH
z1jIvHXdsKWikoi0uOeh2cBCuaq/56eKq4kjioptkfksfMDs6zDSrCGszBv3
xWWxcMuTymURBTXEXYHNGWfusDCo3ad5SW4toS5sZjcZx8LXY+/EzDLria/t
N5kHg1gYrcy+k5yABCdbkHXMiIUWz2/pNIg2ECl1zrbduix8GrFbZp19A3HG
48kBeQ0WNv/t6FMaaCCG1j8QNGSwsGW80W164hHhe3urNHOaic+aC4LTJBoJ
yesV9JlMJm4N93QWc2gkVvgUCjOSyfOb1CA8rZGw2sftpV9j4vPKO/w+S5uI
S0sd5QoDmPgiKy4O1j4lXkQqfFGxYGLb+aCcUacW4u4m6m+boXq0NtK7sv92
C+FbIMxc21WPL3989e4YbCFs5p82zzaT9vHSqfdqJWq6TrwXKSa9bz8z5uwz
ouHS/HBsYD22G5i8XpfxgjidSIv8tlCHY3MCC5tPthMzZi9V98zX4sKyHY0G
N9oJXS3nUt6xWpSxvXFldXk7kfD6umR0Xy0Secoyct/bieOK7gEWNbWYuNvw
v2/+HURHQs5N+4Ba3FTrtTPd/zWR9tiw5dVIDcYHv8id9+skBF73MW5VVmNO
jpTPt/hOYkdFASfmbjUyX+/WHSnrJLrma/Lcr1fjiMYws2Oqk6jfzqPCdKvG
DQN/O/L8ughvj4fzolLV+NlozR9Hv27CfWvzvx2eVWj4N962/EQvsfVDgWnE
nwrcEHI0hRLXS5yRFt/qOlyBRr9N3juX9hKn3ty5texlBW769d2bMtlL1O+g
WjlmVKDprEOks3cfwXA4MxECFWj9RY4t6NFPANXgaG9oObq/u7tq/763RIFP
9hGp4TJsfb87nG/ZILGTLif4/VUROr4wlOVdO0jYpA6e/hlbhJ9rGbkLZoPE
sKJNXJNNEfIk9T774zFIXBdYrF79shANt+2WmisYJNbvSTT73VqAOdVOd8d1
PxK33p65r1qVh5fiHLHTZIiYHQuvZ7pno9Q5fbs3O4cIu8OrcUopGzO9aZ86
3IaIHzLmRtM9Wci06BZ4FTFEtO92kXO0ysLvfxysW58NEaNRMj1F/91DVy+H
dyz7T0T/hPyZw48yEEx2/c5x/Uxc3qbOHbNLxp80dYNw/8/EvTcJr+YfJWHZ
+G//Axc/E32HA0SqdJJwaVLWGP3eZ+J++ardayQScRFnui/q42ci7I3he93W
eHx6Pb7m6MFhIvVuTpuD01U85+o+Y3FimDjdJjkksfoKGhis1152YZgwm1xY
8h9fFOYNDuYOZAwTvwb/pPoXXMaretop2z8ME6bnTRUCv19AE8riN+pfh4n9
jWOOVlHn8ffbHjH+hWGiDA3Xe6mH4rGI8xEspRHCOtgyctLtNO7oexmo5TJC
nJW6P70t3QcFSu6VCR0fIQo117w0bTuC7ItBX0ZCRwhpio/6s1+HMchp639P
ro8QnL8H4JGlC2ppKrln3BkhRn0i8iRTduEIz3Tm2eIRwt2i4LrkE3PM6Gp6
68QaIT4Wr4m+4y+FuwvSGGvbRoiYM6kt4tqbUeK8zy6JdyPE3X9UPep+e2zZ
uTluYmKEeKJIdHer7ccwddkXLX9GiNuKni36v1xxuoNpGqYwSuRNUYpm2o5h
p5qI3vS+UeJGbuXQV6vTGP3rw/GX3qPEhtff29ObgtH8ZXlBwdlRwvvIzLUz
JqFYdWrf0sO3RomlaYbJPcphmPKsQLKzf5Robas24lOLwL0nrL5V7uEQI/tf
