Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How do I provide an argument to use an image target rather than a text prompt? #25

Open
sj978 opened this issue Sep 18, 2022 · 0 comments

Comments

@sj978
Copy link

sj978 commented Sep 18, 2022

I removed --prompt from the settings of run_shoe.sh and set values for --no_prompt and --image, and the quality of results were really bad. Details are as follows:

case1

  • run_shoe.sh
    python main.py --run branch --obj_path data/source_meshes/shoe.obj --output_dir results/demo/shoe/texture/brick --no_prompt --image data/target_texture/brick_texture.jpg --sigma 5.0 --clamp tanh --n_normaugs 4 --n_augs 1 --normmincrop 0.1 --normmaxcrop 0.1 --geoloss --colordepth 2 --normdepth 2 --frontview --frontview_std 4 --clipavg view --lr_decay 0.9 --clamp tanh --normclamp tanh --maxcrop 1.0 --save_render --seed 11 --n_iter 1500 --learning_rate 0.0005 --normal_learning_rate 0.0005 --background 1 1 1 --frontview_center 0.5 0.6283

  • brick_texture.jpg
    image

  • result
    image

case2

  • run_shoe.sh
    python main.py --run branch --obj_path data/source_meshes/shoe.obj --output_dir results/demo/shoe/texture2/cactus --no_prompt --image data/target_texture/cactus_texture.jpg --sigma 5.0 --clamp tanh --n_normaugs 4 --n_augs 1 --normmincrop 0.1 --normmaxcrop 0.1 --geoloss --colordepth 2 --normdepth 2 --frontview --frontview_std 4 --clipavg view --lr_decay 0.9 --clamp tanh --normclamp tanh --maxcrop 1.0 --save_render --seed 11 --n_iter 1500 --learning_rate 0.0005 --normal_learning_rate 0.0005 --background 1 1 1 --frontview_center 0.5 0.6283

  • cactus_texture.jpg
    image

  • result
    image

Did I set the parameter wrong? Or is there something in main.py that needs to be modified? Or is it a randomness issue in optimization?

When --no_prompt is set to True and --image is set to image path string in main.py, the loss code corresponding to 'local to global' and 'local to displacement' in the paper is not understood. Should I change this part?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant