forked from geaxgx/depthai_hand_tracker
-
Notifications
You must be signed in to change notification settings - Fork 1
/
HandTrackerRenderer.py
231 lines (210 loc) · 10.8 KB
/
HandTrackerRenderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import cv2
import numpy as np
LINES_HAND = [[0,1],[1,2],[2,3],[3,4],
[0,5],[5,6],[6,7],[7,8],
[5,9],[9,10],[10,11],[11,12],
[9,13],[13,14],[14,15],[15,16],
[13,17],[17,18],[18,19],[19,20],[0,17]]
# LINES_BODY to draw the body skeleton when Body Pre Focusing is used
LINES_BODY = [[4,2],[2,0],[0,1],[1,3],
[10,8],[8,6],[6,5],[5,7],[7,9],
[6,12],[12,11],[11,5],
[12,14],[14,16],[11,13],[13,15]]
class HandTrackerRenderer:
def __init__(self,
tracker,
output=None):
self.tracker = tracker
# Rendering flags
if self.tracker.use_lm:
self.show_pd_box = False
self.show_pd_kps = False
self.show_rot_rect = False
self.show_handedness = 0
self.show_landmarks = True
self.show_scores = False
self.show_gesture = self.tracker.use_gesture
else:
self.show_pd_box = True
self.show_pd_kps = False
self.show_rot_rect = False
self.show_scores = False
self.show_xyz_zone = self.show_xyz = self.tracker.xyz
self.show_fps = True
self.show_body = False # self.tracker.body_pre_focusing is not None
self.show_inferences_status = False
if output is None:
self.output = None
else:
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
self.output = cv2.VideoWriter(output,fourcc,self.tracker.video_fps,(self.tracker.img_w, self.tracker.img_h))
def norm2abs(self, x_y):
x = int(x_y[0] * self.tracker.frame_size - self.tracker.pad_w)
y = int(x_y[1] * self.tracker.frame_size - self.tracker.pad_h)
return (x, y)
def draw_hand(self, hand):
if self.tracker.use_lm:
# (info_ref_x, info_ref_y): coords in the image of a reference point
# relatively to which hands information (score, handedness, xyz,...) are drawn
info_ref_x = hand.landmarks[0,0]
info_ref_y = np.max(hand.landmarks[:,1])
# thick_coef is used to adapt the size of the draw landmarks features according to the size of the hand.
thick_coef = hand.rect_w_a / 400
if hand.lm_score > self.tracker.lm_score_thresh:
if self.show_rot_rect:
cv2.polylines(self.frame, [np.array(hand.rect_points)], True, (0,255,255), 2, cv2.LINE_AA)
if self.show_landmarks:
lines = [np.array([hand.landmarks[point] for point in line]).astype(np.int32) for line in LINES_HAND]
if self.show_handedness == 3:
color = (0,255,0) if hand.handedness > 0.5 else (0,0,255)
else:
color = (255, 0, 0)
cv2.polylines(self.frame, lines, False, color, int(1+thick_coef*3), cv2.LINE_AA)
radius = int(1+thick_coef*5)
if self.tracker.use_gesture:
# color depending on finger state (1=open, 0=close, -1=unknown)
color = { 1: (0,255,0), 0: (0,0,255), -1:(0,255,255)}
cv2.circle(self.frame, (hand.landmarks[0][0], hand.landmarks[0][1]), radius, color[-1], -1)
for i in range(1,5):
cv2.circle(self.frame, (hand.landmarks[i][0], hand.landmarks[i][1]), radius, color[hand.thumb_state], -1)
for i in range(5,9):
cv2.circle(self.frame, (hand.landmarks[i][0], hand.landmarks[i][1]), radius, color[hand.index_state], -1)
for i in range(9,13):
cv2.circle(self.frame, (hand.landmarks[i][0], hand.landmarks[i][1]), radius, color[hand.middle_state], -1)
for i in range(13,17):
cv2.circle(self.frame, (hand.landmarks[i][0], hand.landmarks[i][1]), radius, color[hand.ring_state], -1)
for i in range(17,21):
cv2.circle(self.frame, (hand.landmarks[i][0], hand.landmarks[i][1]), radius, color[hand.little_state], -1)
else:
if self.show_handedness == 2:
color = (0,255,0) if hand.handedness > 0.5 else (0,0,255)
elif self.show_handedness == 3:
color = (255, 0, 0)
else:
color = (0,128,255)
for x,y in hand.landmarks[:,:2]:
cv2.circle(self.frame, (int(x), int(y)), radius, color, -1)
if self.show_handedness == 1:
cv2.putText(self.frame, f"{hand.label.upper()} {hand.handedness:.2f}",
(info_ref_x-90, info_ref_y+40),
cv2.FONT_HERSHEY_PLAIN, 2, (0,255,0) if hand.handedness > 0.5 else (0,0,255), 2)
if self.show_scores:
cv2.putText(self.frame, f"Landmark score: {hand.lm_score:.2f}",
(info_ref_x-90, info_ref_y+110),
cv2.FONT_HERSHEY_PLAIN, 2, (255,255,0), 2)
if self.tracker.use_gesture and self.show_gesture:
cv2.putText(self.frame, hand.gesture, (info_ref_x-20, info_ref_y-50),
