This repository has been archived by the owner on Oct 4, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
demand-forecast.py
620 lines (471 loc) · 22.7 KB
/
demand-forecast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
#!/usr/bin/env python
# coding: utf-8
# # Product Demand Forecast
import pandas as pd
import numpy as np
from sklearn.utils._testing import ignore_warnings
from sklearn.exceptions import ConvergenceWarning
from sklearn.preprocessing import OneHotEncoder
import joblib
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.statespace.sarimax import SARIMAX
from tbats import TBATS, BATS
from xgboost import XGBRegressor
from itertools import product
from ast import literal_eval
from time import time
from datetime import timedelta
from datetime import datetime
from pandas.tseries.holiday import USFederalHolidayCalendar
from multiprocessing import Pool
import functools
from pathlib import Path
from tqdm import tqdm
import warnings
PROCESS_COUNT = 8
def print_elapsed_time(start):
elapsed = timedelta(seconds=time() - start)
# remove millis
elapsed = str(elapsed).split('.')[0]
print('Elapsed time: {}'.format(elapsed))
def get_timestamp_string(ts, ts_format='%Y-%m-%d %H:%M:%S'):
return datetime.fromtimestamp(start_time).strftime(ts_format)
def calc_datetime_delta(d1, d2, date_format='%Y-%m-%d'):
d1 = datetime.strptime(d1, date_format)
d2 = datetime.strptime(d2, date_format)
delta = d2 - d1
return delta.days
# convert the data to daily
def group_demand_by(df, columns):
df = df.groupby(columns).sum()
df = df.reset_index().sort_values(columns)
return df
def get_date_range(df, debugging=False):
dates = df.date if 'date' in df.columns else df.index
date_range = (dates.min(), dates.max())
if debugging:
print('({} - {})'.format(*date_range))
return date_range
# ### Stationarity check
# simple function to filter dataframe with given parameters
def filter_demand(df, item=None, store=None, category=None, sales=-1):
df = df.copy()
if item is not None:
df = df[df.item == item]
if store is not None:
df = df[df.store == store]
if category is not None:
df = df[df.category == category]
if sales > -1:
df = df[df.sales > sales]
return df
def is_stationary(df, print_stats=False):
result = adfuller(df)
if print_stats:
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
return result[1] < 0.001
def apply_differencing(df, periods=1, ffill=False, stationary_check=True):
if isinstance(df, pd.DataFrame) and 'sales' in df.columns:
df.sales = df.sales.diff(periods=periods)
else:
df = df.diff(periods=periods)
df = df.ffill() if ffill else df.dropna()
if stationary_check and not is_stationary(df.sales if isinstance(df, pd.DataFrame) else df):
warnings.warn('DataFrame is still not stationary.')
return df
def check_stationary(df, items, differencing=False):
items_df = []
for item in items:
item_df = filter_demand(df, item=item).sales
if differencing:
item_df = apply_differencing(item_df)
items_df.append(item_df)
result = []
with Pool(PROCESS_COUNT) as p:
result = list(tqdm(p.imap(is_stationary, items_df), total=len(items_df)))
return result
# a simple function to get appropriate training data
def get_train_data(df, date_range=None, differencing=0):
# we don't need these columns now
df = df.drop(columns=['store', 'item'])
df = df.set_index('date')
# fill date gap with 0
if date_range is not None:
idx = pd.date_range(*date_range)
df = df.reindex(idx, fill_value=0)
# apply diffencing of 0
if differencing > 0:
df = apply_differencing(df, periods=differencing)
return df
def _get_fourier_terms(df, periods=0):
date_range = get_date_range(df)
date_range = pd.date_range(start=date_range[0], end=date_range[1] + timedelta(days=periods))
exog = pd.DataFrame({'date': date_range})
exog = exog.set_index(pd.DatetimeIndex(exog['date'], freq='D'))
exog['sin365'] = np.sin(2 * np.pi * exog.index.dayofyear / 365.25)
exog['cos365'] = np.cos(2 * np.pi * exog.index.dayofyear / 365.25)
exog['sin365_2'] = np.sin(4 * np.pi * exog.index.dayofyear / 365.25)
exog['cos365_2'] = np.cos(4 * np.pi * exog.index.dayofyear / 365.25)
exog = exog.drop(columns=['date'])
exog_to_train = exog.iloc[:-periods] if periods != 0 else exog
exog_to_test = exog.iloc[-periods:] if periods != 0 else None
return exog_to_train, exog_to_test
def test_model_sarima(df, param, exog=None):
warnings.simplefilter("ignore")
try:
model = SARIMAX(df, order=param[0], seasonal_order=param[1], exog=exog)
model = model.fit(disp=-1)
except Exception as e:
# print(e)
return
return [param, model.aic]
def_range = range(0, 4)
def_s_range = (1, 2, 5, 7)
@ignore_warnings(category=ConvergenceWarning)
def optimize_SARIMA(df, p_range=def_range, d=1, q_range=def_range, P_range=def_range, D=1,
Q_range=def_range, s_range=def_s_range, fourier=False, multiprocessing=False):
results = []
best_aic = float('inf')
def _get_sarima_param(param):
order = (param[0], d, param[1])
seasonal_order = (param[2], D, param[3], param[4])
return [order, seasonal_order]
params = list(product(p_range, q_range, P_range, Q_range, s_range))
params = [_get_sarima_param(param) for param in params]
exog_to_train, _ = _get_fourier_terms(df) if fourier else None
results = []
if multiprocessing:
with Pool(PROCESS_COUNT) as pool:
mp_param = functools.partial(test_model_sarima, df, exog=exog_to_train)
results = list(tqdm(pool.imap(mp_param, params, chunksize=10), total=len(params)))
results = [result for result in results if result is not None]
else:
for param in tqdm(params):
result = test_model_sarima(df, param, exog_to_train)
if result is not None:
results.append(result)
results = pd.DataFrame(results, columns=['param', 'aic']).sort_values('aic')
return results.reset_index(drop=True)
def pred_demand_by(model_func, forecast_steps, train_inst_min, kwargs, param):
warnings.simplefilter("ignore")
# get train data
item_train_df = filter_demand(train_df, item=param[1], store=param[0])
if isinstance(train_inst_min, int) and len(item_train_df) < train_inst_min:
return
item_train_df = get_train_data(item_train_df, train_date_range)
# train and predict
pred = model_func(item_train_df, forecast_steps, kwargs)
# print('{} {} {}'.format(*param, len(pred) if pred is not None else None))
return [*param, pred]
def pred_demands(train_df, test_df, model_func, forecast_steps=196, train_inst_min=None, multiprocessing=False, kwargs={}):
unique_items = test_df.item.unique()
unique_stores = test_df.store.unique()
combinations = list(product(test_df.store.unique(), test_df.item.unique()))
if train_inst_min is None:
train_inst_min = 0
preds = []
if multiprocessing:
with Pool(PROCESS_COUNT) as p:
mp_param = functools.partial(pred_demand_by, model_func, forecast_steps, train_inst_min, kwargs)
preds = list(tqdm(p.imap(mp_param, combinations), total=len(combinations)))
else:
for combination in tqdm(combinations):
pred = pred_demand_by(model_func, forecast_steps, train_inst_min, kwargs, combination)
preds.append(pred)
# convert to DataFrame
for pred in preds:
pred[2] = ' '.join(map(str, pred[2]))
return pd.DataFrame(preds, columns=['store', 'item', 'pred'])
def model_sarima(df, steps, kwargs):
exog_to_train, exog_to_test = None, None
if 'fourier' in kwargs and kwargs['fourier']:
exog_to_train, exog_to_test = _get_fourier_terms(df, steps)
# train
try:
model = SARIMAX(df, order=kwargs['order'], seasonal_order=kwargs['seasonal_order'], exog=exog_to_train)
model = model.fit(disp=-1)
except: return None
# predict
return model.forecast(steps, exog=exog_to_test).reset_index(drop=True)
def model_tbats(train_df, steps, kwargs):
estimator = TBATS(seasonal_periods=(7, 365.25), n_jobs=1)
model = estimator.fit(train_df)
return model.forecast(steps=steps)
def _create_sales_lag_feats(df, gpby_cols, target_col, lags):
gpby = df.groupby(gpby_cols)
for i in lags:
df['_'.join([target_col, 'lag', str(i)])] = \
gpby[target_col].shift(i).values + np.random.normal(scale=1.6, size=(len(df),))
return df
def _create_sales_ewm_feats(df, gpby_cols, target_col, alpha=[0.9], shift=[1]):
gpby = df.groupby(gpby_cols)
for a in alpha:
for s in shift:
df['_'.join([target_col, 'lag', str(s), 'ewm', str(a)])] = \
gpby[target_col].shift(s).ewm(alpha=a).mean().values
return df
def add_new_features(df):
if df.index.name != 'date':
df = df.set_index('date')
dates = df.index
df['weekday'] = dates.dayofweek
df['is_weekend'] = (df['weekday'] >= 4).astype(int)
df['day'] = dates.day
df['day_of_year'] = dates.dayofyear
df['is_month_start'] = (dates.is_month_start).astype(int)
df['is_month_end'] = (dates.is_month_end).astype(int)