pHKWxaHK97glI0c5REpIlrhyVxwOB/aa0UI4xEmFK6z8iHg8cdYzLSidQ3ib
ONbUjSVgRMRlE4NPHKIizZ6nsSoJy28/Sqw5xiVKSsqzN7jcQpHW9evrz48R
pk22aqcDspCtqnGx4f4EoSb9lL/UtxR3pWpkvTv+jdC34Kj1b2CiPD/LNM5j
mvi6KXpZq20jRuo1PWyImiFuXcuN++fwHM0ttx7MifhBOH5K+eQi1IFNV2ZW
XAr+SWjvaL4+5N6JY9dlmB9S5wnlJ4kaVWK9eOhUWey3hD/Er+VOZ7adHMDQ
pY0656v/Ecpdd5X+iH9ArX+hP/i8eODYiOA6NvERm513f1dx44WBweTrQ81D
qJPu0xMawAdLLk1JGTp9RjO7R3sr/RdB+dOeR9TiYVw1bNO0KmIxWLpczEqf
HcFeL81Y96uLoWf6536L+RGMmKTsyYhZDNVDqpyxfyM4OPdoQiplMdx4ZnNU
gzKKiUJrZeZzFwMv4fPu4pJR/LOGcbildTEIejmcTtk0ii+DB3ncRfnhr6e3
KXFpFM8uMJ+lS/KDxn7VqpCoUVS/lJbYK8sPwirWD6qiR/HidXv17Ur84PIU
dVSSRtEgs9FGbw0/6DtNr2y9P4qZTXnpvHb8ULQ8tO/E01H0l/DbmJ7IDzmH
ohUE+Tk4FvPsRGwqP1gfsRCOo3DQVVTt/oXb/MARCK6QFeGgnVCP6OFsftjq
NaRFl+ag9mLjDysr+IEpNRg7rcLByTnKxbI3/KBZGuRO3cjBox8ymxulBGDm
ze/EAl8ODjnP/66kCcCzGCnzZn8O7n27Uzt3iQAo/DoUOBjIQas+gbQrSwVg
Y8ENG0oIB9XfHDtqrSsAHq9f16yO4uDIU0PRXjsBcGg43N2WwcHDJe3243EC
MH/xu47TCw66MJov6iQJgFFXwqP1r8j2L7IenkoTgDfd5d/przlo61ggtfie
AIgbrDJo7uHgxn/hrxXKBUA6TYt3aoiDMtYG9tZdAvCpdnm/708OitesvpjY
JwBfbB/cFv7NQaGlag/73wnAHu+jH+/95SDPDwkpzxEBcIvJ5j7h4+LEnbGO
83MCoCFngK9EuNj45Y5dmZwgDG2Y7RZR4SI6JYbNKQpCnNZ4z4GlXKx7dLXM
eKkg5P8SNC5R4+KDpFOSzzQEgef0dU3j/7h429iuY8hIEB6bmvku0+Vi4PXF
djIugiDP788jYcrFFau9bU/dE4TzXyc7nQ+R/ce9HwvIEYRxgemnf1y5+HDG
7rJ/gSDk3QqNTHHjojHTsM7noSBsr0j1bfDk4q5tAmpujwXhzPG9zA8+XAzz
ujtnOyQItMTcXTvPcNGiTSbBekQQgsQ1CkuCuSiiE6W5fUwQbvTKIH8IF1N/
Hj9kOS0IP08Yyeee42JJ5MbnxnwU2HND5mpVOBff3u9J11hKAems/EDB61y8
R922Xn0FBdyWB+kpxXDxiA/7zXINCtDO7c3UjuXi97X3Kaq6FDg5Z3xpSzwX
hRr9/ekmFNjfMOhilsTF9pUjIrIWFEgsbD5vmMzF5Gt7cqW2UuD9UqaVegoX
VXfCW1F7Cmye5eueT+Wi4ZCoxWJXCvTvXcXyvs3Ff+Zhg7weFFhsHC1tfIeM
T/5M8IIXBdz9q0SF0rlo4zdQOu9Hgeg0nvHkDC568OTLTYVR4GmR/fqQe1zU
dFOomLxMgde9L+9oZHFxqjnWeuIKBT7+uXm3k3RIbFD4aDwF0u4vuyx/n4s3
lMy+vLtLjo9ZWhKQy8WqF9xTzfcp4Huabf2XdH9wLF9ZPgU6A7SqwvK4qNLT
T79URgHRbQ/7QvO5aHr5wj2fSgqIt4smzZL20Fux2qmWAiKTe2heBVwsivUz
0XhEganPAV6mhVx8ZUxvk26iQNn7rA0FpKfHmU5/WyhwuzK8XaSIi+u3UHza
2ylgRTG0aiK9/0fxXG0nBdibLq+SL+biheydF7N6KRDcGtBxjPRTnoyUoEEK
fLK09lxUwkVuidnSg5/J+SlpddxCWsR5rMiKQ4FSWyHqFdLawnEGehMUaMkd
DG0ivbN23WOFbxRQ36JS+Zd0kOfAdoEZCjR/zCjRKeXiTdmwnq9zFNgN648e
Is16ssK17zfZ/vbW0WjSg34vJh4vkPES0V5ZQXqRiv+pokVUGL9rq95DesVL
Ol+yIBVSbSTHZ0lvDWFFnxemwoWAfb4SD7joo3GY7iVOhd8x8pUrSMf1Uu7Z
S1NBb+NmpiHpiogSzY10KsQa4iUL0j1rd1Uvl6dC64FrYrak54d+bRZXpoJI
cfoeB9KK8Rkvfi6lgoXRrLsjaSDMnYZWUEHCPEZvJ2m3L2Mfn2tQ4Ybascfb
SEfeijtWqUWFlp2JUkC6wEp/Ll2XCt+8xdW0Sb+cGwiL0qeCxgruD3nSU/fD
RPw3UMFhr/a1RaRldq1M2beJCpMLPwZHyPEZ8LWpmptQ4aum/c8m0nsf+Bdp
WVBhQHZvRybpUBeGAWMrFU6Iahw7RTpThP2I15oKcGmwxYr0k7rD28ftqCBG
yRilkx45Qu3pdKDCK9OrLR/J+Kxu2jWR60yFuiVXOo6Qtj05HxR/iAqUlNlf
y0kHqGbynnWnQsM1GH5P5kdd6DjN2ocKVx+Z85uRfrcq/q6BHxVmyvw2fCPz
i6dfX1M1kArKpw/opZK20L+4eSaECqNDl/0GyPz0+rzyxbsLVGCPb6kOIh2d
0ObYfIkKgXFDj0RJv5lkHLsZTQXebe0r1pD5fjC3NBluU4F6DA0Jsl4ENk8r
nM+kglS9iFQxWU/F/WuzWNlU8HvV9V2W9LxoXemGYioYdoy87iXrMTGgsWUt
mwqbnAmxZWS9bhATtDn5mAr9oVEbvMj6/phr1VX2lBzvoo6TBXe5qDXw8qPW
KyocGvomrpTJxZbNffPqg1SQjLbgfUauJ8cH5MM8P1PB4NiWPM4tLsoGugjm
cKjQEdB1iI+0a94n6WVTVLCkZ4uvTOPiH7FJTUU+IdCiBh9bR65n2m/5Dkiq
CcH7RNNxj2gudgeaD9uoC4F5mb+ywTUynuJR3jGaQtD12SyA7yoXn5mInhZe
JwS10YPhVyPJfMunx/NbCIFCpMbugxfJ9ThI88kvTyHwPDz9bNkpLm6S8LUy
PCYEvNqVV3MCuTicX/Yq6IQQnFzHF6oWwEXdd/pvv58Wgq9X9f5J+nHxhenm
2S9XhMC6Njy5/CgZP0nHlUOFQpDunG0h5cxFv2xZRm+pEDQTDRc893FxyKCL
8rJcCFzWPEmv2UOupy67xmrrhaDGRv+atSMXrxTZF8c/F4Ln+w9ZWtlwUWqL
jd7mcfJ8rdChs8BFtfNbiEwNYaiVYOsOKHMxSYqinawlDEtot11KFcn45jSr
ROsKg4BMUOp5eS5yXljwnd4gDLfdvhjJ0Ml4LzFvstkqDPGfF46KiXFRv2rz
tgUvYWjIPFtjSe7XVl82OLnkCwPvkrahXnL/33QsxTS/WBgev1XM/0m+H+iO
f18zU0Ze//ehoEwbB5dwiyhX64Rh+IBysnEzByc+K9VVPheGrht39PbXczDu
LZ+i6KQwyCwI7mq9x8Hu58+G6nVFIEgrItX/OAfdCvYel2OKQMrVXKWwX6NY
dZK71bZBBIJXl30smB1FivHplZGNIhD9c3C6fWoUi14lDc68EIEQ/Q6K1Ngo
zsy027e/EwHjjEGTI/2jGE5YGkQuiMB6xSPfPOpG8V6nHs+siSjQx6bMWadG
8eM/kYT2VlFwE3v13pozggJP/+5ybRIDzkd640rmMC74/Leg2y0OfIU9L5k7
PqNto5Wa71EJmHcV5UT2DqGd4pZXJqMSMBfjbHZr50dkjnz6UnlcEgZ32fYO
6H3As1yl/bQvklBW9uPugY8DmLV/zpgWJAX2zifc3q/rRRWqr++iH1JgwjRt
43/cida82rnHT0qDpJ/h1jjXDhz2irE/81sanMpXBw7EPsd24egdfsEy8KY4
TOry4iZcrrSSSVksC8Rmc9liPyZqhAjrKF2ThSWz3Js5HaUYdVVxI+26LLw/
8C+h6lQpDqeusRSLlQX4Y7Tpk2IpZlbudP6XIAtr+KTFbxwtQdmvt668vykL
ylMem234i5HHVXMovUAWsNZa1wYKsMdyxw3lZ7IQUvAnktGWjWsdD6TTX8jC
2PkXqyaDsjHBzS9f/KUshEc/TPikko3bw5JwoUMWgtw/imgFZuHjunfjH/pk
4enKy15myvewZPVxs0yuLEz/ByJy39PxknTsrAqVBi1q/av9YxIxK8X3nKkw
DeL2gnv62xv4WN5W0EOUBhodBfkKq24gj5qkXKEkDWysAvdKkN/HIWtvbFy3
hAZVGUebqyRj8FbNySYnBRqY2DXIbiqPxrqNu6yDlWjw66ZMuI/DNfxpJnsQ
l9JgrZw8++mtKAx0SAm3WkWDqCMFr05oh2Ni3ymRY6tpINxVtMayJwwrnHcn
xayhwS2ZC1Wt5y7gtLtc7hs9GgTZeQcXZJxFybFfa36so0FoxOw59vRp1D7e
X8MwpIHUQkG/lmUQHg+69cx5Iw2s5Jvvqs+cwOvzZ3de2ETe/6tN7UjaMSw6
t//tPaCB3g6LVmKHJz7nM3ZvMqEBNB7T71/kimMRipOjZuR8tKR+8g/eg1Th
f0FCljSgMCQWnxvegeqx7xc0rWjQjiusTz7WQUtpjLLZRgN+0WA/9hpD9EjJ
kPTfQYO5s2ImQxdt8bL8hZuJNjRYItQqaTCzF7MzDi6rtiPHG/F2YabUFYdy
Vdf9caCB43FYtFraB11qsnZHuNDglH7WPubAaXTsy8246UsD191RrsfvRKCl
/IPVT+JpYG1QIOJkkITbFV55P7pBA+42qzrnliS0VZzMxyQa6Fc/eCO2Jxl3
K2uuYKbRQDxf4rTvmRQ8uixPqfIuDaabS56rVaVh9KpM8dwyGqj1K3XpKKfj
a6O4qasdNDgQ99/mtU5Z6LL/RKW9JB1CXLZtWdhbiPEX88YtpOmwhdN9sCO5
EBvzBlWNZOkgl8XQCnhdiBqztjHL5OiQrLrkyiqrIpy7ruM5o0IHc2Ofcpe1
xRiH04xkbTrIP+mNesxbio+XBob02dBh7qNVx1ejMpzdUvywzY4OSTeJjjbH
MlT3HeY82kmHiZqfrAS/Moypd3AocKKDCbjrdOSU4b5d+lpnD9DhP3vLbcoS
D3Hm8twHBV86tDO8a368e4gruGdMD8bQoW9FgaGlRwXKX74wdy6ODr9ycGLy
