This repository has been archived by the owner on Sep 28, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
sample_matlab_script.m
51 lines (37 loc) · 1.71 KB
/
sample_matlab_script.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% Transformation from classical orbital elements to radius and velocity
% vector for an Earth orbit
% a [km] Semi Major Axis)
% e [1] Eccentricity)
% i [rad] Inclination
% omega [rad] Right Ascension of the Ascending Node
% w [rad] Argument of Perigee
% nue [rad] True anomaly
a = 899.86
e = 0.242086099014791
i = 0.004249579572519763
omega = 1.7570940273336035
w = 1.5914495981529537
nue = 5.721029832760311
mue = 3.98600*10^5; % [km^3/s^2] Gravitational Parameter of Earth
p = a*(1-e^2); % [km] Semi Latus Rectum
r_p = (p*cos(nue))/(1+e*cos(nue)); % Radius Vector in PQW Coordinates
r_q = (p*sin(nue))/(1+e*cos(nue));
r_w = 0;
v_p = -sqrt(mue/p)*sin(nue); % Velocity Vector in PQW Coordiantes
v_q = sqrt(mue/p)*(e + cos(nue));
v_w = 0.0;
r_pqw = [r_p r_q r_w]; % Radius Vector in PQW Coordinates
v_pqw = [v_p v_q v_w]; % Velocity Vector in PQW Coordiantes
m11 = cos(omega)*cos(w)-sin(omega)*sin(w)*cos(i); % Transformation Matrix PQW to IJK
m12 = -cos(omega)*sin(w)-sin(omega)*cos(w)*cos(i);
m13 = sin(omega)*sin(i);
m21 = sin(omega)*cos(w)+cos(omega)*sin(w)*cos(i);
m22 = -sin(omega)*sin(w)+cos(omega)*cos(w)*cos(i);
m23 = -cos(omega)*sin(i);
m31 = sin(w)*sin(i);
m32 = cos(w)*sin(i);
m33 = cos(i);
pqw_to_ijk = [m11 m12 m13; m21 m22 m23; m31 m32 m33]; % Transformation Matrix (pqw to ijk)
r_ijk = pqw_to_ijk*r_pqw'; % [km] Radius Vector in IJK Coordinate System
v_ijk = pqw_to_ijk*v_pqw'; % [km/s] Velocity Vector in IJK Coordinate System
r_v = [r_ijk' v_ijk']; % [km km/s] (Radius and Velocity in IJK)