df['week_of_year'] = dates.isocalendar().week.astype(int)
df['month'] = dates.month
df['quarter'] = (df.month - 1) // 3
df['year'] = dates.year
# 12 month lag
prior_year_sales = df.reset_index()[['date','sales','store','item']]
prior_year_sales['date'] += pd.Timedelta('365 days')
prior_year_sales.columns = ['date','12m_lag','store','item']
df = df.merge(prior_year_sales, on=['date','store','item'])
# is holiday or not
holidays = USFederalHolidayCalendar().holidays(start=df.date.min(), end=df.date.max())
df['holiday'] = df.date.isin(holidays).astype(int)
df = _create_sales_lag_feats(df, gpby_cols=['store','item'], target_col='sales',
lags=[91,98,105,112,119,126,182,364])
df = _create_sales_ewm_feats(df, gpby_cols=['store','item'],
target_col='sales',
alpha=[0.95, 0.9, 0.8, 0.7, 0.6, 0.5],
shift=[91,98,105,112,119,126,182,364,546,728])
df = df.set_index('date')
# convert categorical columns to numerics
#num_cols = ['sales', '12m_lag']
#cat_cols = [col for col in df.keys() if col not in num_cols]
cat_cols=['store', 'item', 'weekday', 'month', 'quarter']
df = pd.get_dummies(df, columns=cat_cols)
# print(list(df.keys()))
return df
def split_features_labels(df):
X_train = df.drop(columns=['sales'])
y_train = df[['sales']].values.ravel()
return X_train, y_train
def smape(A, F):
return 100/len(A) * np.sum(2 * np.abs(F - A) / (np.abs(A) + np.abs(F)))
def tune_xgb(train_df):
cutoff_date = '2017-10-01'
validation_df = train_df[train_df.index >= cutoff_date]
train_df = train_df[train_df.index < cutoff_date]
X_train, y_train = split_features_labels(train_df)
X_test, y_test = split_features_labels(validation_df)
n_estimators = range(50, 400, 100)
eta = (0.01, 0.05, 0.10)
max_depth = (6, 10)
# min_child_weight = (1, 3, 5)
gamma = (.0, .1, .2)
params = list(product(n_estimators, eta, max_depth, gamma))
result = []
for param in tqdm(params):
# build XGBoost model
xgb_model = XGBRegressor(n_estimators = param[0], learning_rate=param[1], max_depth=param[2], gamma=param[3])
xgb_model.fit(X_train, y_train)
# predict
pred_xgb = xgb_model.predict(X_test)
# evaluate
eval_smape = smape(pred_xgb, y_test)
result.append([param, eval_smape])
result = pd.DataFrame(result, columns=['param', 'smape']).sort_values('smape')
return result.reset_index(drop=True)
def plot_corr(df, method='spearman', size=10):
corr = df.corr(method=method)
sns.set(rc={'figure.figsize':(size+1,size)})
ax = sns.heatmap(corr, cmap='Greens', annot=True)
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
if __name__ == "__main__":
visualize = False
stationary_check = False
pred_count = 365
# ## Explore data
# ### Read input data
orig_train_df = pd.read_csv('dataset/train.csv')
print('Original: ' + str(orig_train_df.shape))
orig_train_df
# ### Data preprocessing
# Use more compact and consistent column names
train_df = orig_train_df.copy()
train_df.columns = ['date', 'store', 'item', 'sales']
train_df.date = pd.to_datetime(train_df.date)
train_df = group_demand_by(train_df, ['date', 'item', 'store'])
# remove NA
train_df.dropna(inplace=True)
print('After: ' + str(train_df.shape))
print('Date range: ')
date_range = get_date_range(train_df, debugging=True)
train_df.drop('date', axis=1).describe(include='all').iloc[:4,:]
# ## Exploratory time-series analysis
# Check stationarity of 100 items with highest frequency
check_items = train_df.item.value_counts().index
n = min(100, len(check_items))
check_items = check_items[:n]
if stationary_check:
stationary_check = check_stationary(train_df, check_items)
print('Original: {}/{} are not stationary'.format(len(stationary_check) - np.sum(stationary_check), n))
# Only one of them is not stationary. Let's write a simple function to apply differencing.
stationary_check = check_stationary(train_df, check_items, differencing=True)
print('After differencing: {}/{} are not stationary'.format(len(stationary_check) - np.sum(stationary_check), n))
# Okay, now we have the function, we only need to call it when we build the model.
# ## Finding correlation
# First, since we're dealing with one product at a time, we need a simple function to filter dataset based on product code (ID). Since a lot of days will have no demand for that particulat product, we need to fill those missing dates with 0.
# Next, we need a specific product to find out the correlation
# **Clarification**: Each product's demand might be completely different from each other, so the correlation of one product might not hold true to others, eventually produces inaccurate results. In this project, I will only consider products with high demand, e.g. staples, so there will be high chance that they have similar correlation.
# getting the item with highest demand
highest_freq_item_df = filter_demand(train_df, item=check_items[0], store=1)
train_date_range = get_date_range(train_df, debugging=True)
item_df = get_train_data(highest_freq_item_df, train_date_range)
item_diff_df = get_train_data(highest_freq_item_df, train_date_range, differencing=True)
del highest_freq_item_df
if visualize:
fig, ax = plt.subplots(1, 4, figsize=(18,4))
lags = 30
sm.graphics.tsa.plot_acf(item_df, lags=lags, ax=ax[0], title='Autocorrelation')
sm.graphics.tsa.plot_pacf(item_df, lags=lags, ax=ax[1], title='Partial autocorrelation')
sm.graphics.tsa.plot_acf(item_diff_df, lags=lags, ax=ax[2], title='Autocorrelation')
sm.graphics.tsa.plot_pacf(item_diff_df, lags=lags, ax=ax[3], title='Partial autocorrelation')
pass
# It is quite obvious that the item also has weekly seasonality.
#
# In this project, I will use **_TBATS_**, a method specifically designed to handle datasets with multiple seasonalities. The traditional **_SARIMA_** model will also be conducted to compare the results.
# ## SARIMA
#
# ### Finding right parameters
d = 1
D = 0
tried_params_filepath = "backup/sarima_params.csv"
if Path(tried_params_filepath).is_file():
print('Reading from {}...'.format(tried_params_filepath))
tried_models = pd.read_csv(tried_params_filepath)
tried_models.param = tried_models.param.apply(lambda param: literal_eval(param))
else:
print('{} does not exist. Finding best SARIMA model...'.format(tried_params_filepath))
tried_models = optimize_SARIMA(item_df, d=d, D=D)
tried_models.to_csv(tried_params_filepath, index=False)
# So, we have the params for our SARIMA model now
print('Parameters of best SARIMA model:')
order, seasonal_order = tried_models.param[0]
sarima_param = {'order': order, 'seasonal_order': seasonal_order}
print(sarima_param)
# ### Build SARIMA model
sarima_pred_filepath = 'backup/sarima_prediction.csv'
if Path(sarima_pred_filepath).is_file():
print('Reading from {}...'.format(sarima_pred_filepath))
pred_sarima = pd.read_csv(sarima_pred_filepath)
pred_sarima.pred = pred_sarima.pred.apply(lambda pred: np.fromstring(pred, dtype=float, sep=' '))
else:
print('{} does not exist. Running SARIMA...'.format(sarima_pred_filepath))
pred_sarima = pred_demands(train_df, test_df, model_sarima, pred_count, kwargs=sarima_param)
pred_sarima.to_csv(sarima_pred_filepath, index=False)
# SARIMA model with FOURIER
sarima_fourier_params_filepath = "backup/sarima_fourier_params.csv"
if Path(sarima_fourier_params_filepath).is_file():
print('Reading from {}...'.format(sarima_fourier_params_filepath))
tried_models = pd.read_csv(sarima_fourier_params_filepath)
tried_models.param = tried_models.param.apply(lambda param: literal_eval(param))
else:
print('{} does not exist. Finding best SARIMA with FOURIER model...'.format(sarima_fourier_params_filepath))
tried_models = optimize_SARIMA(item_df, d=d, D=D, fourier=True, multiprocessing=True)
tried_models.to_csv(sarima_fourier_params_filepath, index=False)
print('Parameters of best SARIMA with FOURIER:')
order, seasonal_order = tried_models.param[0]
sarima_fourier_param = {'order': order, 'seasonal_order': seasonal_order}
print(sarima_fourier_param)
sarima_fourier_pred_filepath = 'backup/sarima_fourier_prediction.csv'
if Path(sarima_fourier_pred_filepath).is_file():
print('Reading from {}...'.format(sarima_fourier_pred_filepath))
pred_sarima_fourier = pd.read_csv(sarima_fourier_pred_filepath)
pred_sarima_fourier.pred = pred_sarima_fourier.pred.apply(lambda pred: np.fromstring(pred, dtype=float, sep=' '))
else:
print('{} does not exist. Running SARIMA with FOURIER...'.format(sarima_fourier_pred_filepath))
# indicate Fourier transformation
sarima_fourier_param = sarima_param.copy()
sarima_fourier_param['fourier'] = True
# train model
pred_sarima_fourier = pred_demands(train_df, test_df, model_sarima, pred_count, kwargs=sarima_fourier_param)
pred_sarima_fourier.to_csv(sarima_fourier_pred_filepath, index=False)
# ## TBATS
# Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components.
tbats_pred_filepath = 'backup/tbats_prediction.csv'
if Path(tbats_pred_filepath).is_file():
print('Reading from {}...'.format(tbats_pred_filepath))
pred_tbats = pd.read_csv(tbats_pred_filepath)
pred_tbats.pred = pred_tbats.pred.apply(lambda pred: np.fromstring(pred, dtype=float, sep=' '))
else:
print('{} does not exist. Running TBATS...'.format(tbats_pred_filepath))
# apparently, tbats already uses multiprocessing underneath
pred_tbats = pred_demands(train_df, test_df, model_tbats, pred_count, multiprocessing=True)
pred_tbats.to_csv(tbats_pred_filepath, index=False)
# read the test file
test_df = pd.read_csv('dataset/test.csv', index_col='id')
test_size = calc_datetime_delta(*get_date_range(test_df))
test_df.date = pd.to_datetime(test_df.date)
first_test_date = test_df.date.min()
# ## XGBoost
# add features to train and test file
xgb_pred_filepath = 'xgb_prediction.csv'
if Path(xgb_pred_filepath).is_file():
print('Reading from {}...'.format(xgb_pred_filepath))
pred_xgb = np.loadtxt(xgb_pred_filepath)
else:
print('{} does not exist. Running XGBoost...'.format(xgb_pred_filepath))
start_time = time()
print('Start time: ' + get_timestamp_string(start_time))
# adding new features
full_df = pd.concat([train_df, test_df])
full_df = add_new_features(full_df)
train_added_df = full_df[full_df.index < first_test_date]
test_added_df = full_df[full_df.index >= first_test_date]
# tune parameters
xgb_params_filepath = "xgb_params.csv"
if Path(xgb_params_filepath).is_file():
print('Reading from {}...'.format(xgb_params_filepath))
xgb_params = pd.read_csv(xgb_params_filepath)
xgb_params.param = xgb_params.param.apply(lambda param: literal_eval(param))
else:
print('{} does not exist. Finding best SARIMA model...'.format(xgb_params_filepath))
xgb_params = tune_xgb(train_added_df)
xgb_params.to_csv(xgb_params_filepath, index=False)
# split into features and labels
X_train, y_train = split_features_labels(train_added_df)
X_test, _ = split_features_labels(test_added_df)
# build XGBoost model
# xgb_model = XGBRegressor(tree_method='gpu_hist', n_jobs=PROCESS_COUNT, verbosity=3)
xgb_model = XGBRegressor(n_jobs=PROCESS_COUNT, verbosity=3)
xgb_model.fit(X_train, y_train)
# predict
pred_xgb = xgb_model.predict(X_test)
np.savetxt(xgb_pred_filepath, pred_xgb, delimiter=",")
# save model
joblib.dump(xgb_model, 'xgb_model.pkl', compress=9)
print_elapsed_time(start_time)
# testing
submissions_filepath = 'submissions.csv'
if not Path(submissions_filepath).is_file():
#TODO: consider refactoring this
# iterate each test case, and find its prediction
pred_dfs = {'sarima': pred_sarima, 'sarima_fourier': pred_sarima_fourier, 'tbats': pred_tbats, 'xgb': pred_xgb}
def combine_prediction(input):
index, row = input
offset = (row.date - first_test_date).days
result = []
for name, pred_df in pred_dfs.items():
if isinstance(pred_df, pd.DataFrame):
df = filter_demand(pred_df, store=row.store, item=row['item'])
result.append(df.pred.values[0][offset])
else:
result.append(pred_df[index])
return result
# distribute the workload
with Pool(PROCESS_COUNT) as p:
rows_iter = ((index, row) for index, row in test_df.iterrows())
submissions = list(tqdm(p.imap(combine_prediction, rows_iter), total=test_df.shape[0]))
submissions = pd.DataFrame(submissions, columns=pred_dfs.keys())
submissions.index.name = 'id'
submissions.to_csv(submissions_filepath)