fAVKqEYW3kmgg4bYQtSptAr8tTtReiCZDoniLearXlTgi5aSTw4ZdFB2DXGX
165E/7xP4dse0GF60ShVeroS2Z47GvVf0yGimv6Q4lKN5Yt2nXbopIPrEM/v
ipPVmJexVzOgmw41tOZMuFKN8T2eiWX9dBBY3N45W16NbpYX3TQ/0aFJQS6j
W7AGhVZWL146Q4c4jJnwzK9BpxEVc1EaA0Ydcz6HvqlF3QX3EkEGA+reSrZ1
fapFEUYhnW8Jg3z/GVaVmKnFBqt1Yz8UGSD5b9/UKpk6VC+2ih1czoAL9o7W
C/Z1+POkf1/5OgY8vGh6UOx5Hb6OrjYpMWCA59na4Ct9dVh0/09h3noGLL96
/8rIaB0e7Ik4d8eYAW1Lco5YLK7H1g23lkWaMyAlNe3IbaN6vMnb6LPXgQEu
txsjbmXXY8ASas8uJwbcfhVaqVtWj9Z61mCzhwFZ4QM+hax65HPvlTJzZkCF
fqnr5u569G6ZqF7tzoBf5C73j5+JG2Nl+XgDyecrtsHaA0yk5e31/h3EgJmY
G0yPo0z81pDROXua7P9H4shMABOzp//LHQthgLNXbGHFFSaKOG7a3nmJAYUi
nZ6Pypj4TsEzOTeRAfM1nTuE/zDRcfnG4bfJDAiIkBl7xs/C9tWSa6XSGPBG
7GbdYXEWPt5U3xFyhwGGhasGVZayMO+guKh9DgP6jiektpizUNXr877IPAYI
aVzSsbNm4U2/2gJmAQMEfBLaHzqy8PrFw1tWlpLPM10tzOvJQv/s6vA/1Qx4
YrdvpOUyC8eLol/r1DEgaSlLWe46C90qD6l6MhkwliZnYJLIQqenwtjRwIDt
bmFflO6xcCPnwHxOKwMm8nL+8TJZWPVtrdXb5wzg3n5RxHjMwjW/qKmSL8n5
kJygUVpYuFSoYl3IawZoXvgi7veGhYKaFD+7AQZ4pG/R9uaw8MLadxjxjgHd
vAO7Lb+wcH7jQzHmBwb4r7qt+meKhRM79het+MyAjPt3I7/Os9DDUef3vhEG
TNmqKGstsPCDi8DWeA4DwiJNtpkvYuNr3wejvycY8K//t+NfITZuO31ZX+cr
A1bYp+iki7Gx8cLeyx5TDKiV/ZBMl2JjdfziZR2zDHAYTfh5g8FG7Zt9fgI/
GdCi8PJbsjwbC+6VNBjNM0Dr505vfyU23i7f7ZLzjwH3k2Y/PFzGRlnm6uIB
HjnI/VXYTV/BxphGvj8Si+TAxnZoi4M6GyltPVst+OVA+P7ydd4abAzrKko7
KygHXlEKN/dosnH+XRjnAVUOKNKRQSpabAwYcTQYEZaDz9xNrbiGjV8mV0XI
i8nBHcIg3kCHjR5zPF22EnKwvC+kLVKXjYMLXcsipOTAW0w/9IEeG/dQCv3r
ZeTgSdu9jLK15HxIXHj0jSYHJ+4orL22jo3b5RwkVsjJQdgd2gZjfTY2qWoc
2CcvB91RimXNpDdpLBTHKcpBXFVPqoYBG2t0O/80KcvBSXn+KXfSOkb5236r
ysH//y/8H8mdD6Q=
"]], LineBox[CompressedData["
1:eJw12Xk4lN/bAHDJMmNfMjOyZEtCsiRadN/2pJAsbVSyZKsIrSopS9mztqDI
viQ7MyNFKGsRkpLCDPItkZLye94/3r/m+lzzXOc859zLOXONvMspWzdODg6O
phUcHP/3ubKBr/OzbsiOwxZXas/rMUGOIqcse/sI/E2z+epJeH44zmow4RRM