cv2.FONT_HERSHEY_PLAIN, 3, (255,255,255), 3)
if hand.pd_box is not None:
box = hand.pd_box
box_tl = self.norm2abs((box[0], box[1]))
box_br = self.norm2abs((box[0]+box[2], box[1]+box[3]))
if self.show_pd_box:
cv2.rectangle(self.frame, box_tl, box_br, (0,255,0), 2)
if self.show_pd_kps:
for i,kp in enumerate(hand.pd_kps):
x_y = self.norm2abs(kp)
cv2.circle(self.frame, x_y, 6, (0,0,255), -1)
cv2.putText(self.frame, str(i), (x_y[0], x_y[1]+12), cv2.FONT_HERSHEY_PLAIN, 1.5, (0,255,0), 2)
if self.show_scores:
if self.tracker.use_lm:
x, y = info_ref_x - 90, info_ref_y + 80
else:
x, y = box_tl[0], box_br[1]+60
cv2.putText(self.frame, f"Palm score: {hand.pd_score:.2f}",
(x, y),
cv2.FONT_HERSHEY_PLAIN, 2, (255,255,0), 2)
if self.show_xyz:
if self.tracker.use_lm:
x0, y0 = info_ref_x - 40, info_ref_y + 40
else:
x0, y0 = box_tl[0], box_br[1]+20
cv2.rectangle(self.frame, (x0,y0), (x0+100, y0+85), (220,220,240), -1)
cv2.putText(self.frame, f"X:{hand.xyz[0]/10:3.0f} cm", (x0+10, y0+20), cv2.FONT_HERSHEY_PLAIN, 1, (20,180,0), 2)
cv2.putText(self.frame, f"Y:{hand.xyz[1]/10:3.0f} cm", (x0+10, y0+45), cv2.FONT_HERSHEY_PLAIN, 1, (255,0,0), 2)
cv2.putText(self.frame, f"Z:{hand.xyz[2]/10:3.0f} cm", (x0+10, y0+70), cv2.FONT_HERSHEY_PLAIN, 1, (0,0,255), 2)
if self.show_xyz_zone:
# Show zone on which the spatial data were calculated
cv2.rectangle(self.frame, tuple(hand.xyz_zone[0:2]), tuple(hand.xyz_zone[2:4]), (180,0,180), 2)
def draw_body(self, body):
lines = [np.array([body.keypoints[point] for point in line]) for line in LINES_BODY if body.scores[line[0]] > self.tracker.body_score_thresh and body.scores[line[1]] > self.tracker.body_score_thresh]
cv2.polylines(self.frame, lines, False, (255, 144, 30), 2, cv2.LINE_AA)
def draw_bag(self, bag):
if self.show_inferences_status:
# Draw inferences status
h = self.frame.shape[0]
u = h // 10
status=""
if bag.get("bpf_inference", 0):
cv2.rectangle(self.frame, (u, 8*u), (2*u, 9*u), (255,144,30), -1)
if bag.get("pd_inference", 0):
cv2.rectangle(self.frame, (2*u, 8*u), (3*u, 9*u), (0,255,0), -1)
nb_lm_inferences = bag.get("lm_inference", 0)
if nb_lm_inferences:
cv2.rectangle(self.frame, (3*u, 8*u), ((3+nb_lm_inferences)*u, 9*u), (0,0,255), -1)
body = bag.get("body", False)
if body and self.show_body:
# Draw skeleton
self.draw_body(body)
# Draw Movenet smart cropping rectangle
cv2.rectangle(self.frame, (body.crop_region.xmin, body.crop_region.ymin), (body.crop_region.xmax, body.crop_region.ymax), (0,255,255), 2)
# Draw focus zone
focus_zone= bag.get("focus_zone", None)
if focus_zone:
cv2.rectangle(self.frame, tuple(focus_zone[0:2]), tuple(focus_zone[2:4]), (0,255,0),2)
def draw(self, frame, hands, bag={}):
self.frame = frame
if bag:
self.draw_bag(bag)
for hand in hands:
self.draw_hand(hand)
return self.frame
def exit(self):
if self.output:
self.output.release()
cv2.destroyAllWindows()
def waitKey(self, delay=1):
if self.show_fps:
self.tracker.fps.draw(self.frame, orig=(50,50), size=1, color=(240,180,100))
cv2.imshow("Hand tracking", self.frame)
if self.output:
self.output.write(self.frame)
key = cv2.waitKey(delay)
if key == 32:
# Pause on space bar
key = cv2.waitKey(0)
if key == ord('s'):
print("Snapshot saved in snapshot.jpg")
cv2.imwrite("snapshot.jpg", self.frame)
elif key == ord('1'):
self.show_pd_box = not self.show_pd_box
elif key == ord('2'):
self.show_pd_kps = not self.show_pd_kps
elif key == ord('3'):
self.show_rot_rect = not self.show_rot_rect
elif key == ord('4') and self.tracker.use_lm:
self.show_landmarks = not self.show_landmarks
elif key == ord('5') and self.tracker.use_lm:
self.show_handedness = (self.show_handedness + 1) % 4
elif key == ord('6'):
self.show_scores = not self.show_scores
elif key == ord('7') and self.tracker.use_lm:
if self.tracker.use_gesture:
self.show_gesture = not self.show_gesture
elif key == ord('8'):
if self.tracker.xyz:
self.show_xyz = not self.show_xyz
elif key == ord('9'):
if self.tracker.xyz:
self.show_xyz_zone = not self.show_xyz_zone
elif key == ord('f'):
self.show_fps = not self.show_fps
elif key == ord('b'):
try:
if self.tracker.body_pre_focusing:
self.show_body = not self.show_body
except:
pass
elif key == ord('s'):
self.show_inferences_status = not self.show_inferences_status
return key